\[\LARGE{SEM=\frac{s}{\sqrt{n}}}\]
## [1] 5.063379
## [1] 0.5487565
## [1] 0.05487565
sim1 = replicate(10000,runif(100,4,6))
#Función dim: Devuelve las dimensiones de una matriz
#dim(sim1)
mean_sim1=colMeans(sim1)
hist(mean_sim1)## [1] 0.05836866
ee = function(n){
if(n>2){
simf=replicate(1000,runif(n,4,6))
e=sd(colMeans(simf)) #Hint: apply
#Cacular error estandar de la mediana
formula=sd(simf[,1])/sqrt(length(simf[,1]))
return(list(e=e,formula=formula))
}else{
print("n<=2")
}
}y_1=c() #Simulacion
y_2=c() #Formula
n_i=c() #N
for(i in seq(3,1000,1)){
y_e=ee(i)$e
y_1=c(y_1,y_e)
y_f=ee(i)$formula
y_2=c(y_2,y_f)
n_i=c(n_i,i)
}
library(ggplot2)
df=data.frame(y_1,y_2,n_i)
ggplot(data=df,aes(x=y_1,y=y_2,col=n_i))+
geom_point(size=3)+
coord_equal()+
geom_abline(slope=1)+
labs(x="Simulado",y="Formula")## [1] 0.05487565
## Error estandar de la mediana tomado a partir de la variación de las
1000 muestras.
## [1] 0.09966424
eem = function(n){
if(n>2){
simf=replicate(1000,runif(n,4,6))
e=sd(colMedians(simf))
#Calcular error estandar de la mediana
formula=sd(simf[,1])/sqrt(length(simf[,1]))
return(list(e=e,formula=formula))
}else{
print("n<=2")
}
}y_1=c() #Simulacion
y_2=c() #Formula
n_i=c() #N
for(i in seq(3,1000,1)){
y_e=eem(i)$e
y_1=c(y_1,y_e)
y_f=eem(i)$formula
y_2=c(y_2,y_f)
n_i=c(n_i,i)
}
library(ggplot2)
df=data.frame(y_1,y_2,n_i)
ggplot(data=df,aes(x=y_1,y=y_2,col=n_i))+
geom_point(size=3)+
coord_equal()+
geom_abline(slope=mediana*0.1)+
labs(x="Simulado",y="Formula")