Libraries

library(TSA) # time series
library(TSclust)

library(tidyr)
library(readr)
library(ggplot2) # ggplot graphs
library(knitr)
library(readxl)
library(xlsx)
library(openxlsx)
library(reactable) # reactable(df)
library(naniar) # miss_case_summary

library(dplyr)

## KNN imputation
library(caret)
library(RANN)

# CLustering 
library(factoextra)    # Clustering visualization
library(cluster)       # Clustering algorithms
library(dendextend)    # For comparing two dendrograms
library(corrplot)      # Corelation between dendrograms
library(tidyverse)     # Data manupulation
library(NbClust)       # Determine optimal no. of clusters  [not working...]
library(TSclust)
library(mclust)        # Adjusted Rand index

#RandomForest
library(randomForest) # RandomForest Discrete Classification
library(imbalance) # To create a more balanced dataset

Functions

source("../../scripts/useful-functions/get_column_position.R")
# In a normal script it will be:  source("./scripts/useful-functions/get_column_position.R")

Reading Data

Time Series Data: SatO2 Heart Rate

SatO2_TS_HR_P2 = data.frame(read_xlsx("../../data/clean-data/BoxBasedImputation/SatO2_valid_patients_input_P2.xlsx", sheet = "SatO2_valid_patients_input_P2" ))
SatO2_scaled_TS_HR_P2 <- as.data.frame(lapply(SatO2_TS_HR_P2, scale))

# First patients with OAF
name_patients_DETERIORO_OAF_0 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0.csv"))
name_patients_DETERIORO_OAF_0 <- name_patients_DETERIORO_OAF_0$x
name_patients_DETERIORO_OAF_0_8 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0_8.csv"))
name_patients_DETERIORO_OAF_0_8 <- name_patients_DETERIORO_OAF_0_8$x

## Deterioro and Not deterioro
file_patient_name_NO_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_NO_DETERIORO.csv"))
file_patient_name_NO_DETERIORO <- file_patient_name_NO_DETERIORO$x
file_patient_name_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_DETERIORO.csv"))
file_patient_name_DETERIORO <- file_patient_name_DETERIORO$x

Descriptive Data for Discriminant analysis

valid_patients_P2 <- data.frame(read_xlsx("../../data/clean-data/valid_patients_P2.xlsx"))
valid_patients_P2 <- valid_patients_P2$x
valid_patients_P2 <- valid_patients_P2[! valid_patients_P2 %in% union(name_patients_DETERIORO_OAF_0,name_patients_DETERIORO_OAF_0_8)]

file_patient_name <- data.frame(read_csv("../../data/clean-data/file_patient_name.csv", show_col_types = FALSE))
file_patient_name <- file_patient_name$x
  
df1 <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data.xlsx"))
rownames(df1) <- file_patient_name
df1 <- df1[valid_patients_P2,]
df_descriptive <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data_imputed.xlsx"), row.names = TRUE)
rownames(df_descriptive) <- file_patient_name
df_descriptive <- df_descriptive %>% select(-c(FR_8_16h, FR_16_24h, FLUJO2_8_16h,FLUJO2_16_24h,SCORE_WOOD_DOWNES_24H,SAPI_16_24h, SAPI_8_16h))
# Class
pos_1 = get_column_position(df_descriptive,"SAPI_0_8h")
pos_2 = get_column_position(df_descriptive,"PAUSAS_APNEA")
df_descriptive[,c(pos_1:pos_2)] <- lapply(df_descriptive[,c(pos_1:pos_2)], as.factor)
#lapply(df_descriptive,class)
df_descriptive <- df_descriptive[valid_patients_P2,]

Create a dataframe with ACF [Heart Rate ]

SatO2_scaled_TS_HR_P2 <- SatO2_scaled_TS_HR_P2[,valid_patients_P2]

Restando Media

#SatO2_scaled_TS_HR_P2 = data.frame(scale(SatO2_scaled_TS_HR_P2))
dimension_col <- dim(SatO2_scaled_TS_HR_P2)[2]
dimension_row <- 480 #lag.max -1

# Heart Rate
SatO2_scaled_TS_HR_P2_ACF <- data.frame(matrix(nrow = dimension_row, ncol = dimension_col))
colnames(SatO2_scaled_TS_HR_P2_ACF) <- names(SatO2_scaled_TS_HR_P2)[1:dimension_col]
for (i in names(SatO2_scaled_TS_HR_P2_ACF)) {
  acf_result_SatO2_scaled <- forecast::Acf(SatO2_scaled_TS_HR_P2[[i]], lag.max = (dimension_row - 1), plot = FALSE, drop.lag.0 = FALSE)
  SatO2_scaled_TS_HR_P2_ACF[, i] <- acf_result_SatO2_scaled$acf
}

Create a dataframe with peridiogram

# Generar un dataset con varias series temporales
df <- SatO2_scaled_TS_HR_P2

# Crear una matriz para almacenar los periodogramas
pg_mat <- data.frame(matrix(nrow = nrow(df), ncol =  ncol(df)))
colnames(pg_mat) = colnames(SatO2_scaled_TS_HR_P2)

# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
library(stats)
# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
for (i in colnames(SatO2_scaled_TS_HR_P2)) {
  pg_mat[,i] <- stats::spec.pgram(SatO2_scaled_TS_HR_P2[,i], plot = FALSE)$spec
}

TsClust Comprobation

datos <- SatO2_scaled_TS_HR_P2

diss.ACF Computes the dissimilarity between two time series as the distance between their estimated simple (ACF) or partial (PACF) autocorrelation coefficients

DD_ACF <- diss(datos, "ACF", lag.max = 50)
DD_ACF_matrix <- as.matrix(DD_ACF)

diss.EUCL

DD_EUCL <- diss(datos, "EUCL")
DD_EUCL_matrix <- as.matrix(DD_EUCL)

diss.PER

DD_PER <- diss(datos, "PER")
DD_PER_matrix <- as.matrix(DD_PER)

Euclidean Distance first 50 ACF

datos_ACF = t(SatO2_scaled_TS_HR_P2_ACF[c(1:51),])
distance <- dist(t(SatO2_scaled_TS_HR_P2_ACF[c(1:51),]), method = "euclidean")
distance_matrix_ACF <- as.matrix(distance)

Euclidean Distance

datos_EUCL <- t(datos)
distance <- dist(datos_EUCL, method = "euclidean")
distance_matrix_EUCL <- as.matrix(distance)

Eculidean PER Distance

datos_PER <- t(pg_mat)
distance_PER <- dist(t(pg_mat), method = "euclidean")
distance_matrix_PER <- as.matrix(distance_PER)
distance_matrix_PER_NORM = distance_matrix_PER / 480

TSCLust in Action

ACF TSclust

# DD_ACF <- diss(datos, "ACF", lag.max = 50)

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_ACF, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.8135257 0.5037581 0.8916885 0.9454334

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_ACF
res<-NbClust(datos_ACF, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.6476 0.3127 0.2860 0.2742
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.6476
#res$Best.partition
hcintper_ACF <- hclust(DD_ACF, "ward.D2")
fviz_dend(hcintper_ACF, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

DDclust_ACF_SatO2_scaled <- cutree( hclust(DD_ACF, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_ACF_SatO2_scaled))

fviz_silhouette(silhouette(DDclust_ACF_SatO2_scaled, DD_ACF))
##   cluster size ave.sil.width
## 1       1   51          0.66
## 2       2    7          0.54

Contingency ACF lag.max = 50

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_ACF <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_ACF <- union(names(DDclust_ACF_SatO2_scaled[DDclust_ACF_SatO2_scaled == 2]),names(DDclust_ACF_SatO2_scaled[DDclust_ACF_SatO2_scaled == 1]))
fviz_dend(hcintper_ACF, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_ACF[,order_ACF]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 6 0
NO DETERIORO 45 7
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.1176471 0
NO DETERIORO 0.8823529 1

Random Forest: Discriminant TSCLust ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_SatO2_scaled)
data_frame2 = df_descriptive
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
data_frame_merge_ACF$CLUSTER = factor(data_frame_merge_ACF$CLUSTER)
table(data_frame_merge_ACF$CLUSTER)
## 
##  1  2 
## 51  7
data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])]<- lapply(data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])], as.numeric)
head(data_frame_merge_ACF)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       2 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_ACF$CLUSTER <- factor(data_frame_merge_ACF$CLUSTER)
newSMOTE_ACF <- oversample(data_frame_merge_ACF, ratio = 0.85, method = "SMOTE", classAttr = "CLUSTER")
newSMOTE_ACF <- data.frame(newSMOTE_ACF)
pos_1 <- get_column_position(newSMOTE_ACF, "SAPI_0_8h")
pos_2 <- get_column_position(newSMOTE_ACF, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newSMOTE_ACF[, columns_to_round] <- lapply(newSMOTE_ACF[, columns_to_round], function(x) round(x, 1))
table(newSMOTE_ACF$CLUSTER)
## 
##  1  2 
## 51 44
set.seed(123)
pos_1 = get_column_position(newSMOTE_ACF, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_ACF, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_ACF[pos_1:pos_2])
newSMOTE_ACF[col_names_factor] <- lapply(newSMOTE_ACF[col_names_factor] , factor)

RF_ACF <- randomForest(CLUSTER ~ ., data = newSMOTE_ACF)
print(RF_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 5.26%
## Confusion matrix:
##    1  2 class.error
## 1 50  1  0.01960784
## 2  4 40  0.09090909

Importance

kable(RF_ACF$importance[order(RF_ACF$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 6.9904913
SCORE_CRUCES_INGRESO 6.3766205
SAPI_0_8h 5.8686141
EDAD 3.9669244
ENFERMEDAD_BASE 2.9533939
DIAS_GN 2.8443034
SEXO 1.7167167
PESO 1.7071637
FLUJO2_0_8H 1.6412857
ALIMENTACION 1.5490696
ETIOLOGIA 1.5267039
DIAS_O2_TOTAL 1.4017639
EG 1.0241249
FR_0_8h 0.9445228
SUERO 0.9350600
PALIVIZUMAB 0.8761918
PREMATURIDAD 0.7690630
LM 0.7548396
TABACO 0.7198383
ANALITICA 0.7185272
RADIOGRAFIA 0.5327186
ALERGIAS 0.2996115
OAF 0.1028297
DETERIORO 0.0900122
SNG 0.0808216
OAF_TRAS_INGRESO 0.0697980
DIAS_OAF 0.0676047
GN_INGRESO 0.0345121
UCIP 0.0283953
DERMATITIS 0.0248943
PAUSAS_APNEA 0.0197693
OAF_AL_INGRESO 0.0000000

Importance of first 50 ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_SatO2_scaled)
data_frame2_ACF = data.frame(t(SatO2_scaled_TS_HR_P2_ACF[c(1:51),]))
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2_ACF,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
set.seed(123)
data_frame_merge_ACF$CLUSTER <- as.factor(data_frame_merge_ACF$CLUSTER)
RF_0_ACF <- randomForest(CLUSTER ~ ., data = data_frame_merge_ACF)
print(RF_0_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 7
## 
##         OOB estimate of  error rate: 1.72%
## Confusion matrix:
##    1 2 class.error
## 1 51 0   0.0000000
## 2  1 6   0.1428571
plot(RF_0_ACF$importance, type = "h")

### ACF by clusters

plot_data_ACF <- data.frame(datos_ACF)
cluster_data_ACF <- data.frame(DDclust_ACF_SatO2_scaled)
plotting_ACF <- cbind(plot_data_ACF, cluster_data_ACF)
head(plotting_ACF)
##               X1        X2        X3        X4        X5        X6        X7
## ACR_11231843   1 0.5082890 0.3997243 0.3055021 0.3009323 0.2725452 0.2828684
## ADAO_11159808  1 0.7960148 0.7358783 0.7023573 0.7034097 0.6571457 0.6266538
## AGG_11236448   1 0.4506480 0.4176547 0.3266226 0.3352883 0.2867152 0.3288047
## AHL_11239959   1 0.6522007 0.4130156 0.3200723 0.3440361 0.3568053 0.3408829
## AJGD_11119689  1 0.6469179 0.5880904 0.5481336 0.5084136 0.4652971 0.4792604
## AMP_11228639   1 0.3765707 0.3564648 0.2828661 0.2304710 0.2216612 0.1820556
##                      X8        X9        X10       X11        X12        X13
## ACR_11231843  0.2414714 0.2329953 0.18395173 0.1467580 0.12033122 0.08302370
## ADAO_11159808 0.6305916 0.6168577 0.59417999 0.6000893 0.60607048 0.60015069
## AGG_11236448  0.2209685 0.2946372 0.24923513 0.2791107 0.25321237 0.23780416
## AHL_11239959  0.3217067 0.3072727 0.25540711 0.2257664 0.22431145 0.24252531
## AJGD_11119689 0.4275522 0.3935165 0.35060010 0.3330913 0.30196103 0.25973001
## AMP_11228639  0.1759353 0.1038674 0.07915669 0.1212448 0.08580592 0.08996543
##                      X14        X15        X16        X17        X18        X19
## ACR_11231843  0.08933466 0.05687640 0.05274341 0.06126060 0.08978425 0.02651201
## ADAO_11159808 0.58930211 0.59429754 0.56563344 0.55562686 0.55569350 0.55287474
## AGG_11236448  0.18830545 0.29476738 0.24013660 0.29281568 0.24484356 0.27312417
## AHL_11239959  0.26020561 0.23401364 0.19351172 0.17366679 0.14454853 0.11669907
## AJGD_11119689 0.21434187 0.22249353 0.21308087 0.18224214 0.17989537 0.16992608
## AMP_11228639  0.07081004 0.05479702 0.00521051 0.02134299 0.04160247 0.07214742
##                        X20        X21         X22        X23        X24
## ACR_11231843   0.078210876 0.05633258 0.007953371 0.02307094 0.05578342
## ADAO_11159808  0.553927137 0.53920741 0.525401555 0.53638341 0.53743580
## AGG_11236448   0.178482125 0.22141972 0.170925445 0.15660776 0.11918869
## AHL_11239959   0.149636558 0.16472810 0.173167686 0.16825227 0.13524343
## AJGD_11119689  0.118883946 0.14000960 0.165611015 0.12406405 0.14798910
## AMP_11228639  -0.004522566 0.02031293 0.111043640 0.09620470 0.07466595
##                      X25        X26        X27        X28        X29
## ACR_11231843  0.05754983 0.01633989 0.03651988 0.03014404 0.03653216
## ADAO_11159808 0.53454517 0.54348362 0.52573474 0.51981495 0.50410946
## AGG_11236448  0.15172497 0.14043635 0.13107597 0.09380520 0.10983555
## AHL_11239959  0.08820634 0.09185565 0.09736712 0.07803585 0.06991932
## AJGD_11119689 0.20780663 0.16061276 0.21066161 0.18263507 0.18302649
## AMP_11228639  0.05033299 0.01874388 0.06265166 0.01221945 0.06245386
##                       X30          X31         X32         X33        X34
## ACR_11231843  0.026885553  0.018244632  0.03425803  0.03731653 0.08545823
## ADAO_11159808 0.503118465  0.488398734  0.47360713  0.48528722 0.49035453
## AGG_11236448  0.073366759  0.122373113  0.07317205  0.09085445 0.11009158
## AHL_11239959  0.089334524  0.053043299  0.04793588  0.03307846 0.04347559
## AJGD_11119689 0.167654826  0.196464213  0.20440416  0.24276020 0.21465966
## AMP_11228639  0.008097181 -0.006432008 -0.04581565 -0.01922558 0.02923064
##                       X35         X36         X37         X38        X39
## ACR_11231843   0.08212560  0.04122430  0.02554620  0.04391622 0.02081907
## ADAO_11159808  0.48337710  0.47154277  0.47153753  0.46864689 0.43414012
## AGG_11236448   0.11357759  0.14531284  0.11294811  0.06122085 0.12123779
## AHL_11239959   0.01617575 -0.02722358 -0.04350629 -0.03287029 0.02951063
## AJGD_11119689  0.17716046  0.15298218  0.13635243  0.12934334 0.10067326
## AMP_11228639  -0.03056929  0.01440266  0.01397162 -0.01940303 0.03909295
##                       X40        X41        X42        X43         X44
## ACR_11231843  0.058707749 0.03614286 0.01274100 0.04554895 0.078224804
## ADAO_11159808 0.423147789 0.40624091 0.40820718 0.40425891 0.383480876
## AGG_11236448  0.127562364 0.06081561 0.11997640 0.09993272 0.085353394
## AHL_11239959  0.069235684 0.06395972 0.07775235 0.05163507 0.029005208
## AJGD_11119689 0.079159171 0.05660577 0.03686780 0.00625108 0.004644364
## AMP_11228639  0.001048235 0.08743216 0.01282564 0.06121771 0.114447275
##                      X45        X46         X47          X48         X49
## ACR_11231843  0.03627727 0.03475069 -0.01733608 -0.007981913 -0.05040679
## ADAO_11159808 0.36664587 0.35974033  0.36459200  0.337971294  0.32803660
## AGG_11236448  0.10265570 0.03053047  0.04854476  0.065612107  0.04693021
## AHL_11239959  0.05880395 0.05077536  0.04689787  0.040638027  0.04475613
## AJGD_11119689 0.03616619 0.02081380 -0.01999312 -0.019823713 -0.02207396
## AMP_11228639  0.06079782 0.07559045  0.07100495  0.064710841  0.03629374
##                        X50         X51 DDclust_ACF_SatO2_scaled
## ACR_11231843  -0.034433928 -0.05749838                        1
## ADAO_11159808  0.342673967  0.34456836                        2
## AGG_11236448   0.093592552  0.09988380                        1
## AHL_11239959   0.039269127  0.04749549                        1
## AJGD_11119689 -0.063125407 -0.07161460                        1
## AMP_11228639  -0.005938136  0.02909861                        1
## Mean by groups
rp_tbl_ACF <- aggregate(plotting_ACF, by = list(plotting_ACF$DDclust_ACF_SatO2_scaled), mean)
row.names(rp_tbl_ACF) <- paste0("Group",rp_tbl_ACF$DDclust_ACF_SatO2_scaled)
rp_tbl_ACF <- rp_tbl_ACF %>%
  select(starts_with('X'))
rp_tbl_ACF <- data.frame(t(rp_tbl_ACF))
head(rp_tbl_ACF)
##       Group1    Group2
## X1 1.0000000 1.0000000
## X2 0.4160338 0.7830190
## X3 0.3241161 0.7392115
## X4 0.2856382 0.7003584
## X5 0.2544281 0.6769579
## X6 0.2261663 0.6447044
# Create plotting data-frame
ACF_values_by_group <- data.frame("value_ACF" = c(rp_tbl_ACF$Group1,rp_tbl_ACF$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_ACF$Group1)),
                                              rep("Group2", times = length(rp_tbl_ACF$Group2))),
                                  "index" = c(c(1:length(rp_tbl_ACF$Group1)),c(1:length(rp_tbl_ACF$Group2))))

p <- ggplot(ACF_values_by_group, aes(x = index, y = value_ACF, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

EUCL TSclust

# DD_EUCL <- diss(datos, "EUCL")

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.6116783 0.5442184 0.7148574 0.8649377

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_EUCL
res<-NbClust(datos, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.0340 0.0324 0.0501 0.0485
res$Best.nc
## Number_clusters     Value_Index 
##          4.0000          0.0501
#res$Best.partition
hcintper_EUCL <- hclust(DD_EUCL, "ward.D2")
fviz_dend(hcintper_EUCL, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 4)

DDclust_EUCL_SatO2_scaled <- cutree( hclust(DD_EUCL, "ward.D2"), k = 4)
fviz_cluster(list(data = t(datos), cluster = DDclust_EUCL_SatO2_scaled))

fviz_silhouette(silhouette(DDclust_EUCL_SatO2_scaled, DD_EUCL))
##   cluster size ave.sil.width
## 1       1   24          0.01
## 2       2   20          0.01
## 3       3   12          0.03
## 4       4    2          1.00

Contingency EUCL

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_EUCL <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_EUCL <- union(names(DDclust_EUCL_SatO2_scaled[DDclust_EUCL_SatO2_scaled == 2]),names(DDclust_EUCL_SatO2_scaled[DDclust_EUCL_SatO2_scaled == 1]))
fviz_dend(hcintper_EUCL, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_EUCL[,order_EUCL]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 2 4
NO DETERIORO 22 30
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.0833333 0.1176471
NO DETERIORO 0.9166667 0.8823529

Random Forest: Discriminant TSCLust EUCL

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_SatO2_scaled)
data_frame2 = df_descriptive
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
data_frame_merge_EUCL$CLUSTER = factor(data_frame_merge_EUCL$CLUSTER)
table(data_frame_merge_EUCL$CLUSTER)
## 
##  1  2 
## 24 34
data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])]<- lapply(data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])], as.numeric)
head(data_frame_merge_EUCL)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       2 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       2  5.3 8.44 38      65        0.40       3             3        0
## 5       2 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_EUCL$CLUSTER <- factor(data_frame_merge_EUCL$CLUSTER)
newSMOTE_EUCL <-data_frame_merge_EUCL
table(newSMOTE_EUCL$CLUSTER)
## 
##  1  2 
## 24 34
set.seed(123)
pos_1 = get_column_position(newSMOTE_EUCL, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_EUCL, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_EUCL[pos_1:pos_2])
newSMOTE_EUCL[col_names_factor] <- lapply(newSMOTE_EUCL[col_names_factor] , factor)

RF_EUCL <- randomForest(CLUSTER ~ ., data = newSMOTE_EUCL)
print(RF_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 55.17%
## Confusion matrix:
##    1  2 class.error
## 1  6 18   0.7500000
## 2 14 20   0.4117647

Importance

kable(RF_EUCL$importance[order(RF_EUCL$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 3.8160260
FR_0_8h 2.8111591
PESO 2.3188373
SCORE_CRUCES_INGRESO 2.2545591
EDAD 2.1933961
EG 1.8382975
DIAS_GN 1.4971681
DIAS_O2_TOTAL 1.4328313
FLUJO2_0_8H 1.2635127
SAPI_0_8h 1.2441751
LM 0.7158387
SEXO 0.5934293
ALIMENTACION 0.5507202
PREMATURIDAD 0.5224504
RADIOGRAFIA 0.4959604
PALIVIZUMAB 0.4041348
TABACO 0.3989201
SUERO 0.3927697
ETIOLOGIA 0.3575367
ENFERMEDAD_BASE 0.3208937
ANALITICA 0.2698763
GN_INGRESO 0.2665527
DIAS_OAF 0.2553120
ALERGIAS 0.2442751
DERMATITIS 0.1950109
PAUSAS_APNEA 0.1140586
SNG 0.1125693
UCIP 0.1083658
DETERIORO 0.0915780
OAF_TRAS_INGRESO 0.0886067
OAF 0.0816271
OAF_AL_INGRESO 0.0000000

Importance of the TS-data

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_SatO2_scaled)
data_frame2_EUCL = data.frame(datos_EUCL)
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2_EUCL,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
set.seed(123)
data_frame_merge_EUCL$CLUSTER <- as.factor(data_frame_merge_EUCL$CLUSTER)
RF_0_EUCL <- randomForest(CLUSTER ~ ., data = data_frame_merge_EUCL)
print(RF_0_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 25.86%
## Confusion matrix:
##    1  2 class.error
## 1 15  9   0.3750000
## 2  6 28   0.1764706
plot(RF_0_EUCL$importance, type = "h")

EUCL by clusters

plot_data_EUCL <- data.frame(t(datos))
cluster_data_EUCL <- data.frame(DDclust_EUCL_SatO2_scaled)
plotting_EUCL <- cbind(plot_data_EUCL, cluster_data_EUCL)
head(plotting_EUCL)
##                        X1         X2         X3          X4          X5
## ACR_11231843   1.43850037  1.4385004  0.4887340  1.43850037  0.17214516
## ADAO_11159808 -0.05010484 -0.7372569 -0.7372569 -0.05010484 -0.05010484
## AGG_11236448   0.69244093  0.7254908  0.5329501  0.88904481  0.52231303
## AHL_11239959   0.65487426  0.6548743  0.6548743  0.65487426 -0.49940911
## AJGD_11119689  0.47590709  0.6443077  0.3917068  0.39170680 -0.45029617
## AMP_11228639  -2.93793849 -2.7326353 -0.8632242 -1.50081629 -2.11672581
##                        X6          X7          X8         X9        X10
## ACR_11231843  -0.14444364  1.12191157 -4.89327567  1.4385004  0.1721452
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.7372569 -0.7372569
## AGG_11236448   0.84519875  0.57051881  1.37207281  1.3720728 -0.1743929
## AHL_11239959   0.65487426  1.23201594  0.65487426 -0.4994091  1.2320159
## AJGD_11119689  0.39170680  0.64430769  0.64430769  0.6443077  0.3075065
## AMP_11228639   0.55221542  0.14160907 -0.26899727  0.7575186  0.7575186
##                      X11        X12        X13         X14        X15
## ACR_11231843   1.1219116  1.1219116  1.4385004 -0.46103244  1.1219116
## ADAO_11159808 -0.7372569 -0.7372569 -0.7372569 -0.05010484 -0.7372569
## AGG_11236448  -2.8807080  1.3720728  0.9854564  1.75868925  0.5988399
## AHL_11239959   0.6548743  0.6548743  0.6548743  0.65487426  0.6548743
## AJGD_11119689  0.4759071  0.4759071  0.6443077  0.47590709  0.3075065
## AMP_11228639   1.1681249  0.5522154 -0.4743004  0.55221542  0.1416091
##                      X16         X17        X18         X19         X20
## ACR_11231843   1.1219116  0.48873396  1.4385004  1.43850037  1.43850037
## ADAO_11159808 -1.4244090 -0.05010484  0.6370473 -0.05010484 -0.05010484
## AGG_11236448   0.5988399 -0.56100938  1.3720728  0.21222350  1.37207281
## AHL_11239959   0.6548743  1.23201594 -0.4994091 -0.49940911 -0.49940911
## AJGD_11119689  0.6443077  0.64430769  0.6443077  0.64430769 -3.98670863
## AMP_11228639  -0.8849068  1.37342810  0.7575186 -0.06369410  0.55221542
##                      X21         X22         X23        X24         X25
## ACR_11231843   1.4385004  1.43850037  1.43850037  1.4385004  0.80532277
## ADAO_11159808 -0.7372569 -0.05010484 -0.05010484  0.6370473 -0.05010484
## AGG_11236448   0.9854564  0.98545637  0.21222350  1.3720728 -0.17439294
## AHL_11239959   1.8091576  0.65487426  0.07773258 -0.4994091  0.07773258
## AJGD_11119689  0.6443077  0.64430769  0.64430769  0.6443077  0.64430769
## AMP_11228639   0.7575186 -1.09020995  1.16812493  1.3734281 -0.67960361
##                      X26        X27         X28        X29       X30
## ACR_11231843   1.4385004  0.8053228  1.43850037  1.4385004 0.4887340
## ADAO_11159808 -0.7372569 -0.7372569 -0.05010484 -0.7372569 0.6370473
## AGG_11236448   1.3720728 -2.1074751 -0.17439294 -2.1074751 0.5988399
## AHL_11239959   1.2320159  1.2320159  0.07773258  0.6548743 0.6548743
## AJGD_11119689  0.6443077  0.6443077  0.64430769  0.6443077 0.6443077
## AMP_11228639   0.1416091  1.3734281  1.37342810  0.7575186 0.3469122
##                       X31        X32         X33        X34         X35
## ACR_11231843   1.43850037  1.4385004  1.43850037  1.1219116  1.43850037
## ADAO_11159808 -0.05010484 -1.4244090 -0.05010484 -0.7372569 -0.05010484
## AGG_11236448  -2.49409157  1.7586892  0.98545637  0.9854564  1.37207281
## AHL_11239959  -0.49940911  0.6548743  1.80915763  1.2320159  1.23201594
## AJGD_11119689  0.64430769  0.6443077  0.64430769  0.6443077  0.64430769
## AMP_11228639   0.55221542  2.6052471  0.96282176  1.5787313  0.34691225
##                       X36         X37         X38        X39        X40
## ACR_11231843   1.43850037  0.17214516  1.12191157  1.4385004  1.4385004
## ADAO_11159808 -0.73725694 -0.05010484 -0.73725694 -2.1115611 -2.1115611
## AGG_11236448   1.37207281  0.59883993  1.37207281  0.5988399 -1.7208587
## AHL_11239959   0.07773258 -0.49940911  0.07773258 -1.0765508  0.6548743
## AJGD_11119689  0.64430769  0.64430769  0.64430769  0.6443077  0.2233062
## AMP_11228639   0.75751859  2.60524713  0.34691225  0.1416091  0.5522154
##                       X41        X42         X43        X44        X45
## ACR_11231843   1.12191157 -0.1444436  0.80532277  1.4385004  0.4887340
## ADAO_11159808 -0.73725694 -0.7372569 -0.73725694 -1.4244090 -0.7372569
## AGG_11236448   0.59883993  1.7586892  0.98545637  0.2122235  0.5988399
## AHL_11239959   0.07773258  0.6548743  0.07773258 -0.4994091 -0.4994091
## AJGD_11119689  0.64430769  0.6443077  0.64430769  0.2233062 -1.0396982
## AMP_11228639  -0.26899727  0.7575186  1.37342810  2.3999440  0.7575186
##                      X46         X47         X48        X49        X50
## ACR_11231843   0.8053228  0.48873396  1.12191157  1.4385004  1.1219116
## ADAO_11159808 -1.4244090 -0.05010484 -1.42440905 -1.4244090 -1.4244090
## AGG_11236448   1.7586892  0.59883993  1.75868925 -0.1743929  0.2122235
## AHL_11239959   0.6548743  0.07773258  0.07773258  0.6548743  0.6548743
## AJGD_11119689 -0.1976953  0.64430769 -0.19769528  0.6443077  0.6443077
## AMP_11228639   0.5522154 -1.09020995 -6.63339557  0.1416091  0.3469122
##                      X51        X52        X53         X54         X55
## ACR_11231843  -0.1444436  1.1219116  1.4385004  1.43850037  1.12191157
## ADAO_11159808 -0.7372569 -0.7372569 -0.7372569 -0.73725694 -1.42440905
## AGG_11236448   1.3720728  0.9854564  0.2122235  0.21222350  0.59883993
## AHL_11239959  -0.4994091 -0.4994091 -0.4994091  0.07773258  0.07773258
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.64430769  0.64430769
## AMP_11228639   1.1681249  0.5522154  1.7840344  0.34691225  0.34691225
##                      X56        X57        X58        X59        X60
## ACR_11231843   1.1219116  1.1219116  0.8053228  0.8053228  0.8053228
## ADAO_11159808 -0.7372569 -0.7372569 -1.4244090 -1.4244090 -1.4244090
## AGG_11236448   1.3720728 -0.1743929  0.2122235  0.2122235 -0.1743929
## AHL_11239959  -0.4994091 -0.4994091 -0.4994091 -0.4994091 -0.4994091
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.6443077  0.6443077
## AMP_11228639  -0.2689973  0.3469122  0.3469122  0.5522154  0.7575186
##                       X61        X62        X63        X64        X65
## ACR_11231843   0.48873396  1.1219116  0.8053228  0.8053228  1.1219116
## ADAO_11159808 -0.05010484 -1.4244090 -1.4244090 -0.7372569 -0.7372569
## AGG_11236448  -0.17439294  0.5988399  0.9854564  0.9854564  0.2122235
## AHL_11239959  -0.49940911 -0.4994091 -1.0765508 -0.4994091 -0.4994091
## AJGD_11119689  0.64430769  0.6443077  0.6443077 -0.6186968 -0.1976953
## AMP_11228639   0.55221542  0.5522154  1.1681249  0.9628218  1.3734281
##                      X66         X67        X68         X69        X70
## ACR_11231843   0.1721452 -0.46103244 -0.1444436 -1.09421005 -0.4610324
## ADAO_11159808 -1.4244090 -1.42440905 -1.4244090 -1.42440905 -1.4244090
## AGG_11236448  -0.1743929  0.59883993  1.7586892  0.98545637  0.5988399
## AHL_11239959   0.6548743  0.07773258  0.6548743  0.07773258 -0.4994091
## AJGD_11119689 -0.6186968  0.64430769  0.6443077  0.64430769  0.6443077
## AMP_11228639   0.7575186  1.57873127  1.3734281  0.34691225 -0.0636941
##                      X71        X72        X73        X74        X75        X76
## ACR_11231843   0.8053228  0.1721452 -0.4610324 -2.0439765 -1.0942100 -1.0942100
## ADAO_11159808 -2.7987132 -2.1115611 -2.1115611 -2.1115611 -0.7372569 -0.7372569
## AGG_11236448   0.2122235  0.5988399  0.9854564 -0.1743929 -0.5610094  0.9854564
## AHL_11239959   0.6548743 -0.4994091  1.2320159  0.6548743  1.2320159  0.6548743
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.6443077  0.6443077  0.6443077
## AMP_11228639   0.7575186  0.3469122  0.7575186  0.7575186 -0.6796036 -0.0636941
##                      X77         X78         X79         X80        X81
## ACR_11231843  -1.0942100 -0.46103244 -1.41079885 -0.77762125 -0.7776212
## ADAO_11159808 -0.7372569 -0.73725694 -0.73725694 -0.73725694 -0.7372569
## AGG_11236448  -0.1743929  0.21222350  0.59883993 -0.17439294 -0.1743929
## AHL_11239959   0.6548743  0.07773258  0.07773258  0.07773258  0.6548743
## AJGD_11119689  0.6443077  0.22330620  0.64430769  0.64430769  0.6443077
## AMP_11228639  -0.4743004 -0.88490678  0.55221542  0.14160907  0.1416091
##                      X82        X83         X84        X85         X86
## ACR_11231843  -0.7776212 -0.4610324 -0.14444364 -0.4610324  0.17214516
## ADAO_11159808 -1.4244090 -0.7372569 -1.42440905 -1.4244090 -1.42440905
## AGG_11236448   1.7586892  0.5988399  0.59883993  1.7586892  1.37207281
## AHL_11239959   1.2320159  0.6548743  0.07773258  0.6548743  0.07773258
## AJGD_11119689  0.6443077  0.6443077  0.64430769 -0.6186968 -0.19769528
## AMP_11228639   0.1416091 -0.8849068  0.75751859  1.1681249  0.75751859
##                      X87        X88        X89         X90         X91
## ACR_11231843  -0.4610324 -0.1444436 -0.4610324 -0.46103244  0.17214516
## ADAO_11159808 -1.4244090 -1.4244090 -1.4244090 -1.42440905 -1.42440905
## AGG_11236448   1.3720728  1.3720728  0.9854564  1.75868925  0.98545637
## AHL_11239959  -0.4994091  0.6548743 -0.4994091  0.07773258  0.07773258
## AJGD_11119689 -0.1976953  0.6443077  0.2233062  0.64430769  0.64430769
## AMP_11228639   1.1681249  1.1681249  1.7840344  0.34691225 -0.06369410
##                       X92         X93         X94        X95        X96
## ACR_11231843   0.17214516  0.17214516  0.17214516  0.4887340  0.8053228
## ADAO_11159808 -1.42440905 -0.73725694 -1.42440905 -1.4244090 -2.1115611
## AGG_11236448   0.98545637  1.37207281  0.98545637  0.5988399  0.5988399
## AHL_11239959   0.07773258  0.07773258  0.07773258  1.2320159  0.6548743
## AJGD_11119689  0.64430769  0.64430769  0.64430769  0.2233062  0.6443077
## AMP_11228639   1.57873127  1.98933761  1.57873127  0.7575186  0.1416091
##                      X97        X98        X99        X100        X101
## ACR_11231843   0.4887340  0.1721452  0.4887340  0.17214516 -0.14444364
## ADAO_11159808 -1.4244090 -1.4244090 -1.4244090 -1.42440905 -1.42440905
## AGG_11236448   0.5988399  0.9854564  0.9854564  0.98545637  0.21222350
## AHL_11239959  -0.4994091 -1.0765508 -0.4994091  0.07773258  0.07773258
## AJGD_11119689  0.6443077 -1.0396982 -0.1976953 -1.03969825 -0.61869676
## AMP_11228639   0.9628218  0.7575186  0.7575186  0.34691225  0.55221542
##                     X102        X103       X104        X105        X106
## ACR_11231843   0.1721452 -0.14444364 -0.1444436 -0.46103244 -0.14444364
## ADAO_11159808 -1.4244090 -2.11156115 -2.1115611 -1.42440905 -1.42440905
## AGG_11236448   0.5988399  0.98545637  1.3720728  0.98545637  0.59883993
## AHL_11239959   0.6548743  0.07773258  1.2320159  0.07773258  0.07773258
## AJGD_11119689 -1.8817012 -0.19769528 -1.0396982 -2.30270270 -0.19769528
## AMP_11228639  -2.3220290  0.75751859  0.5522154  0.55221542  0.34691225
##                     X107       X108       X109       X110       X111       X112
## ACR_11231843  -1.7273877 -1.0942100 -0.4610324 -0.7776212 -1.0942100 -0.7776212
## ADAO_11159808 -1.4244090 -2.1115611 -2.7987132 -1.4244090 -1.4244090 -1.4244090
## AGG_11236448   0.9854564  0.2122235  0.9854564  0.5988399  1.3720728  0.5988399
## AHL_11239959  -0.4994091 -1.6536925 -1.6536925 -2.8079758 -1.0765508 -1.6536925
## AJGD_11119689  0.2233062  0.6443077 -0.6186968  0.6443077  0.6443077  0.2233062
## AMP_11228639   0.7575186  0.7575186  1.5787313  1.9893376  1.5787313  1.3734281
##                     X113       X114       X115       X116       X117
## ACR_11231843  -1.4107988 -1.0942100 -0.4610324 -0.1444436 -0.4610324
## ADAO_11159808 -1.4244090 -1.4244090 -0.7372569 -0.7372569 -0.7372569
## AGG_11236448   0.2122235  0.9854564  0.9854564 -1.7208587  0.2122235
## AHL_11239959  -2.2308342 -1.6536925 -1.0765508 -2.2308342 -1.6536925
## AJGD_11119689 -1.0396982  0.2233062  0.6443077  0.2233062  0.6443077
## AMP_11228639   0.9628218  0.5522154  0.3469122  0.3469122  0.7575186
##                      X118       X119       X120       X121       X122
## ACR_11231843  -1.72738765 -0.7776212 -0.7776212 -1.7273877 -0.1444436
## ADAO_11159808 -0.05010484 -1.4244090 -0.7372569 -1.4244090 -1.4244090
## AGG_11236448   1.75868925  0.5988399  0.5988399  0.9854564  0.2122235
## AHL_11239959  -1.65369247 -1.6536925 -1.6536925 -1.0765508 -1.6536925
## AJGD_11119689  0.64430769 -3.1447057 -1.4606997  0.2233062  0.6443077
## AMP_11228639  -0.06369410  0.9628218  0.1416091 -0.0636941  1.3734281
##                     X123       X124       X125       X126       X127       X128
## ACR_11231843   0.4887340 -0.1444436  0.4887340  0.4887340  0.1721452  0.4887340
## ADAO_11159808 -2.7987132 -2.7987132 -2.1115611 -2.7987132 -2.1115611 -2.1115611
## AGG_11236448   0.5988399 -0.1743929  0.5988399  0.5988399  0.2122235 -0.5610094
## AHL_11239959  -1.6536925 -1.6536925 -1.6536925 -1.6536925 -1.0765508 -1.6536925
## AJGD_11119689  0.2233062  0.6443077  0.6443077 -1.8817012 -1.4606997 -1.8817012
## AMP_11228639  -1.0902100  0.5522154  0.5522154 -0.6796036  0.7575186  0.3469122
##                     X129       X130       X131       X132       X133       X134
## ACR_11231843  -0.1444436 -1.0942100  0.4887340  0.1721452 -0.1444436 -0.4610324
## ADAO_11159808 -0.7372569 -1.4244090 -2.1115611 -0.7372569 -0.7372569 -0.7372569
## AGG_11236448   0.2122235  0.5988399  0.5988399  0.2122235  0.9854564  0.2122235
## AHL_11239959  -1.0765508 -2.2308342 -2.2308342 -1.0765508 -1.0765508 -1.6536925
## AJGD_11119689 -2.3027027 -2.7237042 -2.7237042 -1.4606997 -1.0396982 -1.0396982
## AMP_11228639   0.5522154  0.7575186  0.1416091  0.3469122  0.7575186  0.5522154
##                      X135        X136        X137       X138         X139
## ACR_11231843  -0.14444364  0.17214516 -0.46103244 -0.7776212   0.48873396
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.7372569  -0.05010484
## AGG_11236448  -0.17439294 -0.17439294 -0.17439294  0.2122235   0.98545637
## AHL_11239959  -1.07655079 -0.49940911  0.65487426 -7.4251093 -10.31081772
## AJGD_11119689 -1.46069973 -2.72370418 -2.72370418 -0.1976953  -0.19769528
## AMP_11228639   0.96282176  1.16812493  0.75751859  0.5522154   0.55221542
##                      X140        X141        X142        X143        X144
## ACR_11231843   0.17214516 -0.46103244  0.17214516  0.17214516 -0.46103244
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448   0.21222350  0.59883993  0.21222350  0.21222350  0.21222350
## AHL_11239959  -5.11654257  0.37697550 -0.12736062 -0.03402941 -0.36417213
## AJGD_11119689 -0.61869676 -0.19769528  0.22330620  0.64430769  0.64430769
## AMP_11228639   0.14160907  0.14160907 -2.11672581 -0.67960361 -1.70611947
##                      X145        X146        X147        X148        X149
## ACR_11231843  -0.46103244 -0.14444364  0.17214516 -0.14444364 -0.46103244
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448   0.21222350 -0.17439294  1.37207281  0.21222350  0.59883993
## AHL_11239959  -0.41446107  0.07773258  0.65487426  1.80915763  0.65487426
## AJGD_11119689  0.64430769  0.22330620  0.64430769  0.64430769  0.64430769
## AMP_11228639  -0.47430044 -2.52733215 -0.88490678  0.34691225 -1.09020995
##                      X150        X151        X152        X153        X154
## ACR_11231843  -0.77762125 -2.04397645 -1.09421005 -1.09421005 -0.46103244
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448  -0.56100938 -0.17439294  0.21222350 -0.56100938 -0.94762582
## AHL_11239959   1.80915763 -1.07655079 -0.49940911  0.07773258  0.07773258
## AJGD_11119689  0.64430769  0.64430769  0.22330620  0.64430769  0.64430769
## AMP_11228639   0.55221542  0.14160907  0.55221542  1.16812493 -0.06369410
##                     X155        X156        X157        X158       X159
## ACR_11231843   0.4887340 -0.46103244 -0.46103244  0.48873396  0.4887340
## ADAO_11159808 -0.7372569 -0.05010484 -0.05010484 -0.73725694 -0.7372569
## AGG_11236448  -0.1743929 -0.17439294 -0.56100938 -0.17439294 -0.5610094
## AHL_11239959   0.6548743  0.65487426  0.07773258  0.07773258 -0.4994091
## AJGD_11119689  0.6443077  0.64430769 -0.19769528  0.22330620 -1.0396982
## AMP_11228639   0.3469122 -1.29551312  0.14160907 -0.67960361 -0.0636941
##                     X160       X161       X162        X163        X164
## ACR_11231843   0.4887340 -0.1444436  0.1721452 -1.09421005  0.48873396
## ADAO_11159808 -1.4244090 -2.1115611 -0.7372569 -0.73725694 -0.73725694
## AGG_11236448   0.5988399 -0.1743929  0.9854564 -0.17439294  0.21222350
## AHL_11239959  -0.4994091 -1.0765508 -0.4994091  0.07773258  0.07773258
## AJGD_11119689 -2.3027027 -1.4606997 -2.7237042 -3.14470567 -1.88170122
## AMP_11228639   0.1416091 -0.0636941  0.9628218 -0.47430044 -0.06369410
##                      X165        X166        X167        X168        X169
## ACR_11231843   0.17214516  0.48873396  0.17214516 -0.77762125  1.12191157
## ADAO_11159808 -0.73725694 -0.73725694 -0.73725694 -0.05010484 -0.05010484
## AGG_11236448  -0.17439294  0.21222350  0.21222350  0.21222350  0.21222350
## AHL_11239959   0.07773258  0.07773258  0.07773258 -0.49940911  0.65487426
## AJGD_11119689 -1.03969825 -1.03969825 -2.30270270 -2.30270270  0.64430769
## AMP_11228639   0.34691225 -0.88490678 -1.50081629 -1.29551312  0.14160907
##                     X170        X171       X172       X173       X174
## ACR_11231843   0.1721452  0.80532277  0.4887340 -0.1444436 -0.1444436
## ADAO_11159808 -0.7372569 -0.05010484 -0.7372569 -1.4244090 -2.1115611
## AGG_11236448   0.2122235 -0.17439294  0.2122235  0.2122235  0.2122235
## AHL_11239959   0.6548743  0.07773258 -0.4994091 -0.4994091 -0.4994091
## AJGD_11119689  0.2233062  0.64430769  0.6443077 -0.1976953 -1.0396982
## AMP_11228639   0.1416091 -0.06369410 -0.2689973  0.5522154  1.1681249
##                     X175        X176       X177       X178       X179
## ACR_11231843   0.8053228 -0.14444364  0.8053228  1.4385004  0.8053228
## ADAO_11159808 -1.4244090 -0.73725694 -2.1115611  0.6370473  0.6370473
## AGG_11236448   0.2122235  0.21222350 -0.1743929  0.2122235  0.2122235
## AHL_11239959   1.2320159  0.07773258 -1.0765508 -1.0765508 -0.4994091
## AJGD_11119689  0.2233062 -1.03969825  0.6443077  0.6443077 -0.1976953
## AMP_11228639   0.7575186  0.34691225  0.3469122 -1.2955131 -3.1432417
##                      X180        X181       X182       X183       X184
## ACR_11231843   0.80532277  0.80532277  0.4887340 -0.1444436  1.1219116
## ADAO_11159808 -0.05010484  0.63704726  0.6370473  0.6370473  0.6370473
## AGG_11236448   0.21222350 -0.17439294  0.2122235 -0.1743929  0.2122235
## AHL_11239959  -0.49940911  0.07773258 -0.4994091 -1.0765508 -0.4994091
## AJGD_11119689 -0.61869676  0.22330620  0.6443077  0.6443077  0.6443077
## AMP_11228639  -2.11672581 -1.09020995 -1.5008163 -0.0636941 -2.3220290
##                      X185       X186        X187        X188        X189
## ACR_11231843   0.80532277  0.4887340 -2.67715406  1.12191157  0.17214516
## ADAO_11159808  0.63704726  0.6370473  0.63704726 -0.05010484  0.63704726
## AGG_11236448   0.21222350 -0.1743929 -3.26732444  0.21222350 -1.33424225
## AHL_11239959   0.07773258 -0.4994091  0.07773258  0.07773258  0.07773258
## AJGD_11119689  0.64430769  0.6443077  0.64430769  0.64430769  0.64430769
## AMP_11228639  -3.34854483 -0.2689973 -1.09020995 -0.26899727 -2.11672581
##                     X190        X191       X192       X193       X194
## ACR_11231843   0.1721452  0.17214516  0.8053228  0.1721452  0.4887340
## ADAO_11159808  0.6370473  0.63704726  0.6370473  0.6370473  0.6370473
## AGG_11236448  -0.1743929 -0.17439294 -3.2673244  0.2122235  0.2122235
## AHL_11239959  -1.0765508  0.07773258 -0.4994091 -1.0765508 -1.0765508
## AJGD_11119689  0.6443077  0.64430769  0.6443077  0.6443077  0.6443077
## AMP_11228639  -0.4743004 -2.11672581 -0.8849068 -0.2689973  0.1416091
##                     X195       X196       X197       X198       X199       X200
## ACR_11231843  -0.1444436  0.1721452  1.1219116 -0.4610324 -0.7776212  0.1721452
## ADAO_11159808  0.6370473  0.6370473  0.6370473  1.3241994  0.6370473  0.6370473
## AGG_11236448   0.5988399  0.9854564  0.2122235 -0.1743929  0.9854564  0.2122235
## AHL_11239959  -1.6536925 -1.0765508 -1.0765508 -1.0765508 -1.0765508 -0.4994091
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.6443077  0.6443077 -5.6707146
## AMP_11228639  -0.6796036 -0.4743004  0.1416091 -0.0636941 -1.0902100 -0.8849068
##                     X201       X202       X203       X204       X205       X206
## ACR_11231843  -0.1444436  0.8053228  0.4887340  0.4887340  1.1219116  0.8053228
## ADAO_11159808  0.6370473  0.6370473  0.6370473  0.6370473  0.6370473  0.6370473
## AGG_11236448  -0.1743929  0.2122235  0.5988399  0.9854564  0.5988399 -0.1743929
## AHL_11239959  -1.0765508 -1.0765508 -2.2308342 -1.6536925 -1.0765508 -1.0765508
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.6443077  0.6443077 -1.4606997
## AMP_11228639  -0.6796036 -0.0636941 -0.0636941 -1.0902100 -0.2689973 -1.2955131
##                     X207       X208       X209       X210       X211       X212
## ACR_11231843   0.4887340 -1.0942100 -0.7776212 -0.1444436  1.4385004  1.1219116
## ADAO_11159808  1.3241994  0.6370473  0.6370473  0.6370473  0.6370473  1.3241994
## AGG_11236448   0.2122235  0.2122235  0.2122235 -0.1743929  0.2122235 -0.1743929
## AHL_11239959  -1.0765508 -0.4994091 -1.0765508 -1.0765508 -0.4994091 -1.0765508
## AJGD_11119689 -0.6186968 -1.0396982 -1.0396982 -1.4606997 -1.0396982 -1.0396982
## AMP_11228639  -2.9379385 -0.0636941 -3.5538480 -0.4743004 -1.7061195  0.3469122
##                      X213       X214       X215      X216       X217
## ACR_11231843   1.12191157  1.1219116  0.8053228 0.4887340  0.8053228
## ADAO_11159808  1.32419936  1.3241994  1.3241994 1.3241994  1.3241994
## AGG_11236448   0.59883993  0.5988399  0.5988399 0.2122235 -0.1743929
## AHL_11239959   0.07773258 -0.4994091 -0.4994091 0.6548743 -0.4994091
## AJGD_11119689  0.64430769  0.2233062 -0.1976953 0.2233062 -0.1976953
## AMP_11228639  -1.70611947  0.1416091  0.1416091 0.1416091 -1.5008163
##                      X218        X219        X220       X221       X222
## ACR_11231843   0.80532277  0.80532277  0.80532277  0.8053228  0.4887340
## ADAO_11159808  1.32419936  1.32419936  1.32419936  0.6370473  0.6370473
## AGG_11236448  -0.17439294 -0.17439294  0.21222350  0.2122235 -0.5610094
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.6548743  0.6548743
## AJGD_11119689 -0.61869676 -0.19769528  0.22330620 -0.6186968  0.6443077
## AMP_11228639  -0.06369410 -0.06369410 -0.06369410 -0.0636941 -0.0636941
##                     X223       X224        X225       X226       X227
## ACR_11231843   0.8053228  0.8053228  0.48873396  0.1721452 -0.1444436
## ADAO_11159808  1.3241994  1.3241994  1.32419936  0.6370473  1.3241994
## AGG_11236448  -0.5610094 -0.1743929 -0.94762582 -0.5610094 -0.5610094
## AHL_11239959   0.6548743  0.6548743  0.07773258 -1.0765508 -0.4994091
## AJGD_11119689 -1.0396982 -1.8817012 -0.19769528  0.6443077  0.6443077
## AMP_11228639  -0.0636941  0.1416091  0.55221542 -0.0636941  0.1416091
##                     X228        X229       X230       X231       X232
## ACR_11231843   0.1721452 -2.36056526 -2.0439765 -0.1444436 -1.0942100
## ADAO_11159808  1.3241994  1.32419936  1.3241994  1.3241994  1.3241994
## AGG_11236448  -0.5610094  0.21222350 -1.7208587 -2.4940916 -2.4940916
## AHL_11239959  -0.4994091  0.07773258 -0.4994091 -0.4994091  1.2320159
## AJGD_11119689  0.2233062  0.22330620  0.6443077  0.6443077  0.6443077
## AMP_11228639   0.3469122  0.34691225  0.1416091  0.1416091  0.5522154
##                      X233        X234       X235       X236        X237
## ACR_11231843  -0.14444364 -1.72738765 -0.1444436 -0.7776212 -0.14444364
## ADAO_11159808  1.32419936  1.32419936  1.3241994  0.6370473  1.32419936
## AGG_11236448  -1.33424225 -2.10747513 -0.9476258 -1.7208587 -1.72085869
## AHL_11239959   0.07773258  0.07773258 -0.4994091 -0.4994091  0.07773258
## AJGD_11119689  0.64430769  0.64430769  0.6443077  0.6443077  0.64430769
## AMP_11228639   0.14160907  0.34691225  0.3469122 -0.0636941 -0.06369410
##                      X238       X239        X240       X241        X242
## ACR_11231843   0.80532277  0.1721452 -0.14444364 -0.1444436  0.80532277
## ADAO_11159808  1.32419936  1.3241994  1.32419936  1.3241994  1.32419936
## AGG_11236448  -0.56100938 -0.5610094 -2.10747513 -1.3342423 -0.94762582
## AHL_11239959   0.07773258 -0.4994091  0.07773258 -0.4994091  0.07773258
## AJGD_11119689  0.64430769  0.6443077  0.64430769  0.6443077  0.64430769
## AMP_11228639   0.55221542 -0.4743004  0.96282176  0.7575186  0.75751859
##                      X243        X244       X245        X246        X247
## ACR_11231843  -0.14444364 -0.46103244 -0.4610324 -2.67715406 -2.36056526
## ADAO_11159808  1.32419936  1.32419936  1.3241994  1.32419936  1.32419936
## AGG_11236448   0.59883993 -0.17439294 -1.7208587 -0.94762582 -1.72085869
## AHL_11239959   0.07773258  0.07773258  0.6548743  0.07773258  0.07773258
## AJGD_11119689  0.64430769  0.64430769 -0.6186968  0.22330620  0.64430769
## AMP_11228639   0.55221542 -0.67960361  0.1416091 -0.67960361  0.14160907
##                      X248        X249        X250       X251        X252
## ACR_11231843  -1.09421005 -2.99374286 -1.09421005 -0.7776212 -2.99374286
## ADAO_11159808  1.32419936  0.63704726  1.32419936  0.6370473  1.32419936
## AGG_11236448  -1.33424225 -1.33424225 -0.56100938 -0.5610094 -0.94762582
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.6548743  0.07773258
## AJGD_11119689  0.64430769  0.64430769  0.64430769  0.6443077  0.64430769
## AMP_11228639   1.37342810 -0.47430044  0.14160907  0.3469122  0.34691225
##                      X253        X254       X255        X256       X257
## ACR_11231843  -8.69234130 -3.62692046 -0.4610324  0.48873396  0.1721452
## ADAO_11159808  0.63704726  0.63704726  0.6370473  1.32419936  0.6370473
## AGG_11236448  -0.94762582  0.21222350  0.2122235 -0.56100938 -0.5610094
## AHL_11239959   0.07773258  0.07773258  0.6548743  0.07773258  1.2320159
## AJGD_11119689  0.64430769 -0.19769528  0.2233062 -1.46069973  0.6443077
## AMP_11228639   0.34691225  0.14160907 -0.6796036  0.14160907 -1.0902100
##                     X258       X259       X260       X261       X262       X263
## ACR_11231843  -0.4610324 -0.1444436 -0.1444436  0.1721452 -0.1444436 -0.1444436
## ADAO_11159808  0.6370473  1.3241994  1.3241994  0.6370473  1.3241994  0.6370473
## AGG_11236448  -0.9476258 -1.3342423 -0.9476258 -1.3342423 -1.3342423 -1.7208587
## AHL_11239959   0.6548743  0.6548743  0.6548743  0.6548743  0.6548743  0.6548743
## AJGD_11119689  0.6443077  0.6443077 -0.1976953  0.6443077  0.6443077 -0.6186968
## AMP_11228639  -0.2689973 -0.6796036 -1.5008163 -0.0636941 -1.0902100  0.3469122
##                      X264       X265       X266       X267       X268
## ACR_11231843   0.17214516  0.4887340  0.8053228  1.1219116  0.8053228
## ADAO_11159808 -0.05010484  0.6370473 -0.7372569 -0.7372569 -0.7372569
## AGG_11236448  -1.33424225 -1.7208587 -1.7208587 -1.7208587 -0.5610094
## AHL_11239959   0.65487426  0.6548743  0.6548743  0.6548743  0.6548743
## AJGD_11119689  0.22330620 -0.1976953  0.2233062  0.6443077  0.2233062
## AMP_11228639   0.34691225  0.7575186  0.9628218 -3.1432417 -0.4743004
##                      X269        X270        X271       X272       X273
## ACR_11231843  -0.46103244  0.48873396  0.17214516  0.4887340  0.4887340
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484  0.6370473  1.3241994
## AGG_11236448  -1.33424225 -1.33424225 -1.72085869 -1.3342423 -1.3342423
## AHL_11239959   0.65487426 -1.65369247  0.07773258  0.6548743  0.6548743
## AJGD_11119689  0.22330620  0.22330620 -0.19769528 -0.1976953 -0.1976953
## AMP_11228639   0.96282176  1.57873127  0.75751859 -0.6796036  0.7575186
##                      X274        X275        X276        X277        X278
## ACR_11231843   0.80532277  0.48873396  0.48873396  0.17214516  0.48873396
## ADAO_11159808  0.63704726 -0.05010484 -0.05010484 -0.05010484 -0.73725694
## AGG_11236448  -1.33424225 -1.33424225 -1.33424225 -0.94762582 -1.33424225
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.07773258  0.07773258
## AJGD_11119689 -0.19769528 -0.61869676 -1.03969825 -1.03969825 -1.46069973
## AMP_11228639   0.75751859  0.75751859  0.96282176  1.37342810 -0.88490678
##                      X279        X280        X281       X282        X283
## ACR_11231843   0.17214516  0.17214516  0.48873396  0.4887340  0.17214516
## ADAO_11159808  0.63704726  0.63704726 -0.05010484  0.6370473  1.32419936
## AGG_11236448  -1.72085869 -1.72085869 -3.26732444 -0.9476258 -4.04055732
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.6548743  0.07773258
## AJGD_11119689 -1.88170122 -1.88170122 -1.88170122 -1.8817012 -0.61869676
## AMP_11228639  -0.06369410  0.34691225  0.14160907  0.1416091 -0.47430044
##                      X284        X285        X286       X287        X288
## ACR_11231843   0.48873396  0.48873396  0.17214516  0.1721452 -0.14444364
## ADAO_11159808  0.63704726  1.32419936 -0.05010484  0.6370473 -0.05010484
## AGG_11236448   0.59883993  0.98545637 -0.56100938 -0.1743929  0.21222350
## AHL_11239959   0.07773258  0.07773258  0.07773258 -0.4994091  0.65487426
## AJGD_11119689 -1.46069973 -1.46069973 -1.88170122 -1.8817012 -1.46069973
## AMP_11228639  -0.26899727 -1.29551312 -0.88490678  1.1681249 -2.32202898
##                     X289        X290        X291        X292       X293
## ACR_11231843   0.4887340  0.17214516  0.48873396 -0.14444364 -0.1444436
## ADAO_11159808 -0.7372569 -0.05010484 -0.05010484  0.63704726  0.6370473
## AGG_11236448  -0.5610094  0.21222350 -0.56100938  0.59883993  0.5988399
## AHL_11239959   1.2320159  0.07773258 -0.49940911  0.07773258  0.6548743
## AJGD_11119689 -1.4606997 -1.03969825 -1.03969825 -1.03969825 -0.6186968
## AMP_11228639  -2.9379385 -0.47430044  0.14160907 -0.26899727 -0.2689973
##                     X294       X295       X296       X297       X298
## ACR_11231843   0.1721452 -0.1444436  0.1721452  0.1721452  0.1721452
## ADAO_11159808  0.6370473  0.6370473 -0.7372569  0.6370473  0.6370473
## AGG_11236448   0.5988399  0.2122235  0.5988399 -3.2673244 -4.0405573
## AHL_11239959   0.6548743  0.6548743  1.2320159  0.6548743  0.6548743
## AJGD_11119689 -0.6186968 -1.0396982 -0.6186968 -1.0396982 -1.0396982
## AMP_11228639  -1.0902100 -0.4743004  0.1416091  0.3469122 -0.2689973
##                      X299        X300       X301        X302        X303
## ACR_11231843   0.17214516 -0.14444364  0.1721452 -0.14444364 -0.14444364
## ADAO_11159808  0.63704726 -2.11156115 -1.4244090 -0.73725694 -0.73725694
## AGG_11236448  -3.26732444  0.98545637  1.3720728  1.75868925  0.98545637
## AHL_11239959   0.07773258  0.07773258 -1.0765508  0.07773258  0.07773258
## AJGD_11119689 -1.03969825 -1.46069973 -1.4606997 -1.88170122 -1.88170122
## AMP_11228639  -1.50081629 -1.91142264 -0.0636941 -0.26899727 -0.26899727
##                      X304        X305        X306        X307        X308
## ACR_11231843   0.48873396  0.17214516 -0.14444364 -0.14444364  0.17214516
## ADAO_11159808 -0.73725694 -0.05010484  0.63704726 -0.73725694 -0.73725694
## AGG_11236448   0.98545637  0.59883993  0.98545637  0.98545637  0.59883993
## AHL_11239959   0.07773258  0.65487426  0.07773258  0.07773258  0.07773258
## AJGD_11119689 -1.46069973 -1.46069973 -2.30270270 -2.30270270 -2.72370418
## AMP_11228639   0.14160907  0.34691225  0.34691225  0.34691225  0.34691225
##                      X309        X310        X311       X312        X313
## ACR_11231843   0.17214516  0.48873396  0.17214516  0.4887340  0.17214516
## ADAO_11159808 -0.05010484 -0.05010484  0.63704726  0.6370473  0.63704726
## AGG_11236448  -1.72085869  0.98545637  0.59883993  0.5988399  0.21222350
## AHL_11239959  -0.49940911  0.07773258  0.07773258  0.6548743  0.07773258
## AJGD_11119689 -2.72370418 -2.72370418 -2.72370418 -2.7237042 -2.72370418
## AMP_11228639   0.55221542  0.75751859  0.75751859  0.3469122  0.55221542
##                      X314        X315        X316        X317       X318
## ACR_11231843   0.48873396  0.48873396  0.17214516  0.17214516  0.4887340
## ADAO_11159808 -0.05010484  0.63704726  0.63704726 -0.05010484  0.6370473
## AGG_11236448  -0.56100938  0.21222350  0.98545637  0.21222350  0.2122235
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.65487426  0.6548743
## AJGD_11119689 -2.72370418 -2.30270270 -2.30270270 -2.72370418 -2.3027027
## AMP_11228639   0.55221542  0.55221542  0.96282176  0.34691225  0.5522154
##                      X319        X320        X321        X322        X323
## ACR_11231843   0.48873396 -0.14444364  0.48873396  0.80532277  0.48873396
## ADAO_11159808  0.63704726  0.63704726  0.63704726  0.63704726  1.32419936
## AGG_11236448  -0.17439294  0.98545637  0.21222350 -0.17439294 -0.56100938
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.07773258  0.07773258
## AJGD_11119689 -1.03969825 -1.88170122 -2.30270270 -1.46069973 -0.61869676
## AMP_11228639   0.55221542  0.55221542  0.96282176  0.75751859  0.75751859
##                      X324       X325       X326       X327       X328
## ACR_11231843   0.17214516  0.1721452 -0.4610324  0.4887340 -0.1444436
## ADAO_11159808 -0.05010484 -0.7372569 -0.7372569 -1.4244090 -0.7372569
## AGG_11236448  -0.17439294  0.9854564  0.2122235 -0.1743929  0.5988399
## AHL_11239959   0.07773258  0.6548743  1.2320159  0.6548743  1.2320159
## AJGD_11119689 -3.14470567  0.6443077 -1.8817012  0.2233062  0.6443077
## AMP_11228639   0.34691225  0.5522154  0.3469122  0.1416091  0.3469122
##                     X329        X330       X331        X332       X333
## ACR_11231843  -0.1444436 -0.46103244 -0.4610324 -0.14444364 -0.1444436
## ADAO_11159808 -0.7372569 -0.05010484  0.6370473 -0.05010484 -0.7372569
## AGG_11236448   0.5988399 -0.17439294  0.2122235  0.21222350 -0.1743929
## AHL_11239959   1.2320159  1.23201594  1.2320159  1.23201594  1.2320159
## AJGD_11119689  0.6443077  0.64430769  0.6443077 -0.19769528  0.6443077
## AMP_11228639   0.5522154  0.55221542  0.3469122  0.55221542  0.9628218
##                     X334       X335       X336        X337        X338
## ACR_11231843  -0.7776212 -0.1444436 -0.1444436  0.17214516  0.48873396
## ADAO_11159808 -0.7372569 -0.7372569 -0.7372569 -0.05010484 -0.05010484
## AGG_11236448  -0.1743929 -0.1743929  0.2122235 -0.17439294  0.21222350
## AHL_11239959   1.2320159  0.6548743  1.2320159  1.23201594  0.65487426
## AJGD_11119689  0.6443077  0.2233062  0.2233062  0.64430769  0.22330620
## AMP_11228639   0.5522154  0.3469122  0.5522154  0.75751859  0.34691225
##                      X339        X340        X341        X342        X343
## ACR_11231843  -0.77762125 -0.14444364 -0.46103244  0.17214516  0.48873396
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448  -0.56100938 -0.56100938  0.21222350 -0.17439294  0.21222350
## AHL_11239959   0.65487426  0.65487426  0.07773258  0.65487426  0.65487426
## AJGD_11119689  0.64430769 -0.19769528  0.64430769  0.22330620  0.64430769
## AMP_11228639   0.55221542  0.14160907  0.55221542 -0.88490678  0.14160907
##                      X344        X345        X346        X347        X348
## ACR_11231843   0.48873396  0.48873396  0.17214516  0.80532277 -0.14444364
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448   1.37207281 -0.56100938  0.59883993 -0.17439294 -0.56100938
## AHL_11239959   0.65487426  0.07773258  0.07773258  0.07773258  0.07773258
## AJGD_11119689  0.22330620  0.64430769  0.22330620 -0.61869676 -0.19769528
## AMP_11228639  -0.26899727  0.14160907 -2.93793849 -0.47430044 -1.91142264
##                      X349        X350        X351        X352        X353
## ACR_11231843  -0.14444364  0.17214516  0.17214516 -0.14444364  0.48873396
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448  -0.56100938 -0.94762582 -0.94762582 -0.94762582 -0.56100938
## AHL_11239959   0.07773258 -0.49940911 -0.49940911  0.07773258 -0.49940911
## AJGD_11119689  0.64430769 -0.61869676  0.64430769  0.64430769  0.64430769
## AMP_11228639  -0.06369410 -2.52733215 -0.67960361 -0.06369410 -2.11672581
##                      X354        X355        X356        X357        X358
## ACR_11231843  -0.46103244 -0.77762125 -0.14444364  0.17214516 -0.46103244
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484 -0.05010484 -0.05010484
## AGG_11236448  -0.94762582  0.59883993 -0.56100938  0.21222350 -0.56100938
## AHL_11239959   0.07773258 -0.49940911  0.07773258  1.23201594  0.07773258
## AJGD_11119689  0.64430769  0.22330620 -0.19769528  0.64430769  0.64430769
## AMP_11228639   0.14160907 -1.70611947 -0.06369410 -1.50081629  0.34691225
##                      X359        X360        X361        X362       X363
## ACR_11231843  -0.14444364 -0.14444364 -0.14444364  0.48873396 -0.1444436
## ADAO_11159808 -0.05010484  1.32419936 -0.05010484 -0.73725694  0.6370473
## AGG_11236448   0.21222350 -0.17439294 -0.17439294  0.59883993  1.7586892
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.07773258 -0.4994091
## AJGD_11119689  0.22330620  0.64430769  0.64430769  0.64430769  0.2233062
## AMP_11228639  -1.29551312 -0.88490678  0.14160907 -0.67960361  0.1416091
##                     X364       X365       X366       X367        X368
## ACR_11231843   0.1721452 -0.1444436  0.4887340  0.1721452  0.17214516
## ADAO_11159808  0.6370473  0.6370473 -1.4244090  0.6370473 -0.05010484
## AGG_11236448   0.5988399 -0.1743929 -0.1743929 -0.1743929 -0.17439294
## AHL_11239959   0.6548743  0.6548743  0.6548743  0.6548743  0.65487426
## AJGD_11119689  0.6443077  0.2233062  0.2233062  0.2233062 -0.19769528
## AMP_11228639  -0.0636941 -0.0636941  0.5522154  0.1416091  0.55221542
##                      X369       X370        X371       X372       X373
## ACR_11231843   0.48873396  0.4887340  0.48873396 0.80532277  0.4887340
## ADAO_11159808 -0.05010484 -4.1730175 -0.05010484 0.63704726  1.3241994
## AGG_11236448   0.21222350 -0.1743929  0.21222350 0.21222350 -0.5610094
## AHL_11239959   0.65487426  0.6548743  0.65487426 0.07773258  0.6548743
## AJGD_11119689 -0.19769528 -0.1976953 -1.03969825 0.22330620  0.6443077
## AMP_11228639   0.34691225  0.3469122  0.14160907 0.34691225  0.3469122
##                     X374       X375      X376       X377       X378        X379
## ACR_11231843   0.4887340  0.8053228 0.4887340  0.4887340  0.1721452  0.17214516
## ADAO_11159808  0.6370473  0.6370473 0.6370473  0.6370473  1.3241994  1.32419936
## AGG_11236448  -0.5610094 -0.9476258 0.5988399 -0.9476258 -0.5610094 -0.56100938
## AHL_11239959   0.6548743  0.6548743 0.6548743  0.6548743  0.6548743  0.07773258
## AJGD_11119689  0.2233062  0.6443077 0.2233062 -0.1976953 -0.1976953  0.64430769
## AMP_11228639   0.1416091  0.3469122 0.5522154  0.3469122  0.3469122  0.34691225
##                     X380       X381       X382       X383       X384       X385
## ACR_11231843  -0.4610324 -0.1444436 -0.4610324 -0.1444436 -0.7776212  0.8053228
## ADAO_11159808  0.6370473  1.3241994  1.3241994  1.3241994  1.3241994  1.3241994
## AGG_11236448  -0.5610094 -0.5610094  0.2122235 -0.1743929 -0.1743929  0.2122235
## AHL_11239959   0.6548743  1.2320159  0.6548743  0.6548743  0.6548743  0.6548743
## AJGD_11119689  0.6443077  0.2233062  0.6443077  0.6443077  0.6443077 -0.6186968
## AMP_11228639  -0.0636941  0.3469122  0.7575186  0.1416091  0.3469122  0.5522154
##                     X386        X387       X388       X389        X390
## ACR_11231843  -0.1444436 -1.72738765 -1.7273877 -2.0439765 -1.09421005
## ADAO_11159808  1.3241994  1.32419936  1.3241994  1.3241994  0.63704726
## AGG_11236448  -0.5610094 -0.17439294 -0.1743929 -0.5610094 -0.56100938
## AHL_11239959   0.6548743  0.07773258  1.8091576 -0.4994091  0.07773258
## AJGD_11119689  0.6443077  0.64430769  0.6443077  0.6443077  0.64430769
## AMP_11228639  -0.0636941 -0.67960361 -0.4743004  0.1416091 -0.26899727
##                     X391       X392       X393       X394        X395
## ACR_11231843  -1.7273877 -1.0942100 -0.1444436 -0.1444436 -0.46103244
## ADAO_11159808  0.6370473  0.6370473  1.3241994  0.6370473 -0.05010484
## AGG_11236448  -0.9476258 -0.9476258 -0.9476258 -0.5610094 -0.17439294
## AHL_11239959   0.6548743  0.6548743 -0.4994091  0.6548743  0.07773258
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.6443077  0.64430769
## AMP_11228639  -0.2689973 -0.6796036 -2.5273322  0.1416091 -2.52733215
##                      X396        X397       X398       X399       X400
## ACR_11231843  -0.77762125 -0.46103244  0.1721452 -0.4610324 -0.7776212
## ADAO_11159808 -0.05010484  0.63704726  1.3241994  1.3241994  1.3241994
## AGG_11236448  -0.56100938 -0.56100938 -0.1743929 -0.1743929 -0.5610094
## AHL_11239959   0.65487426  0.07773258  1.2320159  0.6548743  0.6548743
## AJGD_11119689  0.64430769 -0.61869676  0.6443077  0.6443077  0.6443077
## AMP_11228639   0.14160907 -2.32202898 -2.3220290  0.3469122  0.3469122
##                      X401        X402        X403        X404       X405
## ACR_11231843   0.48873396 -0.46103244 -0.14444364 -1.41079885  1.4385004
## ADAO_11159808  1.32419936  1.32419936  1.32419936  1.32419936  1.3241994
## AGG_11236448  -0.56100938 -0.56100938 -0.17439294 -0.17439294 -0.5610094
## AHL_11239959   0.07773258  0.07773258  0.07773258  0.07773258 -0.4994091
## AJGD_11119689  0.64430769  0.22330620  0.64430769  0.64430769  0.2233062
## AMP_11228639  -0.06369410  0.34691225 -0.06369410  0.55221542 -1.2955131
##                     X406        X407        X408        X409       X410
## ACR_11231843  0.48873396  0.17214516  0.48873396  0.48873396  0.4887340
## ADAO_11159808 1.32419936  0.63704726  1.32419936  1.32419936  1.3241994
## AGG_11236448  0.21222350 -0.17439294  0.21222350  0.21222350 -0.9476258
## AHL_11239959  0.07773258  0.07773258  0.07773258  0.07773258  0.6548743
## AJGD_11119689 0.64430769  0.22330620  0.22330620  0.22330620  0.2233062
## AMP_11228639  0.55221542 -0.06369410 -0.06369410 -0.06369410  0.1416091
##                     X411       X412      X413       X414       X415       X416
## ACR_11231843  -0.1444436  0.8053228 0.1721452  0.1721452  0.8053228 -0.4610324
## ADAO_11159808  0.6370473  0.6370473 0.6370473  0.6370473  0.6370473  0.6370473
## AGG_11236448   0.2122235 -0.5610094 0.2122235 -0.1743929 -0.5610094 -4.0405573
## AHL_11239959   0.6548743  0.6548743 0.6548743  0.6548743  0.6548743  0.6548743
## AJGD_11119689  0.6443077  0.6443077 0.6443077  0.6443077 -1.0396982  0.6443077
## AMP_11228639  -0.6796036  0.3268101 0.1332740  0.1127541  0.4208230  0.1808587
##                    X417      X418       X419      X420      X421      X422
## ACR_11231843  0.1721452 0.8053228  0.1721452 0.1721452 0.1721452 0.4887340
## ADAO_11159808 0.6370473 0.6370473  0.6370473 0.6370473 0.6370473 0.6370473
## AGG_11236448  0.2122235 0.5988399 -0.5610094 1.7586892 0.9854564 1.3720728
## AHL_11239959  0.6548743 0.6548743  1.2320159 0.6548743 1.2320159 1.2320159
## AJGD_11119689 0.6443077 0.6443077  0.6443077 0.2233062 0.6443077 0.6443077
## AMP_11228639  0.3523946 0.2162184  0.2497394 0.0900907 0.0180795 0.5080804
##                     X423      X424       X425       X426        X427       X428
## ACR_11231843  -0.1444436 0.1721452  0.1721452  0.4887340 -0.14444364  0.4887340
## ADAO_11159808  0.6370473 0.6370473  0.6370473  1.3241994  1.32419936  1.3241994
## AGG_11236448   0.9854564 0.2122235  0.9854564  1.7586892  1.37207281  1.7586892
## AHL_11239959   1.2320159 1.2320159  1.2320159  1.2320159  0.07773258  0.6548743
## AJGD_11119689  0.6443077 0.6443077  0.2233062  0.6443077  0.64430769  0.6443077
## AMP_11228639  -0.5378962 0.3469122 -1.9114226 -1.2955131 -0.06369410 -0.4743004
##                     X429       X430       X431        X432       X433
## ACR_11231843  -0.7776212 -3.9435093 -4.8932757 -2.04397645 -1.0942100
## ADAO_11159808  1.3241994  1.3241994  0.6370473 -0.05010484  0.6370473
## AGG_11236448   1.3720728 -0.9476258  1.3720728  0.98545637  0.5988399
## AHL_11239959   0.6548743  1.2320159  0.6548743 -0.49940911  0.6548743
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.64430769  0.6443077
## AMP_11228639   0.1416091  0.7575186 -0.0636941  0.34691225  1.5787313
##                      X434       X435       X436       X437        X438
## ACR_11231843  -0.14444364 0.48873396 -0.1444436  0.1721452 -0.14444364
## ADAO_11159808 -0.05010484 0.63704726  0.6370473  0.6370473 -0.05010484
## AGG_11236448   0.59883993 0.59883993  0.5988399  1.3720728  0.59883993
## AHL_11239959   0.07773258 0.07773258  0.6548743 -0.4994091 -0.49940911
## AJGD_11119689  0.64430769 0.64430769  0.2233062  0.6443077  0.64430769
## AMP_11228639   0.75751859 0.75751859  0.5522154  1.3734281 -0.26899727
##                     X439       X440       X441       X442        X443
## ACR_11231843  -0.1444436 -0.4610324 -0.7776212 -0.1444436 -0.14444364
## ADAO_11159808  0.6370473  0.6370473  0.6370473  0.6370473  0.63704726
## AGG_11236448   0.5988399  0.2122235  0.5988399  1.7586892  0.59883993
## AHL_11239959  -0.4994091 -0.4994091 -0.4994091 -0.4994091  0.07773258
## AJGD_11119689  0.6443077  0.6443077 -0.1976953  0.6443077 -0.19769528
## AMP_11228639   0.7575186  1.5787313 -1.7061195 -0.2689973  0.14160907
##                     X444       X445        X446        X447       X448
## ACR_11231843  -0.4610324 -0.1444436  0.17214516  0.17214516 -0.1444436
## ADAO_11159808  0.6370473  0.6370473 -0.05010484 -0.05010484  1.3241994
## AGG_11236448   0.5988399  1.3720728  1.37207281  1.37207281  0.5988399
## AHL_11239959  -0.4994091 -0.4994091 -0.49940911 -0.49940911 -1.0765508
## AJGD_11119689  0.6443077  0.6443077  0.64430769  0.64430769  0.6443077
## AMP_11228639  -0.2689973  0.5522154  0.34691225  0.96282176  0.3469122
##                      X449        X450        X451       X452       X453
## ACR_11231843  -0.46103244  0.17214516 -0.14444364  1.1219116  0.1721452
## ADAO_11159808 -0.05010484 -0.05010484 -0.05010484  0.6370473  0.6370473
## AGG_11236448   0.21222350  0.59883993 -3.26732444  1.7586892 -0.5610094
## AHL_11239959  -0.49940911 -0.49940911 -1.07655079 -0.4994091 -0.4994091
## AJGD_11119689  0.64430769  0.64430769  0.64430769  0.6443077  0.6443077
## AMP_11228639  -0.06369410  0.55221542  0.14160907  0.9628218  0.1416091
##                     X454        X455       X456        X457       X458
## ACR_11231843   0.8053228  0.80532277 -2.9937429  0.80532277 -2.0439765
## ADAO_11159808  0.6370473  0.63704726  0.6370473 -0.05010484  0.6370473
## AGG_11236448  -0.9476258 -0.94762582  0.5988399 -0.17439294 -0.5610094
## AHL_11239959  -0.4994091  0.07773258 -1.0765508 -1.07655079 -1.0765508
## AJGD_11119689  0.6443077  0.64430769  0.6443077  0.64430769  0.6443077
## AMP_11228639  -0.6796036 -0.06369410  0.5522154  0.34691225  0.5522154
##                     X459       X460       X461        X462       X463
## ACR_11231843  -1.4107988 -1.7273877  0.8053228 -0.14444364 -0.4610324
## ADAO_11159808  1.3241994  0.6370473  0.6370473  0.63704726  0.6370473
## AGG_11236448   0.2122235 -0.9476258 -1.3342423 -0.17439294 -0.1743929
## AHL_11239959  -1.6536925 -1.0765508 -0.4994091  0.07773258  0.6548743
## AJGD_11119689 -0.1976953  0.2233062  0.6443077  0.64430769  0.6443077
## AMP_11228639   0.1416091  0.3469122 -0.6796036 -1.29551312 -1.2955131
##                     X464        X465        X466       X467       X468
## ACR_11231843  -4.5766869 -0.77762125 -1.09421005 -0.4610324 -0.7776212
## ADAO_11159808  0.6370473 -0.05010484 -0.05010484  0.6370473  0.6370473
## AGG_11236448   0.2122235 -0.94762582 -0.56100938 -0.1743929 -0.9476258
## AHL_11239959   0.6548743  0.65487426  0.07773258  1.2320159  0.6548743
## AJGD_11119689  0.6443077  0.64430769  0.64430769  0.6443077  0.6443077
## AMP_11228639  -1.2955131 -1.29551312 -1.50081629 -1.9114226 -1.5008163
##                     X469       X470       X471       X472       X473
## ACR_11231843  -0.7776212 -0.7776212 -0.1444436 -0.4610324 -0.4610324
## ADAO_11159808  0.6370473  1.3241994  0.6370473  0.6370473  0.6370473
## AGG_11236448  -0.9476258  0.5988399 -0.5610094 -0.9476258 -1.3342423
## AHL_11239959   1.8091576  0.6548743 -1.0765508 -0.4994091 -0.4994091
## AJGD_11119689  0.6443077  0.6443077  0.6443077  0.6443077  0.6443077
## AMP_11228639  -0.6796036 -0.8849068 -0.6796036 -0.4743004 -0.2689973
##                      X474        X475       X476       X477       X478
## ACR_11231843  -0.46103244 -0.46103244 -0.7776212 -0.7776212 -0.1444436
## ADAO_11159808 -0.05010484  0.63704726  0.6370473  0.6370473  0.6370473
## AGG_11236448  -1.33424225 -1.72085869 -1.7208587 -0.5610094 -1.7208587
## AHL_11239959  -0.49940911  0.07773258 -0.4994091  0.6548743  0.6548743
## AJGD_11119689  0.64430769  0.64430769  0.6443077  0.6443077  0.6443077
## AMP_11228639  -0.47430044 -0.47430044 -0.2689973 -0.6796036 -0.2689973
##                     X479       X480 DDclust_EUCL_SatO2_scaled
## ACR_11231843  -0.7776212 -0.1444436                         1
## ADAO_11159808  0.6370473  0.6370473                         2
## AGG_11236448  -1.3342423 -0.1743929                         1
## AHL_11239959   0.6548743  1.2320159                         2
## AJGD_11119689  0.6443077  0.6443077                         2
## AMP_11228639  -0.0636941 -0.2689973                         1
## Mean by groups
rp_tbl_EUCL <- aggregate(plotting_EUCL, by = list(plotting_EUCL$DDclust_EUCL_SatO2_scaled), mean)
row.names(rp_tbl_EUCL) <- paste0("Group",rp_tbl_EUCL$DDclust_EUCL_SatO2_scaled)
rp_tbl_EUCL <- rp_tbl_EUCL %>%
  select(starts_with('X'))
rp_tbl_EUCL <- data.frame(t(rp_tbl_EUCL))
head(rp_tbl_EUCL)
##          Group1     Group2
## X1  0.009127268 -0.4454704
## X2  0.209442524 -0.3333026
## X3 -0.076872070 -0.2964212
## X4 -0.104239051 -0.7216093
## X5 -0.081223130 -0.4984848
## X6  0.163388039 -0.2444696
# Create plotting data-frame
EUCL_values_by_group <- data.frame("value_EUCL" = c(rp_tbl_EUCL$Group1,rp_tbl_EUCL$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_EUCL$Group1)),
                                              rep("Group2", times = length(rp_tbl_EUCL$Group2))),
                                  "index" = c(c(1:length(rp_tbl_EUCL$Group1)),c(1:length(rp_tbl_EUCL$Group2))))

p <- ggplot(EUCL_values_by_group, aes(x = index, y = value_EUCL, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

PER TSclust

# DD_PER <- diss(datos, "PER")
DD_PER <- distance_PER

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_PER, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.6054100 0.4748166 0.7390853 0.8575876

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_PER
res<-NbClust(datos_PER, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.3524 0.3244 0.1186 0.1285
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.3524
#res$Best.partition
hcintper_PER <- hclust(DD_PER, "ward.D2")
fviz_dend(hcintper_PER, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)

DDclust_PER_SatO2_scaled <- cutree( hclust(DD_PER, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_PER_SatO2_scaled))

fviz_silhouette(silhouette(DDclust_PER_SatO2_scaled, DD_PER))
##   cluster size ave.sil.width
## 1       1   45          0.44
## 2       2   13          0.03

Contingency PER

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_PER <- cbind(NO_DETERIORO_patients,DETERIORO_patients)
order_PER <- union(names(DDclust_PER_SatO2_scaled[DDclust_PER_SatO2_scaled == 2]),names(DDclust_PER_SatO2_scaled[DDclust_PER_SatO2_scaled == 1]))
fviz_dend(hcintper_PER, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_PER[,order_PER]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 5 1
NO DETERIORO 40 12
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.1111111 0.0769231
NO DETERIORO 0.8888889 0.9230769

Random Forest: Discriminant TSCLust PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_SatO2_scaled)
data_frame2_PER = df_descriptive
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
data_frame_merge_PER$CLUSTER = factor(data_frame_merge_PER$CLUSTER)
table(data_frame_merge_PER$CLUSTER)
## 
##  1  2 
## 45 13
data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])]<- lapply(data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])], as.numeric)
head(data_frame_merge_PER)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       2 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       2 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_PER$CLUSTER <- factor(data_frame_merge_PER$CLUSTER)
newSMOTE_PER <- oversample(data_frame_merge_PER, ratio = 0.85, method = "SMOTE", classAttr = "CLUSTER")
newSMOTE_PER <- data.frame(newSMOTE_PER)
pos_1 <- get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 <- get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newSMOTE_PER[, columns_to_round] <- lapply(newSMOTE_PER[, columns_to_round], function(x) round(x, 1))
table(newSMOTE_PER$CLUSTER)
## 
##  1  2 
## 45 39
set.seed(123)
pos_1 = get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_PER[pos_1:pos_2])
newSMOTE_PER[col_names_factor] <- lapply(newSMOTE_PER[col_names_factor] , factor)
RF_PER <- randomForest(CLUSTER ~ ., data = newSMOTE_PER)
print(RF_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 14.29%
## Confusion matrix:
##    1  2 class.error
## 1 41  4  0.08888889
## 2  8 31  0.20512821

Importance

kable(RF_PER$importance[order(RF_PER$importance, decreasing = TRUE),])
x
SAPI_0_8h 5.9478329
EDAD 4.8844865
PESO 4.4966094
SCORE_WOOD_DOWNES_INGRESO 3.8820332
SCORE_CRUCES_INGRESO 3.3041235
ENFERMEDAD_BASE 1.5700888
TABACO 1.5195153
FR_0_8h 1.4079287
ALIMENTACION 1.3278857
EG 1.3219039
DERMATITIS 1.2832285
DIAS_O2_TOTAL 1.1556829
ETIOLOGIA 1.1548707
SEXO 1.0651162
DIAS_GN 0.9976891
FLUJO2_0_8H 0.9747712
RADIOGRAFIA 0.8607499
PALIVIZUMAB 0.8097352
SUERO 0.7347771
LM 0.7249721
ANALITICA 0.5863486
PREMATURIDAD 0.2275032
ALERGIAS 0.2096151
DIAS_OAF 0.1638123
OAF 0.1521106
GN_INGRESO 0.1079112
DETERIORO 0.1027632
SNG 0.0938089
OAF_TRAS_INGRESO 0.0799879
UCIP 0.0488113
PAUSAS_APNEA 0.0286631
OAF_AL_INGRESO 0.0000000

Importance of the PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_SatO2_scaled)
data_frame2_PER = data.frame(datos_PER)
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
set.seed(123)
data_frame_merge_PER$CLUSTER <- as.factor(data_frame_merge_PER$CLUSTER)
RF_0_PER <- randomForest(CLUSTER ~ ., data = data_frame_merge_PER)
print(RF_0_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 12.07%
## Confusion matrix:
##    1 2 class.error
## 1 45 0   0.0000000
## 2  7 6   0.5384615
plot(RF_0_PER$importance, type = "h")

### PER by clusters

plot_data_PER <- data.frame(datos_PER)
cluster_data_PER <- data.frame(DDclust_PER_SatO2_scaled)
plotting_PER <- cbind(plot_data_PER, cluster_data_PER)
head(plotting_PER)
##                      X1         X2        X3        X4        X5         X6
## ACR_11231843   6.348793  0.8824224 15.031336  8.860350  2.210851  8.1245349
## ADAO_11159808 17.396080 49.7584515 12.944428  2.613567  3.954203  2.8838844
## AGG_11236448  26.424735 12.3382623  1.377948 21.116690  3.413796  1.4558684
## AHL_11239959  19.348843 10.9734559  7.551318  6.092470  3.884345 20.8120609
## AJGD_11119689 23.488985 11.6025404 41.784110  2.732686 16.578289  8.1397034
## AMP_11228639   8.270068  8.8919319  7.724718  1.815867  5.105347  0.9724093
##                      X7        X8       X9       X10      X11       X12
## ACR_11231843  1.0893194 4.6188381 2.128434 7.0795038 8.164521 4.7925122
## ADAO_11159808 0.1752141 2.2416678 1.832529 2.1824821 1.008507 1.4260886
## AGG_11236448  3.3925561 2.3349328 4.369872 0.8502531 3.577408 2.5824506
## AHL_11239959  6.7673125 3.4566368 3.146570 2.6956428 3.670493 1.7264694
## AJGD_11119689 1.2528051 0.4160723 3.752138 7.1353083 1.693787 3.8683255
## AMP_11228639  5.5823561 1.5941413 6.067782 4.1288889 2.461341 0.5287559
##                      X13      X14       X15        X16       X17      X18
## ACR_11231843   1.1966608 8.049952 1.8774527  1.2296397 1.8030521 2.867038
## ADAO_11159808  0.4367859 3.757947 2.3529685  1.6497995 0.9075008 1.244186
## AGG_11236448   1.6359496 0.157227 0.5200923  0.1712884 0.9343623 1.036571
## AHL_11239959   2.9699188 3.042933 0.1054116  2.3100562 0.7121081 2.378122
## AJGD_11119689 11.3784548 4.999071 2.5333687 12.6844528 1.3360734 1.716247
## AMP_11228639   0.4675004 9.402316 0.5751271  1.0175248 0.6718940 6.119878
##                     X19       X20       X21       X22       X23      X24
## ACR_11231843  3.8345100 0.2830486 3.2497073 1.5498814 1.2631749 4.996347
## ADAO_11159808 0.6390957 1.3600563 0.2579193 2.4194261 0.6240652 1.352393
## AGG_11236448  0.5510484 0.2366121 2.0108826 0.2511593 0.5214134 3.125807
## AHL_11239959  1.5448511 3.2301563 4.6369582 0.7887947 1.6046767 1.327624
## AJGD_11119689 1.2815792 1.1284874 0.5057853 0.2547052 0.3520491 2.238605
## AMP_11228639  0.4083553 0.2074552 6.6061470 1.2932625 2.5352461 4.047312
##                     X25        X26       X27       X28       X29       X30
## ACR_11231843  1.0651069 0.79276818 0.6946702 0.2877550 1.5289594 0.7310406
## ADAO_11159808 0.2661232 0.53030644 1.3445150 1.0611150 1.3962986 0.9786870
## AGG_11236448  0.6659631 3.95621033 1.3859658 2.0966802 0.3719732 1.2732655
## AHL_11239959  1.2507873 1.13762443 0.7879042 0.1037010 1.7621625 0.4050390
## AJGD_11119689 0.8418999 0.01560772 0.2016805 0.3373289 0.6234324 1.9320597
## AMP_11228639  0.7772594 0.09036720 0.2393410 0.4138050 1.6063555 0.2403159
##                     X31       X32       X33       X34        X35        X36
## ACR_11231843  1.3262557 0.9537030 0.2823674 1.3385635 0.74298612 0.45697447
## ADAO_11159808 0.4554770 0.8605264 0.2355627 0.2800569 0.54690942 0.09157041
## AGG_11236448  2.5376191 1.6129190 0.3411612 0.5187864 0.06033654 1.56284519
## AHL_11239959  0.1429333 1.0528079 1.5757388 2.2345437 0.76048539 2.09812314
## AJGD_11119689 1.9531922 1.0414460 1.5425265 0.2228450 0.24439732 0.04071238
## AMP_11228639  1.6576323 0.4951032 0.2363786 1.0914149 0.24851442 2.63829534
##                      X37       X38       X39        X40        X41       X42
## ACR_11231843  1.00360789 1.0313477 0.1148972 0.02890758 0.51435492 0.2425515
## ADAO_11159808 3.20913711 0.9524235 0.1194502 0.55075843 0.76871470 1.9939146
## AGG_11236448  2.33034984 0.0649861 0.3694764 1.36216468 0.99137445 0.3789579
## AHL_11239959  0.67128259 1.8052687 1.0175493 0.09445088 0.32477596 0.3933050
## AJGD_11119689 0.03160705 0.1181601 0.9880536 0.61762121 1.21498159 1.6378079
## AMP_11228639  2.18282898 0.2948922 0.7094737 1.38259378 0.03667861 0.4382239
##                     X43         X44       X45       X46       X47        X48
## ACR_11231843  2.6744763 0.502933230 2.1217508 0.8252488 0.0177394 1.46920306
## ADAO_11159808 0.2392712 0.275812936 0.1352435 0.5635791 0.6595599 0.07315809
## AGG_11236448  0.1047609 0.365309922 0.8502848 0.2115767 0.3666295 1.43545259
## AHL_11239959  1.1633352 1.290444095 2.8688219 0.5789557 1.7586179 2.54208427
## AJGD_11119689 1.1971822 0.006347599 0.2826796 0.7746827 0.2919506 0.51435017
## AMP_11228639  1.2939988 3.330648469 0.6653319 0.5609553 0.2858404 2.27975865
##                     X49        X50        X51        X52        X53       X54
## ACR_11231843  0.5560665 0.22498670 0.42744978 1.05655327 0.21930911 2.9494148
## ADAO_11159808 0.3186641 0.47011277 0.03006227 0.09576189 0.04764259 0.7473512
## AGG_11236448  0.2345186 2.12914673 0.02012102 0.11866019 0.94177758 0.9486973
## AHL_11239959  0.9235975 1.16361033 0.50236373 0.19710250 0.10759298 0.2572798
## AJGD_11119689 0.2152703 0.09005781 0.34601946 0.40875798 1.06918428 2.0183518
## AMP_11228639  0.1975266 0.53460173 1.70674300 0.48235793 0.16003491 0.5053236
##                     X55        X56       X57        X58       X59        X60
## ACR_11231843  0.0455753 0.79033680 2.6751528 0.22244518 1.0910550 0.81457795
## ADAO_11159808 0.7971336 0.40942926 0.7509974 0.09655444 0.2359055 0.06857787
## AGG_11236448  0.4383420 1.82624012 2.5395366 1.91296319 0.6477569 1.57503339
## AHL_11239959  0.3727104 0.73842178 0.2416038 1.08684323 0.7825378 1.37985577
## AJGD_11119689 0.3375352 0.01765007 0.3327447 0.30767550 1.2607821 1.52535132
## AMP_11228639  0.4603685 0.72088171 1.1815493 0.45364003 0.4131786 0.04735498
##                     X61        X62        X63       X64        X65       X66
## ACR_11231843  1.0452416 2.22059804 0.01877845 0.6771187 1.59536224 0.1341431
## ADAO_11159808 0.1797696 0.05211371 0.07283177 0.3901250 0.09689898 0.2719688
## AGG_11236448  0.6973234 0.21243619 0.07790388 0.4461965 1.38692363 0.4000365
## AHL_11239959  0.5524000 2.85742411 1.08298358 0.6756159 2.11889150 2.4977171
## AJGD_11119689 2.0436066 0.78144599 0.32812657 0.2325873 0.16785693 0.3198675
## AMP_11228639  0.7787486 0.64323346 0.79721743 0.3530024 0.38963428 2.8679283
##                     X67        X68       X69       X70       X71       X72
## ACR_11231843  1.4865863 0.18571476 0.4584078 0.8729212 0.9514275 0.3060958
## ADAO_11159808 0.3713488 0.24281633 0.4554614 0.2414821 0.7982383 0.2669585
## AGG_11236448  0.8797200 0.50265861 1.3776871 0.3753168 0.1272601 0.2254214
## AHL_11239959  0.9541463 0.55775497 0.9004808 1.6315484 3.0238462 2.5638357
## AJGD_11119689 0.1879642 0.02982476 0.3405476 0.3691306 1.0283090 0.3602961
## AMP_11228639  0.3491809 0.51012760 0.3571836 1.8951902 1.2151800 0.3204242
##                     X73         X74       X75       X76        X77       X78
## ACR_11231843  1.6622894 0.399547433 1.4084208 0.7421861 0.03035375 1.3743029
## ADAO_11159808 0.2068878 0.003699507 0.3100827 0.2456579 1.18191503 0.3955935
## AGG_11236448  0.5764732 0.058636263 0.8402853 0.3263836 0.80562648 0.3922983
## AHL_11239959  1.4483877 0.689861904 1.4998627 1.3274084 0.90297132 0.2661644
## AJGD_11119689 0.2437754 0.255121951 0.7907324 0.9339512 0.65566145 1.4073043
## AMP_11228639  0.5799120 0.881954521 0.1537624 0.6002758 0.17940782 0.3549954
##                     X79         X80        X81        X82       X83       X84
## ACR_11231843  0.8184741 1.322902452 1.78742702 0.11742543 0.2897283 0.5898249
## ADAO_11159808 0.1426360 0.034082740 0.05385541 0.38262140 0.2778211 0.4429992
## AGG_11236448  0.1701278 0.007899642 0.14534983 1.03165543 0.3994466 0.1294998
## AHL_11239959  0.4449327 0.930038906 0.42700438 0.86252906 0.8310227 1.9702930
## AJGD_11119689 0.2312825 0.101662219 0.08191963 0.02972539 0.5928839 0.1906042
## AMP_11228639  0.6771967 1.304763616 1.74318043 0.75918909 0.4997488 0.7430565
##                      X85       X86        X87        X88         X89        X90
## ACR_11231843  0.25229112 2.4927392 0.08040979 0.24297478 1.941324031 0.07542797
## ADAO_11159808 0.05734347 0.1068313 0.32844742 0.01256909 0.001123753 0.49016365
## AGG_11236448  1.15288092 0.3550314 0.67912745 0.25459742 0.206423645 0.57710071
## AHL_11239959  1.10705540 0.2546720 0.33953986 2.30943757 1.151461569 0.50505194
## AJGD_11119689 0.29124372 0.2473875 0.29566780 1.50599014 1.064965284 1.06136899
## AMP_11228639  1.55229693 0.1929157 2.74614168 2.71265871 0.132163063 0.31398211
##                     X91        X92       X93        X94       X95        X96
## ACR_11231843  0.3971997 0.01522468 0.3168450 0.19569739 1.1367379 0.23883407
## ADAO_11159808 0.2216527 0.10962381 0.1768038 0.25254751 0.2860438 0.45479807
## AGG_11236448  1.7242268 0.34085386 0.8270347 0.62862012 2.7646888 0.19859660
## AHL_11239959  0.4184149 0.68992381 0.1146020 0.29212651 1.5139118 0.81214229
## AJGD_11119689 0.2290820 0.15879185 0.2463962 0.10066577 0.3552669 1.28194932
## AMP_11228639  0.3566863 1.29260000 0.6135749 0.04747837 0.2960225 0.02103349
##                     X97        X98        X99       X100       X101      X102
## ACR_11231843  0.2495388 0.15271205 0.34780014 2.54723516 0.66392135 0.4040863
## ADAO_11159808 0.3602606 0.02327933 0.08396312 0.19796414 0.32191258 0.1208610
## AGG_11236448  0.4158598 0.43124085 1.40650734 0.66059443 1.02575010 0.2783342
## AHL_11239959  0.3130736 1.21791381 0.36077779 0.86267599 0.42608371 0.2424280
## AJGD_11119689 0.0825733 0.12961102 0.40633033 0.11334720 0.07987141 0.2316670
## AMP_11228639  0.4056079 0.50237919 0.18664080 0.04807578 0.20933051 1.0427963
##                     X103       X104      X105       X106      X107       X108
## ACR_11231843  0.03608767 0.16857745 0.7389629 0.31647001 0.7500342 0.66741674
## ADAO_11159808 0.98924620 0.11977738 0.3011013 0.49870875 0.1812307 0.37170253
## AGG_11236448  0.79384688 0.02802375 0.2789929 0.08091934 1.0390319 0.28875708
## AHL_11239959  0.54434377 0.77266041 1.0031163 0.53945090 0.5442034 0.09232544
## AJGD_11119689 0.20415959 0.30991101 0.6025530 0.34834691 0.2025885 0.29670790
## AMP_11228639  0.59601392 0.19677922 0.6800451 0.07181484 1.5921881 0.24965117
##                    X109      X110         X111       X112       X113      X114
## ACR_11231843  0.6617817 0.7428817 3.599995e-02 0.07403857 0.00668701 0.4683018
## ADAO_11159808 0.1293633 0.2586819 2.363620e-01 0.20037365 0.00161580 0.2760036
## AGG_11236448  0.2147016 0.8613860 1.432879e+00 0.42361877 0.25416857 0.6826805
## AHL_11239959  0.9533254 0.9653254 9.476766e-01 0.57310579 1.24768474 0.9406219
## AJGD_11119689 0.2334909 0.4281849 7.115579e-05 0.20469550 0.01075850 0.2481260
## AMP_11228639  0.5986724 0.4660691 1.310461e+00 0.30285219 0.68816148 0.5549679
##                      X115        X116       X117       X118      X119
## ACR_11231843  0.522862318 0.919221751 0.17029787 0.87885007 0.2085568
## ADAO_11159808 0.526959076 0.732770157 0.61024489 0.04354011 0.4858561
## AGG_11236448  0.541630132 0.406023864 0.04838166 0.03295878 0.5919971
## AHL_11239959  0.838138502 1.180967539 0.65114190 0.06523926 0.2865548
## AJGD_11119689 0.003918154 0.008078954 0.62427172 0.65421283 0.2575320
## AMP_11228639  0.665281820 0.774776911 0.18150456 0.02586634 0.5130211
##                     X120       X121      X122       X123        X124       X125
## ACR_11231843  0.02943497 1.40147972 0.4521856 0.40730985 1.204497545 1.02875617
## ADAO_11159808 0.04329464 0.02135967 0.2356128 0.02240162 0.074380459 1.00253412
## AGG_11236448  0.01174943 0.31852738 0.5571214 0.76442608 0.362227426 0.06092662
## AHL_11239959  1.02279230 0.93163484 0.2860807 0.07638227 0.136743856 0.37822444
## AJGD_11119689 0.67815375 0.52385916 0.1732607 0.13384646 0.007784818 0.22514565
## AMP_11228639  0.34605496 0.08148098 0.5742681 0.05759084 0.356747354 0.05277499
##                     X126       X127      X128       X129      X130       X131
## ACR_11231843  0.12462271 0.02377489 1.0127897 0.11912420 0.1163767 0.14766264
## ADAO_11159808 0.22935578 0.55878364 0.1177778 0.11639738 0.5985089 0.52500026
## AGG_11236448  0.82942037 0.48095856 0.1839764 0.13239496 0.8193702 0.05673802
## AHL_11239959  0.68005582 0.51425829 0.7793923 0.18114629 1.0353180 0.16442668
## AJGD_11119689 0.18181008 0.54345734 0.0657948 0.05290683 0.7034265 0.54101378
## AMP_11228639  0.07892824 0.29498608 0.5039462 0.38604376 0.1258997 0.06302053
##                    X132       X133       X134       X135       X136       X137
## ACR_11231843  0.2231370 0.06317987 0.23738384 0.15019946 0.36314954 0.21663127
## ADAO_11159808 0.5927175 0.41947213 0.25532116 0.01281007 0.65717208 0.54042038
## AGG_11236448  0.6689784 0.02809200 0.22581987 1.44750865 0.01279247 0.21068529
## AHL_11239959  0.6387647 0.17607502 0.04850236 0.19031885 0.29087578 0.01743478
## AJGD_11119689 0.3578739 0.34497652 0.71964220 0.03827445 0.96008598 0.60455007
## AMP_11228639  0.1752058 2.24125067 1.98803759 0.69704211 0.56645322 0.38249034
##                    X138       X139       X140       X141       X142      X143
## ACR_11231843  1.2150875 0.03581450 0.08568949 0.63643306 0.16797431 0.4582688
## ADAO_11159808 0.2543590 0.06990940 0.10240501 0.14056461 0.15292808 0.1503610
## AGG_11236448  0.8103784 0.93576683 0.26089579 0.09297315 0.04501737 0.3067378
## AHL_11239959  0.3362775 0.51671425 0.26858883 0.32412205 0.33481597 0.2349590
## AJGD_11119689 0.5464668 0.04889159 0.08308501 1.77769380 0.49258646 1.1155896
## AMP_11228639  0.6098340 0.03319444 1.44122627 0.50793185 0.30365934 0.9273810
##                     X144       X145       X146        X147       X148
## ACR_11231843  1.54772389 0.87238170 1.71244869 0.084014290 0.17851737
## ADAO_11159808 0.14471645 0.26215886 0.02921854 0.614434388 0.06090689
## AGG_11236448  0.50714989 0.23973444 0.08995068 0.442718772 0.19648423
## AHL_11239959  0.05374483 0.02099668 0.46170411 0.203545864 0.60284599
## AJGD_11119689 0.34926472 0.09500509 0.11609647 0.186433370 0.15767419
## AMP_11228639  0.70645087 0.32279802 0.01513915 0.002568582 1.65130434
##                      X149       X150      X151        X152       X153
## ACR_11231843  0.364828020 0.42250265 0.3511709 0.384906413 0.27577525
## ADAO_11159808 0.204200840 0.01413845 0.1694164 0.007602808 0.05164355
## AGG_11236448  0.125285136 0.14210883 0.6339356 0.706793786 0.03072682
## AHL_11239959  0.798142880 0.06878360 0.6169310 0.475772557 0.22356734
## AJGD_11119689 0.012983538 0.30775318 0.2849745 0.122063774 0.17897502
## AMP_11228639  0.006659205 0.73152144 1.0233014 0.018139194 0.04495578
##                     X154       X155       X156       X157       X158       X159
## ACR_11231843  0.00243817 0.33094799 0.06192187 0.27425515 0.06326506 0.39901255
## ADAO_11159808 0.16565332 0.08810677 0.15820385 0.07038247 0.08331402 0.02503502
## AGG_11236448  0.58276045 0.07379043 0.22969589 0.09458116 0.41116874 0.87099963
## AHL_11239959  0.03826173 0.05769197 0.03466299 0.22419148 0.05630622 0.04322563
## AJGD_11119689 0.22724669 0.13671013 0.20911288 0.02332409 0.08868737 0.51330588
## AMP_11228639  0.68192372 0.10421832 0.41719773 1.40230978 0.45427232 0.44936115
##                    X160       X161        X162       X163        X164
## ACR_11231843  0.4310162 0.11716878 0.002287141 0.02201048 0.118195753
## ADAO_11159808 0.2129358 0.04259774 0.027089081 0.04088821 0.003862915
## AGG_11236448  0.0138594 0.20628929 0.538522289 1.57770951 1.142231741
## AHL_11239959  0.1213003 0.05566236 0.031014337 0.12067504 0.539998920
## AJGD_11119689 1.5802494 0.65440913 0.468507771 0.84989028 1.166356229
## AMP_11228639  1.5295883 0.12281409 1.020538748 0.15105353 0.020777371
##                     X165      X166       X167       X168       X169       X170
## ACR_11231843  0.31468289 0.2173321 0.01253246 0.28320671 0.56075471 0.31171919
## ADAO_11159808 0.20178926 0.1308851 0.25186496 0.07547981 0.18217595 0.07470175
## AGG_11236448  0.41118525 0.6711593 0.39440387 0.12795625 0.24240853 0.75194362
## AHL_11239959  0.32246755 0.1584437 0.09266000 0.11491070 0.28522062 0.17829618
## AJGD_11119689 0.09608833 0.6182929 0.65750518 0.39375723 0.05630193 0.02385402
## AMP_11228639  0.43121758 0.6064068 0.11661017 0.02971920 0.18739183 0.02021485
##                     X171       X172      X173        X174      X175      X176
## ACR_11231843  0.04745443 0.57226997 0.1721298 0.571041354 0.6030170 0.2540577
## ADAO_11159808 0.05094611 0.42212916 0.1000108 0.066725093 0.2029976 0.3223721
## AGG_11236448  0.07469018 0.99787916 1.0857614 1.361559000 0.1155127 2.1719807
## AHL_11239959  0.03170774 0.23152345 0.1876516 0.032543773 0.8491026 0.2821922
## AJGD_11119689 0.18209249 0.35781259 0.1030368 0.005932034 0.1044466 0.3511166
## AMP_11228639  0.82985323 0.02661435 0.2129612 0.245679179 0.7065082 0.3559943
##                     X177       X178       X179       X180       X181      X182
## ACR_11231843  0.09211557 0.01122874 0.02536072 0.33692903 0.06123833 0.3434002
## ADAO_11159808 0.19090129 0.04793096 0.07751819 0.16131648 0.03018219 0.1761500
## AGG_11236448  0.53187995 0.94726822 0.02602323 0.09918865 0.02947442 0.7146300
## AHL_11239959  0.16249675 0.27424902 0.09938061 0.03452003 0.15287783 0.1226016
## AJGD_11119689 0.12238739 0.25822560 0.57295336 0.01681876 0.43446103 0.8493773
## AMP_11228639  0.49996567 0.35935289 0.83177218 2.36350127 0.07341391 0.7958031
##                     X183       X184       X185        X186       X187
## ACR_11231843  0.59950795 0.06007528 0.27404389 0.230895377 0.10610367
## ADAO_11159808 0.04048933 0.01542824 0.25499883 0.001821081 0.02574317
## AGG_11236448  0.08175883 0.68009233 0.92141012 0.097628907 0.57852542
## AHL_11239959  0.67841344 0.38476465 0.06994537 0.323776688 0.12497543
## AJGD_11119689 0.98568997 0.13836693 0.25977142 0.397179045 0.04580265
## AMP_11228639  0.25156720 0.81117437 0.29809822 0.610639613 1.02916692
##                     X188      X189       X190       X191       X192       X193
## ACR_11231843  0.02505218 0.1770090 0.15747788 0.20722497 0.27426179 0.03980778
## ADAO_11159808 0.03077041 0.1987527 0.16188064 0.04170387 0.18761453 0.20485728
## AGG_11236448  0.37383497 1.4247670 0.02286294 0.12157637 0.16102554 0.16691728
## AHL_11239959  0.55037316 0.1670300 0.01698544 0.02294381 0.02626866 0.25280673
## AJGD_11119689 0.11624989 0.2519341 0.49568218 0.03617079 0.13268422 0.02651190
## AMP_11228639  0.82712659 0.5659315 1.10217813 3.46112920 0.15056436 0.33389840
##                     X194      X195       X196       X197       X198       X199
## ACR_11231843  0.11266554 0.7823676 0.02866908 0.50603803 0.29144092 0.07492719
## ADAO_11159808 0.10751342 0.2462773 0.35859410 0.08302634 0.63223792 0.15689565
## AGG_11236448  0.02915843 0.8713079 0.05851160 0.03175306 0.06947922 0.18127217
## AHL_11239959  0.04315721 0.1534681 0.09408553 0.09573158 0.31128368 0.35151173
## AJGD_11119689 0.04554138 0.2103325 0.09491138 0.51206634 0.07627866 0.07749018
## AMP_11228639  0.49994117 0.3377376 0.05810362 0.19792480 0.14801857 0.45281357
##                     X200      X201       X202       X203       X204      X205
## ACR_11231843  0.00763376 0.5085166 0.60177750 0.59760002 0.59694628 0.4804174
## ADAO_11159808 0.13964555 0.1218450 0.02778494 0.01678410 0.37147612 0.1121702
## AGG_11236448  0.82005448 0.2556042 0.18436737 0.12222958 0.26562058 0.4973984
## AHL_11239959  0.42179440 0.2319385 0.03065702 0.51919576 0.07464520 0.2325143
## AJGD_11119689 0.33438169 0.4275498 0.46062074 0.04895848 0.09101724 1.0323948
## AMP_11228639  1.27187738 0.6906456 0.12656298 3.65242153 0.54881451 1.0040207
##                     X206      X207       X208       X209        X210
## ACR_11231843  0.14246012 0.1716408 0.01398568 0.17513341 0.009666507
## ADAO_11159808 0.30224651 0.2530436 0.03090251 0.30576233 0.399251353
## AGG_11236448  0.26545336 0.8778438 0.36812625 1.13550669 0.397540398
## AHL_11239959  0.05239033 0.1831435 0.06362581 0.03661487 0.314387873
## AJGD_11119689 0.44226627 0.1522902 0.07394941 0.23686375 0.359056698
## AMP_11228639  0.96650067 1.6287727 0.53887315 0.06955880 0.179199782
##                      X211      X212       X213       X214       X215       X216
## ACR_11231843  0.017837575 0.2295827 0.18552728 0.03237546 0.42294423 0.25886718
## ADAO_11159808 0.037776035 0.2424041 0.40547796 0.24269857 0.03447520 0.06102033
## AGG_11236448  0.019376777 0.2699643 0.47967092 0.04472325 0.26398239 0.60212065
## AHL_11239959  0.347105443 0.1440609 0.01014805 0.01258980 0.34181190 0.22403910
## AJGD_11119689 0.005392294 0.3028457 0.31510720 0.05969343 0.04564661 0.15842807
## AMP_11228639  0.759036312 0.7131883 0.56659121 1.20323126 0.13781954 0.69438936
##                     X217      X218       X219       X220       X221       X222
## ACR_11231843  0.23801661 0.2862336 0.37664848 0.13730494 0.12144742 0.07498014
## ADAO_11159808 0.11027203 0.2861032 0.16646503 0.15510289 0.31174515 0.08607239
## AGG_11236448  0.40191492 0.7689518 0.08678123 0.09762770 0.09339306 1.23758457
## AHL_11239959  0.01345466 0.6604966 0.18250434 0.04010745 0.01100947 0.16325454
## AJGD_11119689 0.07429829 0.2593043 0.09147527 0.10992588 1.57593458 0.40804501
## AMP_11228639  1.52177851 0.1513313 0.53601285 1.03349395 0.71431823 0.08818547
##                     X223      X224        X225       X226       X227       X228
## ACR_11231843  1.52451736 0.4367456 0.405621940 0.26605965 0.17349447 0.14099043
## ADAO_11159808 0.03010055 0.1472350 0.244256738 0.30401962 0.04306084 0.04904309
## AGG_11236448  0.34778424 0.3863610 0.662037151 0.02959031 0.01633321 0.38801624
## AHL_11239959  0.21133021 0.2750689 0.007434949 0.10342347 0.06024967 0.23497932
## AJGD_11119689 0.36021877 0.2140832 0.337620483 0.18151343 0.63386061 0.19696692
## AMP_11228639  0.15588788 1.6577063 0.112362614 0.24854661 0.47184409 0.79914346
##                      X229       X230       X231      X232       X233
## ACR_11231843  0.006560831 0.30175288 0.23256084 0.4030619 0.06172034
## ADAO_11159808 0.076869368 0.64498187 0.08707156 0.0134285 0.28483871
## AGG_11236448  0.158340973 0.05597874 0.45785856 0.3839366 0.76878506
## AHL_11239959  0.004818617 0.89353275 0.11582079 0.6296312 0.07643730
## AJGD_11119689 0.177937213 0.08242920 0.09079186 0.3917557 0.38753240
## AMP_11228639  0.123583935 1.57976038 0.20604178 0.5057171 0.08718545
##                      X234       X235       X236       X237       X238
## ACR_11231843  0.591784258 0.12879248 0.15941998 0.03956496 0.03958130
## ADAO_11159808 0.631376666 0.09789595 0.06095633 0.17459402 0.25315548
## AGG_11236448  0.012184709 0.71883036 1.26914914 0.60219808 2.13432482
## AHL_11239959  0.283352188 0.14050680 0.14465409 0.25660975 0.02501904
## AJGD_11119689 0.184399571 0.01338300 0.54915811 1.29951789 0.08348871
## AMP_11228639  0.001706479 1.34724221 0.04038771 0.94469450 2.68934260
##                     X239       X240      X241       X242      X243      X244
## ACR_11231843  0.29655536 0.04941650  6.348793  0.8824224 15.031336  8.860350
## ADAO_11159808 0.11851667 0.62252162 17.396080 49.7584515 12.944428  2.613567
## AGG_11236448  0.06471164 1.54550055 26.424735 12.3382623  1.377948 21.116690
## AHL_11239959  0.40155119 0.03608186 19.348843 10.9734559  7.551318  6.092470
## AJGD_11119689 0.58308832 0.92095582 23.488985 11.6025404 41.784110  2.732686
## AMP_11228639  0.58445478 0.03502529  8.270068  8.8919319  7.724718  1.815867
##                    X245       X246      X247      X248     X249      X250
## ACR_11231843   2.210851  8.1245349 1.0893194 4.6188381 2.128434 7.0795038
## ADAO_11159808  3.954203  2.8838844 0.1752141 2.2416678 1.832529 2.1824821
## AGG_11236448   3.413796  1.4558684 3.3925561 2.3349328 4.369872 0.8502531
## AHL_11239959   3.884345 20.8120609 6.7673125 3.4566368 3.146570 2.6956428
## AJGD_11119689 16.578289  8.1397034 1.2528051 0.4160723 3.752138 7.1353083
## AMP_11228639   5.105347  0.9724093 5.5823561 1.5941413 6.067782 4.1288889
##                   X251      X252       X253     X254      X255       X256
## ACR_11231843  8.164521 4.7925122  1.1966608 8.049952 1.8774527  1.2296397
## ADAO_11159808 1.008507 1.4260886  0.4367859 3.757947 2.3529685  1.6497995
## AGG_11236448  3.577408 2.5824506  1.6359496 0.157227 0.5200923  0.1712884
## AHL_11239959  3.670493 1.7264694  2.9699188 3.042933 0.1054116  2.3100562
## AJGD_11119689 1.693787 3.8683255 11.3784548 4.999071 2.5333687 12.6844528
## AMP_11228639  2.461341 0.5287559  0.4675004 9.402316 0.5751271  1.0175248
##                    X257     X258      X259      X260      X261      X262
## ACR_11231843  1.8030521 2.867038 3.8345100 0.2830486 3.2497073 1.5498814
## ADAO_11159808 0.9075008 1.244186 0.6390957 1.3600563 0.2579193 2.4194261
## AGG_11236448  0.9343623 1.036571 0.5510484 0.2366121 2.0108826 0.2511593
## AHL_11239959  0.7121081 2.378122 1.5448511 3.2301563 4.6369582 0.7887947
## AJGD_11119689 1.3360734 1.716247 1.2815792 1.1284874 0.5057853 0.2547052
## AMP_11228639  0.6718940 6.119878 0.4083553 0.2074552 6.6061470 1.2932625
##                    X263     X264      X265       X266      X267      X268
## ACR_11231843  1.2631749 4.996347 1.0651069 0.79276818 0.6946702 0.2877550
## ADAO_11159808 0.6240652 1.352393 0.2661232 0.53030644 1.3445150 1.0611150
## AGG_11236448  0.5214134 3.125807 0.6659631 3.95621033 1.3859658 2.0966802
## AHL_11239959  1.6046767 1.327624 1.2507873 1.13762443 0.7879042 0.1037010
## AJGD_11119689 0.3520491 2.238605 0.8418999 0.01560772 0.2016805 0.3373289
## AMP_11228639  2.5352461 4.047312 0.7772594 0.09036720 0.2393410 0.4138050
##                    X269      X270      X271      X272      X273      X274
## ACR_11231843  1.5289594 0.7310406 1.3262557 0.9537030 0.2823674 1.3385635
## ADAO_11159808 1.3962986 0.9786870 0.4554770 0.8605264 0.2355627 0.2800569
## AGG_11236448  0.3719732 1.2732655 2.5376191 1.6129190 0.3411612 0.5187864
## AHL_11239959  1.7621625 0.4050390 0.1429333 1.0528079 1.5757388 2.2345437
## AJGD_11119689 0.6234324 1.9320597 1.9531922 1.0414460 1.5425265 0.2228450
## AMP_11228639  1.6063555 0.2403159 1.6576323 0.4951032 0.2363786 1.0914149
##                     X275       X276       X277      X278      X279       X280
## ACR_11231843  0.74298612 0.45697447 1.00360789 1.0313477 0.1148972 0.02890758
## ADAO_11159808 0.54690942 0.09157041 3.20913711 0.9524235 0.1194502 0.55075843
## AGG_11236448  0.06033654 1.56284519 2.33034984 0.0649861 0.3694764 1.36216468
## AHL_11239959  0.76048539 2.09812314 0.67128259 1.8052687 1.0175493 0.09445088
## AJGD_11119689 0.24439732 0.04071238 0.03160705 0.1181601 0.9880536 0.61762121
## AMP_11228639  0.24851442 2.63829534 2.18282898 0.2948922 0.7094737 1.38259378
##                     X281      X282      X283        X284      X285      X286
## ACR_11231843  0.51435492 0.2425515 2.6744763 0.502933230 2.1217508 0.8252488
## ADAO_11159808 0.76871470 1.9939146 0.2392712 0.275812936 0.1352435 0.5635791
## AGG_11236448  0.99137445 0.3789579 0.1047609 0.365309922 0.8502848 0.2115767
## AHL_11239959  0.32477596 0.3933050 1.1633352 1.290444095 2.8688219 0.5789557
## AJGD_11119689 1.21498159 1.6378079 1.1971822 0.006347599 0.2826796 0.7746827
## AMP_11228639  0.03667861 0.4382239 1.2939988 3.330648469 0.6653319 0.5609553
##                    X287       X288      X289       X290       X291       X292
## ACR_11231843  0.0177394 1.46920306 0.5560665 0.22498670 0.42744978 1.05655327
## ADAO_11159808 0.6595599 0.07315809 0.3186641 0.47011277 0.03006227 0.09576189
## AGG_11236448  0.3666295 1.43545259 0.2345186 2.12914673 0.02012102 0.11866019
## AHL_11239959  1.7586179 2.54208427 0.9235975 1.16361033 0.50236373 0.19710250
## AJGD_11119689 0.2919506 0.51435017 0.2152703 0.09005781 0.34601946 0.40875798
## AMP_11228639  0.2858404 2.27975865 0.1975266 0.53460173 1.70674300 0.48235793
##                     X293      X294      X295       X296      X297       X298
## ACR_11231843  0.21930911 2.9494148 0.0455753 0.79033680 2.6751528 0.22244518
## ADAO_11159808 0.04764259 0.7473512 0.7971336 0.40942926 0.7509974 0.09655444
## AGG_11236448  0.94177758 0.9486973 0.4383420 1.82624012 2.5395366 1.91296319
## AHL_11239959  0.10759298 0.2572798 0.3727104 0.73842178 0.2416038 1.08684323
## AJGD_11119689 1.06918428 2.0183518 0.3375352 0.01765007 0.3327447 0.30767550
## AMP_11228639  0.16003491 0.5053236 0.4603685 0.72088171 1.1815493 0.45364003
##                    X299       X300      X301       X302       X303      X304
## ACR_11231843  1.0910550 0.81457795 1.0452416 2.22059804 0.01877845 0.6771187
## ADAO_11159808 0.2359055 0.06857787 0.1797696 0.05211371 0.07283177 0.3901250
## AGG_11236448  0.6477569 1.57503339 0.6973234 0.21243619 0.07790388 0.4461965
## AHL_11239959  0.7825378 1.37985577 0.5524000 2.85742411 1.08298358 0.6756159
## AJGD_11119689 1.2607821 1.52535132 2.0436066 0.78144599 0.32812657 0.2325873
## AMP_11228639  0.4131786 0.04735498 0.7787486 0.64323346 0.79721743 0.3530024
##                     X305      X306      X307       X308      X309      X310
## ACR_11231843  1.59536224 0.1341431 1.4865863 0.18571476 0.4584078 0.8729212
## ADAO_11159808 0.09689898 0.2719688 0.3713488 0.24281633 0.4554614 0.2414821
## AGG_11236448  1.38692363 0.4000365 0.8797200 0.50265861 1.3776871 0.3753168
## AHL_11239959  2.11889150 2.4977171 0.9541463 0.55775497 0.9004808 1.6315484
## AJGD_11119689 0.16785693 0.3198675 0.1879642 0.02982476 0.3405476 0.3691306
## AMP_11228639  0.38963428 2.8679283 0.3491809 0.51012760 0.3571836 1.8951902
##                    X311      X312      X313        X314      X315      X316
## ACR_11231843  0.9514275 0.3060958 1.6622894 0.399547433 1.4084208 0.7421861
## ADAO_11159808 0.7982383 0.2669585 0.2068878 0.003699507 0.3100827 0.2456579
## AGG_11236448  0.1272601 0.2254214 0.5764732 0.058636263 0.8402853 0.3263836
## AHL_11239959  3.0238462 2.5638357 1.4483877 0.689861904 1.4998627 1.3274084
## AJGD_11119689 1.0283090 0.3602961 0.2437754 0.255121951 0.7907324 0.9339512
## AMP_11228639  1.2151800 0.3204242 0.5799120 0.881954521 0.1537624 0.6002758
##                     X317      X318      X319        X320       X321       X322
## ACR_11231843  0.03035375 1.3743029 0.8184741 1.322902452 1.78742702 0.11742543
## ADAO_11159808 1.18191503 0.3955935 0.1426360 0.034082740 0.05385541 0.38262140
## AGG_11236448  0.80562648 0.3922983 0.1701278 0.007899642 0.14534983 1.03165543
## AHL_11239959  0.90297132 0.2661644 0.4449327 0.930038906 0.42700438 0.86252906
## AJGD_11119689 0.65566145 1.4073043 0.2312825 0.101662219 0.08191963 0.02972539
## AMP_11228639  0.17940782 0.3549954 0.6771967 1.304763616 1.74318043 0.75918909
##                    X323      X324       X325      X326       X327       X328
## ACR_11231843  0.2897283 0.5898249 0.25229112 2.4927392 0.08040979 0.24297478
## ADAO_11159808 0.2778211 0.4429992 0.05734347 0.1068313 0.32844742 0.01256909
## AGG_11236448  0.3994466 0.1294998 1.15288092 0.3550314 0.67912745 0.25459742
## AHL_11239959  0.8310227 1.9702930 1.10705540 0.2546720 0.33953986 2.30943757
## AJGD_11119689 0.5928839 0.1906042 0.29124372 0.2473875 0.29566780 1.50599014
## AMP_11228639  0.4997488 0.7430565 1.55229693 0.1929157 2.74614168 2.71265871
##                      X329       X330      X331       X332      X333       X334
## ACR_11231843  1.941324031 0.07542797 0.3971997 0.01522468 0.3168450 0.19569739
## ADAO_11159808 0.001123753 0.49016365 0.2216527 0.10962381 0.1768038 0.25254751
## AGG_11236448  0.206423645 0.57710071 1.7242268 0.34085386 0.8270347 0.62862012
## AHL_11239959  1.151461569 0.50505194 0.4184149 0.68992381 0.1146020 0.29212651
## AJGD_11119689 1.064965284 1.06136899 0.2290820 0.15879185 0.2463962 0.10066577
## AMP_11228639  0.132163063 0.31398211 0.3566863 1.29260000 0.6135749 0.04747837
##                    X335       X336      X337       X338       X339       X340
## ACR_11231843  1.1367379 0.23883407 0.2495388 0.15271205 0.34780014 2.54723516
## ADAO_11159808 0.2860438 0.45479807 0.3602606 0.02327933 0.08396312 0.19796414
## AGG_11236448  2.7646888 0.19859660 0.4158598 0.43124085 1.40650734 0.66059443
## AHL_11239959  1.5139118 0.81214229 0.3130736 1.21791381 0.36077779 0.86267599
## AJGD_11119689 0.3552669 1.28194932 0.0825733 0.12961102 0.40633033 0.11334720
## AMP_11228639  0.2960225 0.02103349 0.4056079 0.50237919 0.18664080 0.04807578
##                     X341      X342       X343       X344      X345       X346
## ACR_11231843  0.66392135 0.4040863 0.03608767 0.16857745 0.7389629 0.31647001
## ADAO_11159808 0.32191258 0.1208610 0.98924620 0.11977738 0.3011013 0.49870875
## AGG_11236448  1.02575010 0.2783342 0.79384688 0.02802375 0.2789929 0.08091934
## AHL_11239959  0.42608371 0.2424280 0.54434377 0.77266041 1.0031163 0.53945090
## AJGD_11119689 0.07987141 0.2316670 0.20415959 0.30991101 0.6025530 0.34834691
## AMP_11228639  0.20933051 1.0427963 0.59601392 0.19677922 0.6800451 0.07181484
##                    X347       X348      X349      X350         X351       X352
## ACR_11231843  0.7500342 0.66741674 0.6617817 0.7428817 3.599995e-02 0.07403857
## ADAO_11159808 0.1812307 0.37170253 0.1293633 0.2586819 2.363620e-01 0.20037365
## AGG_11236448  1.0390319 0.28875708 0.2147016 0.8613860 1.432879e+00 0.42361877
## AHL_11239959  0.5442034 0.09232544 0.9533254 0.9653254 9.476766e-01 0.57310579
## AJGD_11119689 0.2025885 0.29670790 0.2334909 0.4281849 7.115579e-05 0.20469550
## AMP_11228639  1.5921881 0.24965117 0.5986724 0.4660691 1.310461e+00 0.30285219
##                     X353      X354        X355        X356       X357
## ACR_11231843  0.00668701 0.4683018 0.522862318 0.919221751 0.17029787
## ADAO_11159808 0.00161580 0.2760036 0.526959076 0.732770157 0.61024489
## AGG_11236448  0.25416857 0.6826805 0.541630132 0.406023864 0.04838166
## AHL_11239959  1.24768474 0.9406219 0.838138502 1.180967539 0.65114190
## AJGD_11119689 0.01075850 0.2481260 0.003918154 0.008078954 0.62427172
## AMP_11228639  0.68816148 0.5549679 0.665281820 0.774776911 0.18150456
##                     X358      X359       X360       X361      X362       X363
## ACR_11231843  0.87885007 0.2085568 0.02943497 1.40147972 0.4521856 0.40730985
## ADAO_11159808 0.04354011 0.4858561 0.04329464 0.02135967 0.2356128 0.02240162
## AGG_11236448  0.03295878 0.5919971 0.01174943 0.31852738 0.5571214 0.76442608
## AHL_11239959  0.06523926 0.2865548 1.02279230 0.93163484 0.2860807 0.07638227
## AJGD_11119689 0.65421283 0.2575320 0.67815375 0.52385916 0.1732607 0.13384646
## AMP_11228639  0.02586634 0.5130211 0.34605496 0.08148098 0.5742681 0.05759084
##                      X364       X365       X366       X367      X368       X369
## ACR_11231843  1.204497545 1.02875617 0.12462271 0.02377489 1.0127897 0.11912420
## ADAO_11159808 0.074380459 1.00253412 0.22935578 0.55878364 0.1177778 0.11639738
## AGG_11236448  0.362227426 0.06092662 0.82942037 0.48095856 0.1839764 0.13239496
## AHL_11239959  0.136743856 0.37822444 0.68005582 0.51425829 0.7793923 0.18114629
## AJGD_11119689 0.007784818 0.22514565 0.18181008 0.54345734 0.0657948 0.05290683
## AMP_11228639  0.356747354 0.05277499 0.07892824 0.29498608 0.5039462 0.38604376
##                    X370       X371      X372       X373       X374       X375
## ACR_11231843  0.1163767 0.14766264 0.2231370 0.06317987 0.23738384 0.15019946
## ADAO_11159808 0.5985089 0.52500026 0.5927175 0.41947213 0.25532116 0.01281007
## AGG_11236448  0.8193702 0.05673802 0.6689784 0.02809200 0.22581987 1.44750865
## AHL_11239959  1.0353180 0.16442668 0.6387647 0.17607502 0.04850236 0.19031885
## AJGD_11119689 0.7034265 0.54101378 0.3578739 0.34497652 0.71964220 0.03827445
## AMP_11228639  0.1258997 0.06302053 0.1752058 2.24125067 1.98803759 0.69704211
##                     X376       X377      X378       X379       X380       X381
## ACR_11231843  0.36314954 0.21663127 1.2150875 0.03581450 0.08568949 0.63643306
## ADAO_11159808 0.65717208 0.54042038 0.2543590 0.06990940 0.10240501 0.14056461
## AGG_11236448  0.01279247 0.21068529 0.8103784 0.93576683 0.26089579 0.09297315
## AHL_11239959  0.29087578 0.01743478 0.3362775 0.51671425 0.26858883 0.32412205
## AJGD_11119689 0.96008598 0.60455007 0.5464668 0.04889159 0.08308501 1.77769380
## AMP_11228639  0.56645322 0.38249034 0.6098340 0.03319444 1.44122627 0.50793185
##                     X382      X383       X384       X385       X386        X387
## ACR_11231843  0.16797431 0.4582688 1.54772389 0.87238170 1.71244869 0.084014290
## ADAO_11159808 0.15292808 0.1503610 0.14471645 0.26215886 0.02921854 0.614434388
## AGG_11236448  0.04501737 0.3067378 0.50714989 0.23973444 0.08995068 0.442718772
## AHL_11239959  0.33481597 0.2349590 0.05374483 0.02099668 0.46170411 0.203545864
## AJGD_11119689 0.49258646 1.1155896 0.34926472 0.09500509 0.11609647 0.186433370
## AMP_11228639  0.30365934 0.9273810 0.70645087 0.32279802 0.01513915 0.002568582
##                     X388        X389       X390      X391        X392
## ACR_11231843  0.17851737 0.364828020 0.42250265 0.3511709 0.384906413
## ADAO_11159808 0.06090689 0.204200840 0.01413845 0.1694164 0.007602808
## AGG_11236448  0.19648423 0.125285136 0.14210883 0.6339356 0.706793786
## AHL_11239959  0.60284599 0.798142880 0.06878360 0.6169310 0.475772557
## AJGD_11119689 0.15767419 0.012983538 0.30775318 0.2849745 0.122063774
## AMP_11228639  1.65130434 0.006659205 0.73152144 1.0233014 0.018139194
##                     X393       X394       X395       X396       X397       X398
## ACR_11231843  0.27577525 0.00243817 0.33094799 0.06192187 0.27425515 0.06326506
## ADAO_11159808 0.05164355 0.16565332 0.08810677 0.15820385 0.07038247 0.08331402
## AGG_11236448  0.03072682 0.58276045 0.07379043 0.22969589 0.09458116 0.41116874
## AHL_11239959  0.22356734 0.03826173 0.05769197 0.03466299 0.22419148 0.05630622
## AJGD_11119689 0.17897502 0.22724669 0.13671013 0.20911288 0.02332409 0.08868737
## AMP_11228639  0.04495578 0.68192372 0.10421832 0.41719773 1.40230978 0.45427232
##                     X399      X400       X401        X402       X403
## ACR_11231843  0.39901255 0.4310162 0.11716878 0.002287141 0.02201048
## ADAO_11159808 0.02503502 0.2129358 0.04259774 0.027089081 0.04088821
## AGG_11236448  0.87099963 0.0138594 0.20628929 0.538522289 1.57770951
## AHL_11239959  0.04322563 0.1213003 0.05566236 0.031014337 0.12067504
## AJGD_11119689 0.51330588 1.5802494 0.65440913 0.468507771 0.84989028
## AMP_11228639  0.44936115 1.5295883 0.12281409 1.020538748 0.15105353
##                      X404       X405      X406       X407       X408       X409
## ACR_11231843  0.118195753 0.31468289 0.2173321 0.01253246 0.28320671 0.56075471
## ADAO_11159808 0.003862915 0.20178926 0.1308851 0.25186496 0.07547981 0.18217595
## AGG_11236448  1.142231741 0.41118525 0.6711593 0.39440387 0.12795625 0.24240853
## AHL_11239959  0.539998920 0.32246755 0.1584437 0.09266000 0.11491070 0.28522062
## AJGD_11119689 1.166356229 0.09608833 0.6182929 0.65750518 0.39375723 0.05630193
## AMP_11228639  0.020777371 0.43121758 0.6064068 0.11661017 0.02971920 0.18739183
##                     X410       X411       X412      X413        X414      X415
## ACR_11231843  0.31171919 0.04745443 0.57226997 0.1721298 0.571041354 0.6030170
## ADAO_11159808 0.07470175 0.05094611 0.42212916 0.1000108 0.066725093 0.2029976
## AGG_11236448  0.75194362 0.07469018 0.99787916 1.0857614 1.361559000 0.1155127
## AHL_11239959  0.17829618 0.03170774 0.23152345 0.1876516 0.032543773 0.8491026
## AJGD_11119689 0.02385402 0.18209249 0.35781259 0.1030368 0.005932034 0.1044466
## AMP_11228639  0.02021485 0.82985323 0.02661435 0.2129612 0.245679179 0.7065082
##                    X416       X417       X418       X419       X420       X421
## ACR_11231843  0.2540577 0.09211557 0.01122874 0.02536072 0.33692903 0.06123833
## ADAO_11159808 0.3223721 0.19090129 0.04793096 0.07751819 0.16131648 0.03018219
## AGG_11236448  2.1719807 0.53187995 0.94726822 0.02602323 0.09918865 0.02947442
## AHL_11239959  0.2821922 0.16249675 0.27424902 0.09938061 0.03452003 0.15287783
## AJGD_11119689 0.3511166 0.12238739 0.25822560 0.57295336 0.01681876 0.43446103
## AMP_11228639  0.3559943 0.49996567 0.35935289 0.83177218 2.36350127 0.07341391
##                    X422       X423       X424       X425        X426       X427
## ACR_11231843  0.3434002 0.59950795 0.06007528 0.27404389 0.230895377 0.10610367
## ADAO_11159808 0.1761500 0.04048933 0.01542824 0.25499883 0.001821081 0.02574317
## AGG_11236448  0.7146300 0.08175883 0.68009233 0.92141012 0.097628907 0.57852542
## AHL_11239959  0.1226016 0.67841344 0.38476465 0.06994537 0.323776688 0.12497543
## AJGD_11119689 0.8493773 0.98568997 0.13836693 0.25977142 0.397179045 0.04580265
## AMP_11228639  0.7958031 0.25156720 0.81117437 0.29809822 0.610639613 1.02916692
##                     X428      X429       X430       X431       X432       X433
## ACR_11231843  0.02505218 0.1770090 0.15747788 0.20722497 0.27426179 0.03980778
## ADAO_11159808 0.03077041 0.1987527 0.16188064 0.04170387 0.18761453 0.20485728
## AGG_11236448  0.37383497 1.4247670 0.02286294 0.12157637 0.16102554 0.16691728
## AHL_11239959  0.55037316 0.1670300 0.01698544 0.02294381 0.02626866 0.25280673
## AJGD_11119689 0.11624989 0.2519341 0.49568218 0.03617079 0.13268422 0.02651190
## AMP_11228639  0.82712659 0.5659315 1.10217813 3.46112920 0.15056436 0.33389840
##                     X434      X435       X436       X437       X438       X439
## ACR_11231843  0.11266554 0.7823676 0.02866908 0.50603803 0.29144092 0.07492719
## ADAO_11159808 0.10751342 0.2462773 0.35859410 0.08302634 0.63223792 0.15689565
## AGG_11236448  0.02915843 0.8713079 0.05851160 0.03175306 0.06947922 0.18127217
## AHL_11239959  0.04315721 0.1534681 0.09408553 0.09573158 0.31128368 0.35151173
## AJGD_11119689 0.04554138 0.2103325 0.09491138 0.51206634 0.07627866 0.07749018
## AMP_11228639  0.49994117 0.3377376 0.05810362 0.19792480 0.14801857 0.45281357
##                     X440      X441       X442       X443       X444      X445
## ACR_11231843  0.00763376 0.5085166 0.60177750 0.59760002 0.59694628 0.4804174
## ADAO_11159808 0.13964555 0.1218450 0.02778494 0.01678410 0.37147612 0.1121702
## AGG_11236448  0.82005448 0.2556042 0.18436737 0.12222958 0.26562058 0.4973984
## AHL_11239959  0.42179440 0.2319385 0.03065702 0.51919576 0.07464520 0.2325143
## AJGD_11119689 0.33438169 0.4275498 0.46062074 0.04895848 0.09101724 1.0323948
## AMP_11228639  1.27187738 0.6906456 0.12656298 3.65242153 0.54881451 1.0040207
##                     X446      X447       X448       X449        X450
## ACR_11231843  0.14246012 0.1716408 0.01398568 0.17513341 0.009666507
## ADAO_11159808 0.30224651 0.2530436 0.03090251 0.30576233 0.399251353
## AGG_11236448  0.26545336 0.8778438 0.36812625 1.13550669 0.397540398
## AHL_11239959  0.05239033 0.1831435 0.06362581 0.03661487 0.314387873
## AJGD_11119689 0.44226627 0.1522902 0.07394941 0.23686375 0.359056698
## AMP_11228639  0.96650067 1.6287727 0.53887315 0.06955880 0.179199782
##                      X451      X452       X453       X454       X455       X456
## ACR_11231843  0.017837575 0.2295827 0.18552728 0.03237546 0.42294423 0.25886718
## ADAO_11159808 0.037776035 0.2424041 0.40547796 0.24269857 0.03447520 0.06102033
## AGG_11236448  0.019376777 0.2699643 0.47967092 0.04472325 0.26398239 0.60212065
## AHL_11239959  0.347105443 0.1440609 0.01014805 0.01258980 0.34181190 0.22403910
## AJGD_11119689 0.005392294 0.3028457 0.31510720 0.05969343 0.04564661 0.15842807
## AMP_11228639  0.759036312 0.7131883 0.56659121 1.20323126 0.13781954 0.69438936
##                     X457      X458       X459       X460       X461       X462
## ACR_11231843  0.23801661 0.2862336 0.37664848 0.13730494 0.12144742 0.07498014
## ADAO_11159808 0.11027203 0.2861032 0.16646503 0.15510289 0.31174515 0.08607239
## AGG_11236448  0.40191492 0.7689518 0.08678123 0.09762770 0.09339306 1.23758457
## AHL_11239959  0.01345466 0.6604966 0.18250434 0.04010745 0.01100947 0.16325454
## AJGD_11119689 0.07429829 0.2593043 0.09147527 0.10992588 1.57593458 0.40804501
## AMP_11228639  1.52177851 0.1513313 0.53601285 1.03349395 0.71431823 0.08818547
##                     X463      X464        X465       X466       X467       X468
## ACR_11231843  1.52451736 0.4367456 0.405621940 0.26605965 0.17349447 0.14099043
## ADAO_11159808 0.03010055 0.1472350 0.244256738 0.30401962 0.04306084 0.04904309
## AGG_11236448  0.34778424 0.3863610 0.662037151 0.02959031 0.01633321 0.38801624
## AHL_11239959  0.21133021 0.2750689 0.007434949 0.10342347 0.06024967 0.23497932
## AJGD_11119689 0.36021877 0.2140832 0.337620483 0.18151343 0.63386061 0.19696692
## AMP_11228639  0.15588788 1.6577063 0.112362614 0.24854661 0.47184409 0.79914346
##                      X469       X470       X471      X472       X473
## ACR_11231843  0.006560831 0.30175288 0.23256084 0.4030619 0.06172034
## ADAO_11159808 0.076869368 0.64498187 0.08707156 0.0134285 0.28483871
## AGG_11236448  0.158340973 0.05597874 0.45785856 0.3839366 0.76878506
## AHL_11239959  0.004818617 0.89353275 0.11582079 0.6296312 0.07643730
## AJGD_11119689 0.177937213 0.08242920 0.09079186 0.3917557 0.38753240
## AMP_11228639  0.123583935 1.57976038 0.20604178 0.5057171 0.08718545
##                      X474       X475       X476       X477       X478
## ACR_11231843  0.591784258 0.12879248 0.15941998 0.03956496 0.03958130
## ADAO_11159808 0.631376666 0.09789595 0.06095633 0.17459402 0.25315548
## AGG_11236448  0.012184709 0.71883036 1.26914914 0.60219808 2.13432482
## AHL_11239959  0.283352188 0.14050680 0.14465409 0.25660975 0.02501904
## AJGD_11119689 0.184399571 0.01338300 0.54915811 1.29951789 0.08348871
## AMP_11228639  0.001706479 1.34724221 0.04038771 0.94469450 2.68934260
##                     X479       X480 DDclust_PER_SatO2_scaled
## ACR_11231843  0.29655536 0.04941650                        1
## ADAO_11159808 0.11851667 0.62252162                        2
## AGG_11236448  0.06471164 1.54550055                        1
## AHL_11239959  0.40155119 0.03608186                        1
## AJGD_11119689 0.58308832 0.92095582                        2
## AMP_11228639  0.58445478 0.03502529                        1
## Mean by groups
rp_tbl_PER <- aggregate(plotting_PER, by = list(plotting_PER$DDclust_PER_SatO2_scaled), mean)
row.names(rp_tbl_PER) <- paste0("Group",rp_tbl_PER$DDclust_PER_SatO2_scaled)
rp_tbl_PER <- rp_tbl_PER %>%
  select(starts_with('X'))
rp_tbl_PER <- data.frame(t(rp_tbl_PER))
head(rp_tbl_PER)
##      Group1    Group2
## X1 7.094070 33.150320
## X2 7.784602 28.970721
## X3 7.261647 12.342896
## X4 5.623319  8.448607
## X5 5.266168  4.720825
## X6 4.081840  4.633952
# Create plotting data-frame
PER_values_by_group <- data.frame("value_PER" = c(rp_tbl_PER$Group1,rp_tbl_PER$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_PER$Group1)),
                                              rep("Group2", times = length(rp_tbl_PER$Group2))),
                                  "index" = c(c(1:length(rp_tbl_PER$Group1)),c(1:length(rp_tbl_PER$Group2))))

p <- ggplot(PER_values_by_group, aes(x = index, y = value_PER, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

Adjusted Rand Index

rand_index_table_SatO2_scaled = data.frame(matrix(ncol = 3 , nrow = 3))
colnames(rand_index_table_SatO2_scaled) <- c("DDclust_ACF_SatO2_scaled", "DDclust_EUCL_SatO2_scaled", "DDclust_PER_SatO2_scaled")
rownames(rand_index_table_SatO2_scaled) <- c("DDclust_ACF_SatO2_scaled", "DDclust_EUCL_SatO2_scaled", "DDclust_PER_SatO2_scaled")
cluster_study_SatO2_scaled <- list(DDclust_ACF_SatO2_scaled, DDclust_EUCL_SatO2_scaled, DDclust_PER_SatO2_scaled)
for (i in c(1:length(cluster_study_SatO2_scaled))) {
  for (j in c(1:length(cluster_study_SatO2_scaled))){
  rand_index_table_SatO2_scaled[i,j] <- adjustedRandIndex(cluster_study_SatO2_scaled[[i]], cluster_study_SatO2_scaled[[j]])
}}
head(rand_index_table_SatO2_scaled)
##                           DDclust_ACF_SatO2_scaled DDclust_EUCL_SatO2_scaled
## DDclust_ACF_SatO2_scaled                1.00000000               -0.02006569
## DDclust_EUCL_SatO2_scaled              -0.02006569                1.00000000
## DDclust_PER_SatO2_scaled                0.54737607               -0.01647745
##                           DDclust_PER_SatO2_scaled
## DDclust_ACF_SatO2_scaled                0.54737607
## DDclust_EUCL_SatO2_scaled              -0.01647745
## DDclust_PER_SatO2_scaled                1.00000000
write.csv(cluster_study_SatO2_scaled, "../../data/clusters/cluster_study_SatO2_scaled.csv")