Libraries

library(tidyr)
library(readr)
library(ggplot2) # ggplot graphs
library(knitr)
library(readxl)
library(xlsx)
library(openxlsx)
library(reactable) # reactable(df)
library(naniar) # miss_case_summary

library(dplyr)

## KNN imputation
library(caret)
library(RANN)

# CLustering 
library(factoextra)    # Clustering visualization
library(cluster)       # Clustering algorithms
library(dendextend)    # For comparing two dendrograms
library(corrplot)      # Corelation between dendrograms
library(tidyverse)     # Data manupulation
library(NbClust)       # Determine optimal no. of clusters  [not working...]
library(TSclust)
library(mclust)        # Adjusted Rand index

#RandomForest
library(randomForest) # RandomForest Discrete Classification
library(imbalance) # To create a more balanced dataset

Functions

source("../../scripts/useful-functions/get_column_position.R")
# In a normal script it will be:  source("./scripts/useful-functions/get_column_position.R")

Reading Data

Time Series Data: Heart Rate and SatO2

SatO2_TS_HR_P2 = data.frame(read_xlsx("../../data/clean-data/BoxBasedImputation/SatO2_valid_patients_input_P2.xlsx", sheet = "SatO2_valid_patients_input_P2" ))

# First patients with OAF
name_patients_DETERIORO_OAF_0 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0.csv"))
name_patients_DETERIORO_OAF_0 <- name_patients_DETERIORO_OAF_0$x
name_patients_DETERIORO_OAF_0_8 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0_8.csv"))
name_patients_DETERIORO_OAF_0_8 <- name_patients_DETERIORO_OAF_0_8$x


## Deterioro and Not deterioro
file_patient_name_NO_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_NO_DETERIORO.csv"))
file_patient_name_NO_DETERIORO <- file_patient_name_NO_DETERIORO$x
file_patient_name_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_DETERIORO.csv"))
file_patient_name_DETERIORO <- file_patient_name_DETERIORO$x

Descriptive Data for Discriminant analysis

valid_patients_P2 <- data.frame(read_xlsx("../../data/clean-data/valid_patients_P2.xlsx"))
valid_patients_P2 <- valid_patients_P2$x
valid_patients_P2 <- valid_patients_P2[! valid_patients_P2 %in% union(name_patients_DETERIORO_OAF_0,name_patients_DETERIORO_OAF_0_8)]

file_patient_name <- data.frame(read_csv("../../data/clean-data/file_patient_name.csv", show_col_types = FALSE))
file_patient_name <- file_patient_name$x
  
df1 <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data.xlsx"))
rownames(df1) <- file_patient_name
df1 <- df1[valid_patients_P2,]
df_descriptive <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data_imputed.xlsx"), row.names = TRUE)
rownames(df_descriptive) <- file_patient_name
df_descriptive <- df_descriptive %>% select(-c(FR_8_16h, FR_16_24h, FLUJO2_8_16h,FLUJO2_16_24h,SCORE_WOOD_DOWNES_24H,SAPI_16_24h, SAPI_8_16h))
# Class
pos_1 = get_column_position(df_descriptive,"SAPI_0_8h")
pos_2 = get_column_position(df_descriptive,"PAUSAS_APNEA")
df_descriptive[,c(pos_1:pos_2)] <- lapply(df_descriptive[,c(pos_1:pos_2)], as.factor)
#lapply(df_descriptive,class)
df_descriptive <- df_descriptive[valid_patients_P2,]
SatO2_TS_HR_P2 <- SatO2_TS_HR_P2[,valid_patients_P2]

Create a dataframe with ACF [Heart Rate]

dimension_col <- dim(SatO2_TS_HR_P2)[2]
dimension_row <- 480 #lag.max -1

# SatO2
SatO2_TS_HR_P2_ACF <- data.frame(matrix(nrow = dimension_row, ncol = dimension_col))
colnames(SatO2_TS_HR_P2_ACF) <- names(SatO2_TS_HR_P2)[1:dimension_col]
for (i in names(SatO2_TS_HR_P2_ACF)) {
  acf_result_SatO2 <- forecast::Acf(SatO2_TS_HR_P2[[i]], lag.max = (dimension_row - 1), plot = FALSE)
  SatO2_TS_HR_P2_ACF[, i] <- acf_result_SatO2$acf
}

Create a dataframe with peridiogram

# Generar un dataset con varias series temporales
df <- SatO2_TS_HR_P2

# Crear una matriz para almacenar los periodogramas
pg_mat <- data.frame(matrix(nrow = nrow(df), ncol =  ncol(df)))
colnames(pg_mat) = colnames(SatO2_TS_HR_P2)

# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
library(stats)
# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
for (i in colnames(SatO2_TS_HR_P2)) {
  pg_mat[,i] <- stats::spec.pgram(SatO2_TS_HR_P2[,i], plot = FALSE)$spec
}

TsClust Comprobation

datos <- SatO2_TS_HR_P2

diss.ACF Computes the dissimilarity between two time series as the distance between their estimated simple (ACF) or partial (PACF) autocorrelation coefficients

DD_ACF <- diss(datos, "ACF", lag.max = 50)
DD_ACF_matrix <- as.matrix(DD_ACF)

diss.EUCL

DD_EUCL <- diss(datos, "EUCL")
DD_EUCL_matrix <- as.matrix(DD_EUCL)

diss.PER

DD_PER <- diss(datos, "PER")
DD_PER_matrix <- as.matrix(DD_PER)

Euclidean Distance first 50 ACF

datos_ACF = t(SatO2_TS_HR_P2_ACF[c(1:51),])
distance <- dist(t(SatO2_TS_HR_P2_ACF[c(1:51),]), method = "euclidean")
distance_matrix_ACF <- as.matrix(distance)

Euclidean Distance

datos_EUCL <- t(datos)
distance <- dist(datos_EUCL, method = "euclidean")
distance_matrix_EUCL <- as.matrix(distance)

Eculidean PER Distance

datos_PER <- t(pg_mat)
distance_PER <- dist(t(pg_mat), method = "euclidean")
distance_matrix_PER <- as.matrix(distance_PER)
distance_matrix_PER_NORM = distance_matrix_PER / 480

TSCLust in Action

ACF TSclust

# DD_ACF <- diss(datos, "ACF", lag.max = 50)

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_ACF, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.8135257 0.5037581 0.8916885 0.9454334

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_ACF
res<-NbClust(datos_ACF, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.6476 0.3127 0.2860 0.2742
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.6476
#res$Best.partition
hcintper_ACF <- hclust(DD_ACF, "ward.D2")
fviz_dend(hcintper_ACF, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

DDclust_ACF_SatO2 <- cutree( hclust(DD_ACF, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_ACF_SatO2))

fviz_silhouette(silhouette(DDclust_ACF_SatO2, DD_ACF))
##   cluster size ave.sil.width
## 1       1   51          0.66
## 2       2    7          0.54

Contingency ACF lag.max = 50

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_ACF <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_ACF <- union(names(DDclust_ACF_SatO2[DDclust_ACF_SatO2 == 2]),names(DDclust_ACF_SatO2[DDclust_ACF_SatO2 == 1]))
fviz_dend(hcintper_ACF, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_ACF[,order_ACF]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 6 0
NO DETERIORO 45 7
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.1176471 0
NO DETERIORO 0.8823529 1

Random Forest: Discriminant TSCLust ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_SatO2)
data_frame2 = df_descriptive
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
data_frame_merge_ACF$CLUSTER = factor(data_frame_merge_ACF$CLUSTER)
table(data_frame_merge_ACF$CLUSTER)
## 
##  1  2 
## 51  7
data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])]<- lapply(data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])], as.numeric)
head(data_frame_merge_ACF)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       2 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_ACF$CLUSTER <- factor(data_frame_merge_ACF$CLUSTER)
newSMOTE_ACF <- oversample(data_frame_merge_ACF, ratio = 0.85, method = "SMOTE", classAttr = "CLUSTER")
newSMOTE_ACF <- data.frame(newSMOTE_ACF)
pos_1 <- get_column_position(newSMOTE_ACF, "SAPI_0_8h")
pos_2 <- get_column_position(newSMOTE_ACF, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newSMOTE_ACF[, columns_to_round] <- lapply(newSMOTE_ACF[, columns_to_round], function(x) round(x, 1))
table(newSMOTE_ACF$CLUSTER)
## 
##  1  2 
## 51 44
set.seed(123)
pos_1 = get_column_position(newSMOTE_ACF, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_ACF, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_ACF[pos_1:pos_2])
newSMOTE_ACF[col_names_factor] <- lapply(newSMOTE_ACF[col_names_factor] , factor)

RF_ACF <- randomForest(CLUSTER ~ ., data = newSMOTE_ACF)
print(RF_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 5.26%
## Confusion matrix:
##    1  2 class.error
## 1 50  1  0.01960784
## 2  4 40  0.09090909

Importance

kable(RF_ACF$importance[order(RF_ACF$importance, decreasing = TRUE),])
x
SCORE_CRUCES_INGRESO 6.9567255
SCORE_WOOD_DOWNES_INGRESO 5.6871218
SAPI_0_8h 5.5863809
ALIMENTACION 3.2721843
EDAD 3.1737649
ENFERMEDAD_BASE 3.0453651
DIAS_GN 2.4931429
FLUJO2_0_8H 1.9797567
ETIOLOGIA 1.6401817
DIAS_O2_TOTAL 1.4355993
PESO 1.3241418
EG 1.2454329
SUERO 1.1090003
SEXO 0.9962267
FR_0_8h 0.9814377
ANALITICA 0.8497344
TABACO 0.7928605
PALIVIZUMAB 0.7516826
ALERGIAS 0.7394366
RADIOGRAFIA 0.6213666
LM 0.6198586
PREMATURIDAD 0.6033484
SNG 0.2078559
DIAS_OAF 0.1251547
DETERIORO 0.0898222
OAF_TRAS_INGRESO 0.0840110
GN_INGRESO 0.0807368
OAF 0.0694922
PAUSAS_APNEA 0.0261236
UCIP 0.0166883
DERMATITIS 0.0120801
OAF_AL_INGRESO 0.0000000

Importance of first 50 ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_SatO2)
data_frame2_ACF = data.frame(t(SatO2_TS_HR_P2_ACF[c(1:51),]))
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2_ACF,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
set.seed(123)
data_frame_merge_ACF$CLUSTER <- as.factor(data_frame_merge_ACF$CLUSTER)
RF_0_ACF <- randomForest(CLUSTER ~ ., data = data_frame_merge_ACF)
print(RF_0_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 7
## 
##         OOB estimate of  error rate: 1.72%
## Confusion matrix:
##    1 2 class.error
## 1 51 0   0.0000000
## 2  1 6   0.1428571
plot(RF_0_ACF$importance, type = "h")

### ACF by clusters

plot_data_ACF <- data.frame(datos_ACF)
cluster_data_ACF <- data.frame(DDclust_ACF_SatO2)
plotting_ACF <- cbind(plot_data_ACF, cluster_data_ACF)
head(plotting_ACF)
##               X1        X2        X3        X4        X5        X6        X7
## ACR_11231843   1 0.5082890 0.3997243 0.3055021 0.3009323 0.2725452 0.2828684
## ADAO_11159808  1 0.7960148 0.7358783 0.7023573 0.7034097 0.6571457 0.6266538
## AGG_11236448   1 0.4506480 0.4176547 0.3266226 0.3352883 0.2867152 0.3288047
## AHL_11239959   1 0.6522007 0.4130156 0.3200723 0.3440361 0.3568053 0.3408829
## AJGD_11119689  1 0.6469179 0.5880904 0.5481336 0.5084136 0.4652971 0.4792604
## AMP_11228639   1 0.3765707 0.3564648 0.2828661 0.2304710 0.2216612 0.1820556
##                      X8        X9        X10       X11        X12        X13
## ACR_11231843  0.2414714 0.2329953 0.18395173 0.1467580 0.12033122 0.08302370
## ADAO_11159808 0.6305916 0.6168577 0.59417999 0.6000893 0.60607048 0.60015069
## AGG_11236448  0.2209685 0.2946372 0.24923513 0.2791107 0.25321237 0.23780416
## AHL_11239959  0.3217067 0.3072727 0.25540711 0.2257664 0.22431145 0.24252531
## AJGD_11119689 0.4275522 0.3935165 0.35060010 0.3330913 0.30196103 0.25973001
## AMP_11228639  0.1759353 0.1038674 0.07915669 0.1212448 0.08580592 0.08996543
##                      X14        X15        X16        X17        X18        X19
## ACR_11231843  0.08933466 0.05687640 0.05274341 0.06126060 0.08978425 0.02651201
## ADAO_11159808 0.58930211 0.59429754 0.56563344 0.55562686 0.55569350 0.55287474
## AGG_11236448  0.18830545 0.29476738 0.24013660 0.29281568 0.24484356 0.27312417
## AHL_11239959  0.26020561 0.23401364 0.19351172 0.17366679 0.14454853 0.11669907
## AJGD_11119689 0.21434187 0.22249353 0.21308087 0.18224214 0.17989537 0.16992608
## AMP_11228639  0.07081004 0.05479702 0.00521051 0.02134299 0.04160247 0.07214742
##                        X20        X21         X22        X23        X24
## ACR_11231843   0.078210876 0.05633258 0.007953371 0.02307094 0.05578342
## ADAO_11159808  0.553927137 0.53920741 0.525401555 0.53638341 0.53743580
## AGG_11236448   0.178482125 0.22141972 0.170925445 0.15660776 0.11918869
## AHL_11239959   0.149636558 0.16472810 0.173167686 0.16825227 0.13524343
## AJGD_11119689  0.118883946 0.14000960 0.165611015 0.12406405 0.14798910
## AMP_11228639  -0.004522566 0.02031293 0.111043640 0.09620470 0.07466595
##                      X25        X26        X27        X28        X29
## ACR_11231843  0.05754983 0.01633989 0.03651988 0.03014404 0.03653216
## ADAO_11159808 0.53454517 0.54348362 0.52573474 0.51981495 0.50410946
## AGG_11236448  0.15172497 0.14043635 0.13107597 0.09380520 0.10983555
## AHL_11239959  0.08820634 0.09185565 0.09736712 0.07803585 0.06991932
## AJGD_11119689 0.20780663 0.16061276 0.21066161 0.18263507 0.18302649
## AMP_11228639  0.05033299 0.01874388 0.06265166 0.01221945 0.06245386
##                       X30          X31         X32         X33        X34
## ACR_11231843  0.026885553  0.018244632  0.03425803  0.03731653 0.08545823
## ADAO_11159808 0.503118465  0.488398734  0.47360713  0.48528722 0.49035453
## AGG_11236448  0.073366759  0.122373113  0.07317205  0.09085445 0.11009158
## AHL_11239959  0.089334524  0.053043299  0.04793588  0.03307846 0.04347559
## AJGD_11119689 0.167654826  0.196464213  0.20440416  0.24276020 0.21465966
## AMP_11228639  0.008097181 -0.006432008 -0.04581565 -0.01922558 0.02923064
##                       X35         X36         X37         X38        X39
## ACR_11231843   0.08212560  0.04122430  0.02554620  0.04391622 0.02081907
## ADAO_11159808  0.48337710  0.47154277  0.47153753  0.46864689 0.43414012
## AGG_11236448   0.11357759  0.14531284  0.11294811  0.06122085 0.12123779
## AHL_11239959   0.01617575 -0.02722358 -0.04350629 -0.03287029 0.02951063
## AJGD_11119689  0.17716046  0.15298218  0.13635243  0.12934334 0.10067326
## AMP_11228639  -0.03056929  0.01440266  0.01397162 -0.01940303 0.03909295
##                       X40        X41        X42        X43         X44
## ACR_11231843  0.058707749 0.03614286 0.01274100 0.04554895 0.078224804
## ADAO_11159808 0.423147789 0.40624091 0.40820718 0.40425891 0.383480876
## AGG_11236448  0.127562364 0.06081561 0.11997640 0.09993272 0.085353394
## AHL_11239959  0.069235684 0.06395972 0.07775235 0.05163507 0.029005208
## AJGD_11119689 0.079159171 0.05660577 0.03686780 0.00625108 0.004644364
## AMP_11228639  0.001048235 0.08743216 0.01282564 0.06121771 0.114447275
##                      X45        X46         X47          X48         X49
## ACR_11231843  0.03627727 0.03475069 -0.01733608 -0.007981913 -0.05040679
## ADAO_11159808 0.36664587 0.35974033  0.36459200  0.337971294  0.32803660
## AGG_11236448  0.10265570 0.03053047  0.04854476  0.065612107  0.04693021
## AHL_11239959  0.05880395 0.05077536  0.04689787  0.040638027  0.04475613
## AJGD_11119689 0.03616619 0.02081380 -0.01999312 -0.019823713 -0.02207396
## AMP_11228639  0.06079782 0.07559045  0.07100495  0.064710841  0.03629374
##                        X50         X51 DDclust_ACF_SatO2
## ACR_11231843  -0.034433928 -0.05749838                 1
## ADAO_11159808  0.342673967  0.34456836                 2
## AGG_11236448   0.093592552  0.09988380                 1
## AHL_11239959   0.039269127  0.04749549                 1
## AJGD_11119689 -0.063125407 -0.07161460                 1
## AMP_11228639  -0.005938136  0.02909861                 1
## Mean by groups
rp_tbl_ACF <- aggregate(plotting_ACF, by = list(plotting_ACF$DDclust_ACF_SatO2), mean)
row.names(rp_tbl_ACF) <- paste0("Group",rp_tbl_ACF$DDclust_ACF_SatO2)
rp_tbl_ACF <- rp_tbl_ACF %>%
  select(starts_with('X'))
rp_tbl_ACF <- data.frame(t(rp_tbl_ACF))
head(rp_tbl_ACF)
##       Group1    Group2
## X1 1.0000000 1.0000000
## X2 0.4160338 0.7830190
## X3 0.3241161 0.7392115
## X4 0.2856382 0.7003584
## X5 0.2544281 0.6769579
## X6 0.2261663 0.6447044
# Create plotting data-frame
ACF_values_by_group <- data.frame("value_ACF" = c(rp_tbl_ACF$Group1,rp_tbl_ACF$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_ACF$Group1)),
                                              rep("Group2", times = length(rp_tbl_ACF$Group2))),
                                  "index" = c(c(1:length(rp_tbl_ACF$Group1)),c(1:length(rp_tbl_ACF$Group2))))

p <- ggplot(ACF_values_by_group, aes(x = index, y = value_ACF, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

EUCL TSclust

# DD_EUCL <- diss(datos, "EUCL")

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.7278723 0.6767669 0.8093860 0.9053869

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_EUCL
res<-NbClust(datos, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.1239 0.1163 0.1370 0.1778
res$Best.nc
## Number_clusters     Value_Index 
##          5.0000          0.1778
#res$Best.partition
hcintper_EUCL <- hclust(DD_EUCL, "ward.D2")
fviz_dend(hcintper_EUCL, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 5)

DDclust_EUCL_SatO2 <- cutree( hclust(DD_EUCL, "ward.D2"), k = 5)
fviz_cluster(list(data = t(datos), cluster = DDclust_EUCL_SatO2))

fviz_silhouette(silhouette(DDclust_EUCL_SatO2, DD_EUCL))
##   cluster size ave.sil.width
## 1       1   28          0.00
## 2       2   27          0.27
## 3       3    1          0.00
## 4       4    1          0.00
## 5       5    1          0.00

Contingency EUCL

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_EUCL <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_EUCL <- union(names(DDclust_EUCL_SatO2[DDclust_EUCL_SatO2 == 2]),names(DDclust_EUCL_SatO2[DDclust_EUCL_SatO2 == 1]))
fviz_dend(hcintper_EUCL, k = 2,  
          k_colors = c("blue", "green"),
          label_cols =   as.vector(COLOR_EUCL[,order_EUCL]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 2 4
NO DETERIORO 28 24
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.0666667 0.1428571
NO DETERIORO 0.9333333 0.8571429

Random Forest: Discriminant TSCLust EUCL

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_SatO2)
data_frame2 = df_descriptive
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
data_frame_merge_EUCL$CLUSTER = factor(data_frame_merge_EUCL$CLUSTER)
table(data_frame_merge_EUCL$CLUSTER)
## 
##  1  2 
## 30 28
data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])]<- lapply(data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])], as.numeric)
head(data_frame_merge_EUCL)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       2 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       2  5.3 8.44 38      65        0.40       3             3        0
## 5       2 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_EUCL$CLUSTER <- factor(data_frame_merge_EUCL$CLUSTER)
newSMOTE_EUCL <-data_frame_merge_EUCL
table(newSMOTE_EUCL$CLUSTER)
## 
##  1  2 
## 30 28
set.seed(123)
pos_1 = get_column_position(newSMOTE_EUCL, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_EUCL, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_EUCL[pos_1:pos_2])
newSMOTE_EUCL[col_names_factor] <- lapply(newSMOTE_EUCL[col_names_factor] , factor)

RF_EUCL <- randomForest(CLUSTER ~ ., data = newSMOTE_EUCL)
print(RF_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 48.28%
## Confusion matrix:
##    1  2 class.error
## 1 16 14   0.4666667
## 2 14 14   0.5000000

Importance

kable(RF_EUCL$importance[order(RF_EUCL$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 3.5645422
FR_0_8h 2.7355615
PESO 2.6841347
SCORE_CRUCES_INGRESO 2.6712216
EDAD 2.3318932
SAPI_0_8h 1.9271213
EG 1.4555086
RADIOGRAFIA 1.3770331
DIAS_GN 1.3365956
DIAS_O2_TOTAL 1.1951206
FLUJO2_0_8H 1.0780517
LM 0.6672803
ETIOLOGIA 0.5385464
SEXO 0.4922139
ALIMENTACION 0.3855488
SUERO 0.3691580
TABACO 0.3576500
ANALITICA 0.3412550
GN_INGRESO 0.3342309
PREMATURIDAD 0.3243099
DERMATITIS 0.2830174
ENFERMEDAD_BASE 0.2724867
ALERGIAS 0.2240857
DIAS_OAF 0.2143303
SNG 0.2097880
OAF_TRAS_INGRESO 0.1796964
PAUSAS_APNEA 0.1443769
OAF 0.1438204
PALIVIZUMAB 0.1363593
DETERIORO 0.0984227
UCIP 0.0609929
OAF_AL_INGRESO 0.0000000

Importance of the TS-data

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_SatO2)
data_frame2_EUCL = data.frame(datos_EUCL)
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2_EUCL,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
set.seed(123)
data_frame_merge_EUCL$CLUSTER <- as.factor(data_frame_merge_EUCL$CLUSTER)
RF_0_EUCL <- randomForest(CLUSTER ~ ., data = data_frame_merge_EUCL)
print(RF_0_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 15.52%
## Confusion matrix:
##    1  2 class.error
## 1 25  5   0.1666667
## 2  4 24   0.1428571
plot(RF_0_EUCL$importance, type = "h")

EUCL by clusters

plot_data_EUCL <- data.frame(t(datos))
cluster_data_EUCL <- data.frame(DDclust_EUCL_SatO2)
plotting_EUCL <- cbind(plot_data_EUCL, cluster_data_EUCL)
head(plotting_EUCL)
##                     X1        X2       X3        X4       X5       X6        X7
## ACR_11231843  100.0000 100.00000 97.00000 100.00000 96.00000 95.00000  99.00000
## ADAO_11159808  98.0000  97.00000 97.00000  98.00000 98.00000 98.00000  98.00000
## AGG_11236448   97.2421  97.32759 96.82957  97.75063 96.80206 97.63722  96.92675
## AHL_11239959   98.0000  98.00000 98.00000  98.00000 96.00000 98.00000  99.00000
## AJGD_11119689  99.6000 100.00000 99.40000  99.40000 97.40000 99.40000 100.00000
## AMP_11228639   73.0000  74.00000 83.10561  80.00000 77.00000 90.00000  88.00000
##                X8  X9  X10  X11  X12 X13   X14  X15 X16 X17 X18 X19 X20 X21 X22
## ACR_11231843   80 100 96.0 99.0 99.0 100  94.0 99.0  99  97 100 100 100 100 100
## ADAO_11159808  98  97 97.0 97.0 97.0  97  98.0 97.0  96  98  99  98  98  97  98
## AGG_11236448   99  99 95.0 88.0 99.0  98 100.0 97.0  97  94  99  96  99  98  98
## AHL_11239959   98  96 99.0 98.0 98.0  98  98.0 98.0  98  99  96  96  96 100  98
## AJGD_11119689 100 100 99.2 99.6 99.6 100  99.6 99.2 100 100 100 100  89 100 100
## AMP_11228639   86  91 91.0 93.0 90.0  85  90.0 88.0  83  94  91  87  90  91  82
##               X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36 X37 X38
## ACR_11231843  100 100  98 100  98 100 100  97 100 100 100  99 100 100  96  99
## ADAO_11159808  98  99  98  97  97  98  97  99  98  96  98  97  98  97  98  97
## AGG_11236448   96  99  95  99  90  95  90  97  89 100  98  98  99  99  97  99
## AHL_11239959   97  96  97  99  99  97  98  98  96  98 100  99  99  97  96  97
## AJGD_11119689 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
## AMP_11228639   93  94  84  88  94  94  91  89  90 100  92  95  89  91 100  89
##               X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 X51 X52 X53 X54
## ACR_11231843  100 100  99  95  98 100  97  98  97  99 100  99  95  99 100 100
## ADAO_11159808  95  95  97  97  97  96  97  96  98  96  96  96  97  97  97  97
## AGG_11236448   97  91  97 100  98  96  97 100  97 100  95  96  99  98  96  96
## AHL_11239959   95  98  97  98  97  96  96  98  97  97  98  98  96  96  96  97
## AJGD_11119689 100  99 100 100 100  99  96  98 100  98 100 100 100 100 100 100
## AMP_11228639   88  90  86  91  94  99  91  90  82  55  88  89  93  90  96  89
##               X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 X69 X70
## ACR_11231843   99  99  99  98  98  98  97  99  98  98  99  96  94  95  92  94
## ADAO_11159808  96  97  97  96  96  96  98  96  96  97  97  96  96  96  96  96
## AGG_11236448   97  99  95  96  96  95  95  97  98  98  96  95  97 100  98  97
## AHL_11239959   97  96  96  96  96  96  96  96  95  96  96  98  97  98  97  96
## AJGD_11119689 100 100 100 100 100 100 100 100 100  97  98  97 100 100 100 100
## AMP_11228639   89  86  89  89  90  91  90  90  93  92  94  91  95  94  89  87
##               X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 X82 X83 X84 X85 X86
## ACR_11231843   98  96  94  89  92  92  92  94  91  93  93  93  94  95  94  96
## ADAO_11159808  94  95  95  95  97  97  97  97  97  97  97  96  97  96  96  96
## AGG_11236448   96  97  98  95  94  98  95  96  97  95  95 100  97  97 100  99
## AHL_11239959   98  96  99  98  99  98  98  97  97  97  98  99  98  97  98  97
## AJGD_11119689 100 100 100 100 100 100 100  99 100 100 100 100 100 100  97  98
## AMP_11228639   91  89  91  91  84  87  85  83  90  88  88  88  83  91  93  91
##               X87 X88 X89 X90 X91 X92 X93 X94 X95 X96 X97 X98 X99 X100 X101
## ACR_11231843   94  95  94  94  96  96  96  96  97  98  97  96  97   96   95
## ADAO_11159808  96  96  96  96  96  96  97  96  96  95  96  96  96   96   96
## AGG_11236448   99  99  98 100  98  98  99  98  97  97  97  98  98   98   96
## AHL_11239959   96  98  96  97  97  97  97  97  99  98  96  95  96   97   97
## AJGD_11119689  98 100  99 100 100 100 100 100  99 100 100  96  98   96   97
## AMP_11228639   93  93  96  89  87  95  97  95  91  88  92  91  91   89   90
##               X102 X103 X104 X105 X106 X107 X108 X109 X110 X111 X112 X113 X114
## ACR_11231843    96   95   95   94   95   90   92   94   93   92   93   91   92
## ADAO_11159808   96   95   95   96   96   96   95   94   96   96   96   96   96
## AGG_11236448    97   98   99   98   97   98   96   98   97   99   97   96   98
## AHL_11239959    98   97   99   97   97   96   94   94   92   95   94   93   94
## AJGD_11119689   94   98   96   93   98   99  100   97  100  100   99   96   99
## AMP_11228639    76   91   90   90   89   91   91   95   97   95   94   92   90
##               X115 X116 X117 X118 X119 X120 X121 X122 X123 X124 X125 X126 X127
## ACR_11231843    94   95   94   90   93   93   90   95   97   95   97   97   96
## ADAO_11159808   97   97   97   98   96   97   96   96   94   94   95   94   95
## AGG_11236448    98   91   96  100   97   97   98   96   97   95   97   97   96
## AHL_11239959    95   93   94   94   94   94   95   94   94   94   94   94   95
## AJGD_11119689  100   99  100  100   91   95   99  100   99  100  100   94   95
## AMP_11228639    89   89   91   87   92   88   87   94   82   90   90   84   91
##               X128 X129 X130 X131 X132 X133 X134 X135 X136 X137 X138 X139 X140
## ACR_11231843    97   95   92   97   96   95   94   95   96   94   93   97   96
## ADAO_11159808   95   97   96   95   97   97   97   98   98   98   97   98   98
## AGG_11236448    94   96   97   97   96   98   96   95   95   95   96   98   96
## AHL_11239959    94   95   93   93   95   95   94   95   96   98   84   79   88
## AJGD_11119689   94   93   92   92   95   96   96   95   92   92   98   98   97
## AMP_11228639    89   90   91   88   89   91   90   92   93   91   90   90   88
##                   X141     X142      X143      X144      X145 X146 X147 X148
## ACR_11231843  94.00000 96.00000  96.00000  94.00000  94.00000   95   96   95
## ADAO_11159808 98.00000 98.00000  98.00000  98.00000  98.00000   98   98   98
## AGG_11236448  97.00000 96.00000  96.00000  96.00000  96.00000   95   99   96
## AHL_11239959  97.51849 96.64464  96.80635  96.23432  96.14719   97   98  100
## AJGD_11119689 98.00000 99.00000 100.00000 100.00000 100.00000   99  100  100
## AMP_11228639  88.00000 77.00000  84.00000  79.00000  85.00000   75   83   89
##               X149 X150 X151 X152 X153 X154 X155 X156 X157 X158 X159 X160 X161
## ACR_11231843    94   93   89   92   92   94   97   94   94   97   97   97   95
## ADAO_11159808   98   98   98   98   98   98   97   98   98   97   97   96   95
## AGG_11236448    97   94   95   96   94   93   95   95   94   95   94   97   95
## AHL_11239959    98  100   95   96   97   97   98   98   97   97   96   96   95
## AJGD_11119689  100  100  100   99  100  100  100  100   98   99   96   93   95
## AMP_11228639    82   90   88   90   93   87   89   81   88   84   87   88   87
##               X162 X163 X164 X165 X166 X167 X168 X169 X170 X171 X172 X173 X174
## ACR_11231843    96   92   97   96   97   96   93   99   96   98   97   95   95
## ADAO_11159808   97   97   97   97   97   97   98   98   97   98   97   96   95
## AGG_11236448    98   95   96   95   96   96   96   96   96   95   96   96   96
## AHL_11239959    96   97   97   97   97   97   96   98   98   97   96   96   96
## AJGD_11119689   92   91   94   96   96   93   93  100   99  100  100   98   96
## AMP_11228639    92   85   87   89   83   80   81   88   88   87   86   90   93
##               X175 X176 X177 X178 X179 X180 X181 X182 X183 X184 X185 X186 X187
## ACR_11231843    98   95   98  100   98   98   98   97   95   99   98   97   87
## ADAO_11159808   96   97   95   99   99   98   99   99   99   99   99   99   99
## AGG_11236448    96   96   95   96   96   96   95   96   95   96   96   95   87
## AHL_11239959    99   97   95   95   96   96   97   96   95   96   97   96   97
## AJGD_11119689   99   96  100  100   98   97   99  100  100  100  100  100  100
## AMP_11228639    91   89   89   81   72   77   82   80   87   76   71   86   82
##               X188 X189 X190 X191 X192 X193 X194 X195 X196 X197 X198 X199 X200
## ACR_11231843    99   96   96   96   98   96   97   95   96   99   94   93   96
## ADAO_11159808   98   99   99   99   99   99   99   99   99   99  100   99   99
## AGG_11236448    96   92   95   95   87   96   96   97   98   96   95   98   96
## AHL_11239959    97   97   95   97   96   95   95   94   95   95   95   95   96
## AJGD_11119689  100  100  100  100  100  100  100  100  100  100  100  100   85
## AMP_11228639    86   77   85   77   83   86   88   84   85   88   87   82   83
##               X201 X202 X203 X204 X205 X206 X207 X208 X209 X210 X211 X212 X213
## ACR_11231843    95   98   97   97   99   98   97   92   93   95  100   99   99
## ADAO_11159808   99   99   99   99   99   99  100   99   99   99   99  100  100
## AGG_11236448    95   96   97   98   97   95   96   96   96   95   96   95   97
## AHL_11239959    95   95   93   94   95   95   95   96   95   95   96   95   97
## AJGD_11119689  100  100  100  100  100   95   97   96   96   95   96   96  100
## AMP_11228639    84   87   87   82   86   81   73   87   70   85   79   89   79
##               X214 X215 X216 X217 X218 X219 X220 X221 X222 X223 X224 X225 X226
## ACR_11231843    99   98   97   98   98   98   98   98   97   98   98   97   96
## ADAO_11159808  100  100  100  100  100  100  100   99   99  100  100  100   99
## AGG_11236448    97   97   96   95   95   95   96   96   94   94   95   93   94
## AHL_11239959    96   96   98   96   97   97   97   98   98   98   98   97   95
## AJGD_11119689   99   98   99   98   97   98   99   97  100   96   94   98  100
## AMP_11228639    88   88   88   80   87   87   87   87   87   87   88   90   87
##               X227 X228 X229 X230 X231 X232 X233 X234 X235 X236 X237 X238 X239
## ACR_11231843    95   96   88   89   95   92   95   90   95   93   95   98   96
## ADAO_11159808  100  100  100  100  100  100  100  100  100   99  100  100  100
## AGG_11236448    94   94   96   91   89   89   92   90   93   91   91   94   94
## AHL_11239959    96   96   97   96   96   99   97   97   96   96   97   97   96
## AJGD_11119689  100   99   99  100  100  100  100  100  100  100  100  100  100
## AMP_11228639    88   89   89   88   88   90   88   89   89   87   87   90   85
##               X240 X241 X242 X243 X244 X245 X246 X247 X248 X249 X250 X251 X252
## ACR_11231843    95   95   98   95   94   94   87   88   92   86   92   93   86
## ADAO_11159808  100  100  100  100  100  100  100  100  100   99  100   99  100
## AGG_11236448    90   92   93   97   95   91   93   91   92   92   94   94   93
## AHL_11239959    97   96   97   97   97   98   97   97   97   97   97   98   97
## AJGD_11119689  100  100  100  100  100   97   99  100  100  100  100  100  100
## AMP_11228639    92   91   91   90   84   88   84   88   94   85   88   89   89
##               X253 X254 X255 X256 X257 X258 X259 X260 X261 X262 X263 X264 X265
## ACR_11231843    68   84   94   97   96   94   95   95   96   95   95   96   97
## ADAO_11159808   99   99   99  100   99   99  100  100   99  100   99   98   99
## AGG_11236448    93   96   96   94   94   93   92   93   92   92   91   92   91
## AHL_11239959    97   97   98   97   99   98   98   98   98   98   98   98   98
## AJGD_11119689  100   98   99   95  100  100  100   98  100  100   97   99   98
## AMP_11228639    89   88   84   88   82   86   84   80   87   82   89   89   91
##               X266 X267 X268 X269 X270 X271 X272 X273 X274 X275 X276 X277 X278
## ACR_11231843    98   99   98   94   97   96   97   97   98   97   97   96   97
## ADAO_11159808   97   97   97   98   98   98   99  100   99   98   98   98   97
## AGG_11236448    91   91   94   92   92   91   92   92   92   92   92   93   92
## AHL_11239959    98   98   98   98   94   97   98   98   97   97   97   97   97
## AJGD_11119689   99  100   99   99   99   98   98   98   98   97   96   96   95
## AMP_11228639    92   72   85   92   95   91   84   91   91   91   92   94   83
##               X279 X280 X281 X282 X283 X284 X285 X286 X287 X288 X289 X290 X291
## ACR_11231843    96   96   97   97   96   97   97   96   96   95   97   96   97
## ADAO_11159808   99   99   98   99  100   99  100   98   99   98   97   98   98
## AGG_11236448    91   91   87   93   85   97   98   94   95   96   94   96   94
## AHL_11239959    97   97   97   98   97   97   97   97   96   98   99   97   96
## AJGD_11119689   94   94   94   94   97   95   95   94   94   95   95   96   96
## AMP_11228639    87   89   88   88   85   86   81   83   93   76   73   85   88
##               X292 X293 X294 X295 X296 X297 X298 X299 X300 X301 X302 X303 X304
## ACR_11231843    95   95   96   95   96   96   96   96   95   96   95   95   97
## ADAO_11159808   99   99   99   99   97   99   99   99   95   96   97   97   97
## AGG_11236448    97   97   97   96   97   87   85   87   98   99  100   98   98
## AHL_11239959    97   98   98   98   99   98   98   97   97   95   97   97   97
## AJGD_11119689   96   97   97   96   97   96   96   96   95   95   94   94   95
## AMP_11228639    86   86   82   85   88   89   86   80   78   87   86   86   88
##               X305 X306 X307 X308 X309 X310 X311 X312 X313 X314 X315 X316 X317
## ACR_11231843    96   95   95   96   96   97   96   97   96   97   97   96   96
## ADAO_11159808   98   99   97   97   98   98   99   99   99   98   99   99   98
## AGG_11236448    97   98   98   97   91   98   97   97   96   94   96   98   96
## AHL_11239959    98   97   97   97   96   97   97   98   97   97   97   97   98
## AJGD_11119689   95   93   93   92   92   92   92   92   92   92   93   93   92
## AMP_11228639    89   89   89   89   90   91   91   89   90   90   90   92   89
##               X318 X319 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329 X330
## ACR_11231843    97   97   95   97   98   97   96   96   94   97   95   95   94
## ADAO_11159808   99   99   99   99   99  100   98   97   97   96   97   97   98
## AGG_11236448    96   95   98   96   95   94   95   98   96   95   97   97   95
## AHL_11239959    98   97   97   97   97   97   97   98   99   98   99   99   99
## AJGD_11119689   93   96   94   93   95   97   91  100   94   99  100  100  100
## AMP_11228639    90   90   90   92   91   91   89   90   89   88   89   90   90
##               X331 X332 X333 X334 X335 X336 X337 X338 X339 X340 X341 X342 X343
## ACR_11231843    94   95   95   93   95   95   96   97   93   95   94   96   97
## ADAO_11159808   99   98   97   97   97   97   98   98   98   98   98   98   98
## AGG_11236448    96   96   95   95   95   96   95   96   94   94   96   95   96
## AHL_11239959    99   99   99   99   98   99   99   98   98   98   97   98   98
## AJGD_11119689  100   98  100  100   99   99  100   99  100   98  100   99  100
## AMP_11228639    89   90   92   90   89   90   91   89   90   88   90   83   88
##               X344 X345 X346 X347 X348 X349 X350 X351 X352 X353 X354 X355 X356
## ACR_11231843    97   97   96   98   95   95   96   96   95   97   94   93   95
## ADAO_11159808   98   98   98   98   98   98   98   98   98   98   98   98   98
## AGG_11236448    99   94   97   95   94   94   93   93   93   94   93   97   94
## AHL_11239959    98   97   97   97   97   97   96   96   97   96   97   96   97
## AJGD_11119689   99  100   99   97   98  100   97  100  100  100  100   99   98
## AMP_11228639    86   88   73   85   78   87   75   84   87   77   88   79   87
##               X357 X358 X359 X360 X361 X362 X363 X364 X365 X366 X367 X368 X369
## ACR_11231843    96   94   95   95   95   97   95   96   95   97   96   96   97
## ADAO_11159808   98   98   98  100   98   97   99   99   99   96   99   98   98
## AGG_11236448    96   94   96   95   95   97  100   97   95   95   95   95   96
## AHL_11239959    99   97   97   97   97   97   96   98   98   98   98   98   98
## AJGD_11119689  100  100   99  100  100  100   99  100   99   99   99   98   98
## AMP_11228639    80   89   81   83   88   84   88   87   87   90   88   90   89
##               X370 X371 X372 X373 X374 X375 X376 X377 X378 X379 X380 X381 X382
## ACR_11231843    97   97   98   97   97   98   97   97   96   96   94   95   94
## ADAO_11159808   92   98   99  100   99   99   99   99  100  100   99  100  100
## AGG_11236448    95   96   96   94   94   93   97   93   94   94   94   94   96
## AHL_11239959    98   98   97   98   98   98   98   98   98   97   98   99   98
## AJGD_11119689   98   96   99  100   99  100   99   98   98  100  100   99  100
## AMP_11228639    89   88   89   89   88   89   90   89   89   89   87   89   91
##               X383 X384 X385 X386 X387 X388 X389 X390 X391 X392 X393 X394 X395
## ACR_11231843    95   93   98   95   90   90   89   92   90   92   95   95   94
## ADAO_11159808  100  100  100  100  100  100  100   99   99   99  100   99   98
## AGG_11236448    95   95   96   94   95   95   94   94   93   93   93   94   95
## AHL_11239959    98   98   98   98   97  100   96   97   98   98   96   98   97
## AJGD_11119689  100  100   97  100  100  100  100  100  100  100  100  100  100
## AMP_11228639    88   89   90   87   84   85   88   86   86   84   75   88   75
##               X396 X397 X398 X399 X400 X401 X402 X403 X404 X405 X406 X407 X408
## ACR_11231843    93   94   96   94   93   97   94   95   91  100   97   96   97
## ADAO_11159808   98   99  100  100  100  100  100  100  100  100  100   99  100
## AGG_11236448    94   94   95   95   94   94   94   95   95   94   96   95   96
## AHL_11239959    98   97   99   98   98   97   97   97   97   96   97   97   97
## AJGD_11119689  100   97  100  100  100  100   99  100  100   99  100   99   99
## AMP_11228639    88   76   76   89   89   87   89   87   90   81   90   87   87
##               X409 X410 X411      X412     X413      X414     X415      X416
## ACR_11231843    97   97   95  98.00000  96.0000  96.00000 98.00000  94.00000
## ADAO_11159808  100  100   99  99.00000  99.0000  99.00000 99.00000  99.00000
## AGG_11236448    96   93   96  94.00000  96.0000  95.00000 94.00000  85.00000
## AHL_11239959    97   98   98  98.00000  98.0000  98.00000 98.00000  98.00000
## AJGD_11119689   99   99  100 100.00000 100.0000 100.00000 96.00000 100.00000
## AMP_11228639    87   88   84  88.90209  87.9594  87.85945 89.36001  88.19118
##                   X417      X418      X419      X420      X421      X422
## ACR_11231843   96.0000  98.00000  96.00000  96.00000  96.00000  97.00000
## ADAO_11159808  99.0000  99.00000  99.00000  99.00000  99.00000  99.00000
## AGG_11236448   96.0000  97.00000  94.00000 100.00000  98.00000  99.00000
## AHL_11239959   98.0000  98.00000  99.00000  98.00000  99.00000  99.00000
## AJGD_11119689 100.0000 100.00000 100.00000  99.00000 100.00000 100.00000
## AMP_11228639   89.0267  88.36341  88.52669  87.74906  87.39831  89.78503
##                    X423 X424 X425 X426 X427 X428 X429 X430 X431 X432 X433 X434
## ACR_11231843   95.00000   96   96   97   95   97   93   83   80   89   92   95
## ADAO_11159808  99.00000   99   99  100  100  100  100  100   99   98   99   98
## AGG_11236448   98.00000   96   98  100   99  100   99   93   99   98   97   97
## AHL_11239959   99.00000   99   99   99   97   98   98   99   98   96   98   97
## AJGD_11119689 100.00000  100   99  100  100  100  100  100  100  100  100  100
## AMP_11228639   84.69023   89   78   81   87   85   88   91   87   89   95   91
##               X435 X436 X437 X438 X439 X440 X441 X442 X443 X444 X445 X446 X447
## ACR_11231843    97   95   96   95   95   94   93   95   95   94   95   96   96
## ADAO_11159808   99   99   99   98   99   99   99   99   99   99   99   98   98
## AGG_11236448    97   97   99   97   97   96   97  100   97   97   99   99   99
## AHL_11239959    97   98   96   96   96   96   96   96   97   96   96   96   96
## AJGD_11119689  100   99  100  100  100  100   98  100   98  100  100  100  100
## AMP_11228639    91   90   94   86   91   95   79   86   88   86   90   89   92
##               X448 X449 X450 X451 X452 X453 X454 X455 X456 X457 X458 X459 X460
## ACR_11231843    95   94   96   95   99   96   98   98   86   98   89   91   90
## ADAO_11159808  100   98   98   98   99   99   99   99   99   98   99  100   99
## AGG_11236448    97   96   97   87  100   94   93   93   97   95   94   96   93
## AHL_11239959    95   96   96   95   96   96   96   97   95   95   95   94   95
## AJGD_11119689  100  100  100  100  100  100  100  100  100  100  100   98   99
## AMP_11228639    89   87   90   88   92   88   84   87   90   89   90   88   89
##               X461 X462 X463 X464 X465 X466 X467 X468 X469 X470 X471 X472 X473
## ACR_11231843    98   95   94   81   93   92   94   93   93   93   95   94   94
## ADAO_11159808   99   99   99   99   98   98   99   99   99  100   99   99   99
## AGG_11236448    92   95   95   96   93   94   95   93   93   97   94   93   92
## AHL_11239959    96   97   98   98   98   97   99   98  100   98   95   96   96
## AJGD_11119689  100  100  100  100  100  100  100  100  100  100  100  100  100
## AMP_11228639    84   81   81   81   81   80   78   80   84   83   84   85   86
##               X474 X475 X476 X477 X478 X479 X480 DDclust_EUCL_SatO2
## ACR_11231843    94   94   93   93   95   93   95                  1
## ADAO_11159808   98   99   99   99   99   99   99                  2
## AGG_11236448    92   91   91   94   91   92   95                  1
## AHL_11239959    96   97   96   98   98   98   99                  2
## AJGD_11119689  100  100  100  100  100  100  100                  2
## AMP_11228639    85   85   86   84   86   87   86                  1
## Mean by groups
rp_tbl_EUCL <- aggregate(plotting_EUCL, by = list(plotting_EUCL$DDclust_EUCL_SatO2), mean)
row.names(rp_tbl_EUCL) <- paste0("Group",rp_tbl_EUCL$DDclust_EUCL_SatO2)
rp_tbl_EUCL <- rp_tbl_EUCL %>%
  select(starts_with('X'))
rp_tbl_EUCL <- data.frame(t(rp_tbl_EUCL))
head(rp_tbl_EUCL)
##      Group1   Group2
## X1 94.03836 96.49842
## X2 93.87824 97.90154
## X3 94.64947 96.79130
## X4 94.86153 94.88320
## X5 94.57652 95.85469
## X6 95.14732 96.99904
# Create plotting data-frame
EUCL_values_by_group <- data.frame("value_EUCL" = c(rp_tbl_EUCL$Group1,rp_tbl_EUCL$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_EUCL$Group1)),
                                              rep("Group2", times = length(rp_tbl_EUCL$Group2))),
                                  "index" = c(c(1:length(rp_tbl_EUCL$Group1)),c(1:length(rp_tbl_EUCL$Group2))))

p <- ggplot(EUCL_values_by_group, aes(x = index, y = value_EUCL, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

PER TSclust

# DD_PER <- diss(datos, "PER")
DD_PER <- distance_PER

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_PER, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.8148798 0.7824204 0.8259267 0.8807069

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_PER
res<-NbClust(datos_PER, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.5690 0.5654 0.5544 0.5918
res$Best.nc
## Number_clusters     Value_Index 
##          5.0000          0.5918
#res$Best.partition
hcintper_PER <- hclust(DD_PER, "ward.D2")
fviz_dend(hcintper_PER, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 5)

DDclust_PER_SatO2 <- cutree( hclust(DD_PER, "ward.D2"), k = 5)
fviz_cluster(list(data = t(datos), cluster = DDclust_PER_SatO2))

fviz_silhouette(silhouette(DDclust_PER_SatO2, DD_PER))
##   cluster size ave.sil.width
## 1       1   50          0.61
## 2       2    1          0.00
## 3       3    5          0.12
## 4       4    1          0.00
## 5       5    1          0.00

Contingency PER

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_PER <- cbind(NO_DETERIORO_patients,DETERIORO_patients)
order_PER <- union(names(DDclust_PER_SatO2[DDclust_PER_SatO2 == 2]),names(DDclust_PER_SatO2[DDclust_PER_SatO2 == 1]))
fviz_dend(hcintper_PER, k = 2,  
          k_colors = c("blue", "green"),
          label_cols =   as.vector(COLOR_PER[,order_PER]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 4 2
NO DETERIORO 46 6
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.08 0.25
NO DETERIORO 0.92 0.75

Random Forest: Discriminant TSCLust PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_SatO2)
data_frame2_PER = df_descriptive
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
data_frame_merge_PER$CLUSTER = factor(data_frame_merge_PER$CLUSTER)
table(data_frame_merge_PER$CLUSTER)
## 
##  1  2 
## 50  8
data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])]<- lapply(data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])], as.numeric)
head(data_frame_merge_PER)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_PER$CLUSTER <- factor(data_frame_merge_PER$CLUSTER)
newSMOTE_PER <- oversample(data_frame_merge_PER, ratio = 0.85, method = "SMOTE", classAttr = "CLUSTER")
newSMOTE_PER <- data.frame(newSMOTE_PER)
pos_1 <- get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 <- get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newSMOTE_PER[, columns_to_round] <- lapply(newSMOTE_PER[, columns_to_round], function(x) round(x, 1))
table(newSMOTE_PER$CLUSTER)
## 
##  1  2 
## 50 43
set.seed(123)
pos_1 = get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_PER[pos_1:pos_2])
newSMOTE_PER[col_names_factor] <- lapply(newSMOTE_PER[col_names_factor] , factor)

RF_PER <- randomForest(CLUSTER ~ ., data = newSMOTE_PER)
print(RF_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 7.53%
## Confusion matrix:
##    1  2 class.error
## 1 48  2   0.0400000
## 2  5 38   0.1162791

Importance

kable(RF_PER$importance[order(RF_PER$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 9.4039903
SCORE_CRUCES_INGRESO 5.8936796
SAPI_0_8h 2.9363664
ETIOLOGIA 2.5904366
TABACO 2.4803961
FR_0_8h 2.3003699
LM 2.0204451
ENFERMEDAD_BASE 1.9248365
FLUJO2_0_8H 1.8666065
SEXO 1.7931860
ALIMENTACION 1.6796836
EDAD 1.6575682
PESO 1.4126419
DIAS_O2_TOTAL 1.1191715
EG 0.9606597
DIAS_GN 0.8283240
RADIOGRAFIA 0.5729906
DIAS_OAF 0.5506047
OAF_TRAS_INGRESO 0.4321288
ALERGIAS 0.4264464
PREMATURIDAD 0.4191550
OAF 0.4126883
SUERO 0.4012926
DETERIORO 0.3708729
ANALITICA 0.2953936
PAUSAS_APNEA 0.2135549
SNG 0.2074607
PALIVIZUMAB 0.1622264
DERMATITIS 0.1246912
GN_INGRESO 0.1227308
UCIP 0.0366706
OAF_AL_INGRESO 0.0000000

Importance of the PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_SatO2)
data_frame2_PER = data.frame(datos_PER)
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
set.seed(123)
data_frame_merge_PER$CLUSTER <- as.factor(data_frame_merge_PER$CLUSTER)
RF_0_PER <- randomForest(CLUSTER ~ ., data = data_frame_merge_PER)
print(RF_0_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 8.62%
## Confusion matrix:
##    1 2 class.error
## 1 50 0       0.000
## 2  5 3       0.625
plot(RF_0_PER$importance, type = "h")

### PER by clusters

plot_data_PER <- data.frame(datos_PER)
cluster_data_PER <- data.frame(DDclust_PER_SatO2)
plotting_PER <- cbind(plot_data_PER, cluster_data_PER)
head(plotting_PER)
##                      X1         X2         X3         X4        X5        X6
## ACR_11231843   63.34321   8.804109 149.970718  88.401531  22.05811 81.060151
## ADAO_11159808  36.84221 105.380705  27.414295   5.535132   8.37439  6.107621
## AGG_11236448  176.78687  82.545494   9.218756 141.274964  22.83899  9.740057
## AHL_11239959   58.08849  32.944168  22.670332  18.290623  11.66146 62.481321
## AJGD_11119689 132.52475  65.461483 235.745768  15.417801  93.53463 45.924171
## AMP_11228639  196.20848 210.962281 183.269971  43.081685 121.12504 23.070540
##                        X7        X8         X9       X10       X11       X12
## ACR_11231843   10.8683632 46.083096  21.235818 70.633662 81.459096 47.815877
## ADAO_11159808   0.3710764  4.747506   3.881014  4.622159  2.135861  3.020235
## AGG_11236448   22.6968927 15.621177  29.235335  5.688367 23.933592 17.277122
## AHL_11239959   20.3166148 10.377407   9.446535  8.092775 11.019441  5.183153
## AJGD_11119689   7.0683209  2.347478  21.169545 40.257378  9.556339 21.825076
## AMP_11228639  132.4421506 37.821216 143.958943 97.958445 58.395636 12.544805
##                      X13        X14        X15       X16       X17        X18
## ACR_11231843  11.9393303  80.316026 18.7317304 12.268367 17.989420  28.605029
## ADAO_11159808  0.9250451   7.958751  4.9832235  3.494020  1.921946   2.634994
## AGG_11236448  10.9448371   1.051881  3.4795239  1.145955  6.251074   6.934874
## AHL_11239959   8.9161978   9.135399  0.3164635  6.935179  2.137869   7.139524
## AJGD_11119689 64.1971923  28.204735 14.2932550 71.565628  7.538120   9.683059
## AMP_11228639  11.0915093 223.071204 13.6449688 24.140913 15.940775 145.194931
##                     X19      X20         X21       X22       X23       X24
## ACR_11231843  38.257693 2.824034  32.4229967 15.463484 12.602955 49.849574
## ADAO_11159808  1.353506 2.880389   0.5462331  5.123970  1.321674  2.864160
## AGG_11236448   3.686626 1.582984  13.4532152  1.680307  3.488362 20.912284
## AHL_11239959   4.637904 9.697475  13.9209315  2.368095  4.817511  3.985751
## AJGD_11119689  7.230665 6.366921   2.8536385  1.437046  1.986260 12.630199
## AMP_11228639   9.688285 4.921903 156.7317278 30.682827 60.149055 96.023021
##                      X25         X26      X27       X28       X29       X30
## ACR_11231843  10.6267902  7.90961069 6.930867  2.870991 15.254742  7.293742
## ADAO_11159808  0.5636077  1.12310701 2.847475  2.247278  2.957144  2.072708
## AGG_11236448   4.4554290 26.46785475 9.272394 14.027219  2.488577  8.518406
## AHL_11239959   3.7550746  3.41534065 2.365421  0.311328  5.290309  1.215995
## AJGD_11119689  4.7499956  0.08805868 1.137881  1.903208  3.517403 10.900673
## AMP_11228639  18.4405841  2.14397397 5.678396  9.817580 38.111001  5.701528
##                      X31       X32       X33        X34       X35        X36
## ACR_11231843  13.2323247  9.515291 2.8172371 13.3551221 7.4129249  4.5593280
## ADAO_11159808  0.9646299  1.822462 0.4988853  0.5931173 1.1582696  0.1939320
## AGG_11236448  16.9771896 10.790757 2.2824382  3.4707868 0.4036638 10.4557534
## AHL_11239959   0.4291100  3.160707 4.7306339  6.7084776 2.2831056  6.2989200
## AJGD_11119689 11.0199016  5.875834 8.7029281  1.2572906 1.3788886  0.2296991
## AMP_11228639  39.3275497 11.746390 5.6081134 25.8939664 5.8960381 62.5939122
##                      X37        X38       X39        X40       X41       X42
## ACR_11231843  10.0132018 10.2899680  1.146353  0.2884168 5.1318245  2.419986
## ADAO_11159808  6.7964561  2.0170858  0.252977  1.1664212 1.6280188  4.222803
## AGG_11236448  15.5905162  0.4347703  2.471872  9.1131598 6.6324975  2.535306
## AHL_11239959   2.0153037  5.4197216  3.054855  0.2835575 0.9750323  1.180768
## AJGD_11119689  0.1783269  0.6666589  5.574594  3.4846162 6.8549208  9.240505
## AMP_11228639  51.7879115  6.9963574 16.832360 32.8022234 0.8702049 10.396920
##                      X43         X44        X45       X46       X47        X48
## ACR_11231843  26.6837983  5.01786799 21.1691428  8.233676 0.1769897 14.6585402
## ADAO_11159808  0.5067394  0.58412914  0.2864248  1.193573 1.3968459  0.1549375
## AGG_11236448   0.7008720  2.44399796  5.6885786  1.415491 2.4528260  9.6034709
## AHL_11239959   3.4925288  3.87413108  8.6126877  1.738123 5.2796679  7.6317663
## AJGD_11119689  6.7544966  0.03581313  1.5948770  4.370756 1.6471838  2.9019614
## AMP_11228639  30.7002967 79.02008325 15.7850884 13.308740 6.7816018 54.0875809
##                     X49        X50         X51        X52       X53        X54
## ACR_11231843  5.5479897  2.2447384  4.26475409 10.5414486 2.1880920 29.4269164
## ADAO_11159808 0.6748814  0.9956261  0.06366724  0.2028089 0.1008996  1.5827742
## AGG_11236448  1.5689776 14.2444263  0.13461373  0.7938609 6.3006843  6.3469789
## AHL_11239959  2.7727955  3.4933547  1.50818075  0.5917350 0.3230123  0.7723974
## AJGD_11119689 1.2145541  0.5081058  1.95224027  2.3062108 6.0323330 11.3875319
## AMP_11228639  4.6863463 12.6834981 40.49270750 11.4440069 3.7968497 11.9888700
##                      X55        X56        X57        X58        X59        X60
## ACR_11231843   0.4547142  7.8853524 26.6905483  2.2193812 10.8856793  8.1272113
## ADAO_11159808  1.6882057  0.8671078  1.5904964  0.2044874  0.4996113  0.1452373
## AGG_11236448   2.9325977 12.2179192 16.9900184 12.7981143  4.3336262 10.5372949
## AHL_11239959   1.1189397  2.2168669  0.7253355  3.2628869  2.3493105  4.1425600
## AJGD_11119689  1.9043719  0.0995816  1.8773444  1.7359038  7.1133271  8.6060255
## AMP_11228639  10.9223057 17.1030156 28.0324155 10.7626707  9.8027188  1.1235034
##                      X61        X62        X63       X64        X65        X66
## ACR_11231843  10.4285895 22.1553621  0.1873565 6.7557521 15.9172563  1.3383732
## ADAO_11159808  0.3807241  0.1103688  0.1542464 0.8262244  0.2052170  0.5759879
## AGG_11236448   4.6652361  1.4212415  0.5211929 2.9851455  9.2788022  2.6763260
## AHL_11239959   1.6583981  8.5784697  3.2512996 2.0283131  6.3612701  7.4985686
## AJGD_11119689 11.5300195  4.4089149  1.8512887 1.3122566  0.9470481  1.8046908
## AMP_11228639  18.4759156 15.2608004 18.9140909 8.3750294  9.2441257 68.0419853
##                      X67        X68       X69        X70        X71       X72
## ACR_11231843  14.8319760  1.8529143 4.5736285  8.7093139  9.4925877 3.0539801
## ADAO_11159808  0.7864593  0.5142474 0.9645969  0.5114217  1.6905453 0.5653769
## AGG_11236448   5.8855064  3.3628887 9.2170083  2.5109460  0.8513963 1.5081150
## AHL_11239959   2.8645084  1.6744746 2.7033955  4.8981839  9.0780969 7.6970677
## AJGD_11119689  1.0604933  0.1682712 1.9213682  2.0826333  5.8017148 2.0327891
## AMP_11228639   8.2843640 12.1028460 8.4742292 44.9636426 28.8303098 7.6021069
##                      X73          X74        X75        X76       X77
## ACR_11231843  16.5850018  3.986366690 14.0521031  7.4049430 0.3028456
## ADAO_11159808  0.4381563  0.007834983  0.6567072  0.5202654 2.5031132
## AGG_11236448   3.8567234  0.392288569  5.6216801  2.1835732 5.3898056
## AHL_11239959   4.3483046  2.071081928  4.5028410  3.9851043 2.7108724
## AJGD_11119689  1.3753797  1.439396938  4.4613088  5.2693486 3.6992390
## AMP_11228639  13.7584895 20.924489732  3.6480345 14.2416241 4.2564746
##                      X78        X79         X80        X81        X82
## ACR_11231843  13.7117019  8.1660841 13.19886911 17.8335260  1.1715776
## ADAO_11159808  0.8378059  0.3020811  0.07218197  0.1140574  0.8103329
## AGG_11236448   2.6245558  1.1381900  0.05285022  0.9724201  6.9019854
## AHL_11239959   0.7990704  1.3357630  2.79213385  1.2819393  2.5894579
## AJGD_11119689  7.9400047  1.3048949  0.57357780  0.4621902  0.1677105
## AMP_11228639   8.4223137 16.0665829 30.95569242 41.3571903 18.0118633
##                      X83        X84        X85        X86        X87
## ACR_11231843   2.8906789  5.8848036  2.5171602 24.8705703  0.8022650
## ADAO_11159808  0.5883821  0.9382038  0.1214446  0.2262521  0.6956008
## AGG_11236448   2.6723793  0.8663802  7.7130087  2.3752326  4.5435013
## AHL_11239959   2.4948705  5.9151523  3.3235673  0.7645684  1.0193560
## AJGD_11119689  3.3450485  1.0753882  1.6431958  1.3957595  1.6681565
## AMP_11228639  11.8566067 17.6291154 36.8284536  4.5769514 65.1525810
##                       X88          X89       X90        X91        X92
## ACR_11231843   2.42420922 19.368988055 0.7525603  3.9629429  0.1518997
## ADAO_11159808  0.02661939  0.002379936 1.0380908  0.4694261  0.2321663
## AGG_11236448   1.70330872  1.381016327 3.8609216 11.5354294  2.2803819
## AHL_11239959   6.93332156  3.456882070 1.5162512  1.2561523  2.0712678
## AJGD_11119689  8.49678981  6.008529503 5.9882392  1.2924799  0.8959029
## AMP_11228639  64.35819291  3.135586452 7.4492678  8.4624308 30.6671089
##                      X93       X94        X95       X96       X97         X98
## ACR_11231843   3.1612271 1.9525130 11.3414677 2.3828966 2.4897002  1.52363944
## ADAO_11159808  0.3744431 0.5348566  0.6057966 0.9631920 0.7629763  0.04930203
## AGG_11236448   5.5330310 4.2055970 18.4963326 1.3286518 2.7821870  2.88508934
## AHL_11239959   0.3440545 0.8770131  4.5450189 2.4381883 0.9398997  3.65638291
## AJGD_11119689  1.3901661 0.5679558  2.0044142 7.2327525 0.4658782  0.73126479
## AMP_11228639  14.5571460 1.1264306  7.0231739 0.4990224 9.6231026 11.91901382
##                     X99       X100      X101       X102      X103      X104
## ACR_11231843  3.4700734 25.4142877 6.6240795  4.0316520  0.360054 1.6819318
## ADAO_11159808 0.1778209  0.4192574 0.6817611  0.2559650  2.095070 0.2536700
## AGG_11236448  9.4098213  4.4195116 6.8624776  1.8621123  5.310998 0.1874846
## AHL_11239959  1.0831158  2.5898990 1.2791752  0.7278099  1.634212 2.3196570
## AJGD_11119689 2.2925140  0.6395044 0.4506342  1.3070641  1.151868 1.7485166
## AMP_11228639  4.4280782  1.1406044 4.9663945 24.7404825 14.140511 4.6686136
##                    X105      X106       X107      X108       X109       X110
## ACR_11231843   7.372784 3.1574862  7.4832447 6.6589537  6.6027316  7.4118830
## ADAO_11159808  0.637686 1.0561880  0.3838186 0.7872085  0.2739714  0.5478482
## AGG_11236448   1.866520 0.5413669  6.9513357 1.9318438  1.4363975  5.7628482
## AHL_11239959   3.011525 1.6195227  1.6337904 0.2771766  2.8620438  2.8980697
## AJGD_11119689  3.399601 1.9653717  1.1430034 1.6740247  1.3173545  2.4158176
## AMP_11228639  16.134162 1.7038167 37.7748773 5.9230075 14.2035836 11.0575510
##                       X111      X112         X113       X114        X115
## ACR_11231843  3.591789e-01 0.7386980  0.066717668  4.6723432  5.21670459
## ADAO_11159808 5.005781e-01 0.4243604  0.003422015  0.5845329  1.11601782
## AGG_11236448  9.586251e+00 2.8340960  1.700439614  4.5672717  3.62361616
## AHL_11239959  2.845085e+00 1.7205604  3.745760267  2.8239057  2.51623331
## AJGD_11119689 4.014607e-04 1.1548911  0.060699404  1.3999257  0.02210621
## AMP_11228639  3.109086e+01 7.1852090 16.326723830 13.1666892 15.78390072
##                      X116      X117       X118       X119       X120
## ACR_11231843   9.17126396 1.6990968 8.76846745  2.0808144 0.29367873
## ADAO_11159808  1.55189386 1.2924043 0.09221122  1.0289680 0.09169136
## AGG_11236448   2.71638254 0.3236832 0.22050096  3.9605813 0.07860607
## AHL_11239959   3.54546398 1.9548379 0.19585927  0.8602858 3.07059521
## AJGD_11119689  0.04558142 3.5221383 3.69106596  1.4529946 3.82614053
## AMP_11228639  18.38168650 4.3062201 0.61368231 12.1714935 8.21020057
##                      X121       X122       X123        X124       X125
## ACR_11231843  13.98285065  4.5115484 4.06381395 12.01751907 10.2641113
## ADAO_11159808  0.04523647  0.4989915 0.04744316  0.15752631  2.1232122
## AGG_11236448   2.13101322  3.7272558 5.11416651  2.42337543  0.4076115
## AHL_11239959   2.79692512  0.8588625 0.22931248  0.41052815  1.1354936
## AJGD_11119689  2.95561111  0.9775363 0.75516116  0.04392191  1.2702708
## AMP_11228639   1.93314720 13.6245868 1.36635045  8.46387899  1.2520937
##                    X126     X127       X128      X129     X130      X131
## ACR_11231843  1.2433863 0.237207 10.1048106 1.1885266 1.161114 1.4732604
## ADAO_11159808 0.4857401 1.183417  0.2494351 0.2465117 1.267549 1.1118693
## AGG_11236448  5.5489916 3.217711  1.2308394 0.8857493 5.481754 0.3795889
## AHL_11239959  2.0416424 1.543890  2.3398673 0.5438318 3.108199 0.4936366
## AJGD_11119689 1.0257717 3.066184  0.3712139 0.2985001 3.968729 3.0523974
## AMP_11228639  1.8725832 6.998584 11.9561922 9.1589403 2.986988 1.4951705
##                   X132       X133       X134        X135        X136       X137
## ACR_11231843  2.226283  0.6303585  2.3684273  1.49857078  3.62321741 2.16137457
## ADAO_11159808 1.255284  0.8883771  0.5407307  0.02712975  1.39178882 1.14452678
## AGG_11236448  4.475602  0.1879412  1.5107810  9.68412840  0.08558425 1.40952758
## AHL_11239959  1.917680  0.5286069  0.1456123  0.57136932  0.87325821 0.05234215
## AJGD_11119689 2.019123  1.9463560  4.0602182  0.21594428  5.41680094 3.41086884
## AMP_11228639  4.156780 53.1739739 47.1664594 16.53741783 13.43917900 9.07463475
##                     X138      X139       X140       X141      X142       X143
## ACR_11231843  12.1231774 0.3573286  0.8549416  6.3498232 1.6759142  4.5722421
## ADAO_11159808  0.5386929 0.1480573  0.2168780  0.2976941 0.3238780  0.3184413
## AGG_11236448   5.4215972 6.2604711  1.7454461  0.6220094 0.3011754  2.0521386
## AHL_11239959   1.0095620 1.5512634  0.8063490  0.9730691 1.0051741  0.7053865
## AJGD_11119689  3.0831632 0.2758462  0.4687653 10.0297407 2.7791707  6.2941515
## AMP_11228639  14.4683935 0.7875425 34.1932873 12.0507516 7.2043588 22.0022401
##                     X144       X145        X146       X147       X148
## ACR_11231843  15.4419587 8.70393119 17.08545179 0.83822780  1.7811044
## ADAO_11159808  0.3064871 0.55521192  0.06188036 1.30127700  0.1289914
## AGG_11236448   3.3929363 1.60387233  0.60178844 2.96187896  1.3145196
## AHL_11239959   0.1613510 0.06303558  1.38611369 0.61107906  1.8098455
## AJGD_11119689  1.9705500 0.53601831  0.65501580 1.05185627  0.8895971
## AMP_11228639  16.7606420 7.65842652  0.35917826 0.06093996 39.1774178
##                     X149        X150       X151       X152      X153
## ACR_11231843  3.63996398  4.21539559  3.5037041 3.84029023 2.7514662
## ADAO_11159808 0.43246580  0.02994306  0.3587978 0.01610157 0.1093731
## AGG_11236448  0.83818314  0.95073711  4.2411586 4.72859472 0.2055687
## AHL_11239959  2.39615970  0.20649998  1.8521309 1.42834956 0.6711869
## AJGD_11119689 0.07325307  1.73634212  1.6078250 0.68868328 1.0097763
## AMP_11228639  0.15799054 17.35544456 24.2779640 0.43035483 1.0665819
##                      X154      X155      X156       X157       X158       X159
## ACR_11231843   0.02432612 3.3019360 0.6178072  2.7362999  0.6312085  3.9810301
## ADAO_11159808  0.35082811 0.1865965 0.3350513  0.1490592  0.1764462  0.0530203
## AGG_11236448   3.89878641 0.4936731 1.5367124  0.6327673  2.7508028  5.8271653
## AHL_11239959   0.11486818 0.1732010 0.1040641  0.6730607  0.1690408  0.1297706
## AJGD_11119689  1.28212483 0.7713180 1.1798139  0.1315944  0.5003738  2.8960695
## AMP_11228639  16.17873195 2.4725937 9.8980723 33.2699882 10.7776720 10.6611539
##                      X160       X161        X162        X163        X164
## ACR_11231843   4.30033713 1.16901693  0.02281927  0.21960310 1.179263270
## ADAO_11159808  0.45096512 0.09021543  0.05737048  0.08659491 0.008181057
## AGG_11236448   0.09272221 1.38011747  3.60282405 10.55519870 7.641763534
## AHL_11239959   0.36416392 0.16710781  0.09311028  0.36228685 1.621167944
## AJGD_11119689  8.91576020 3.69217344  2.64331881  4.79507728 6.580576771
## AMP_11228639  36.28968889 2.91378082 24.21241915  3.58376529 0.492945912
##                     X165       X166      X167      X168      X169      X170
## ACR_11231843   3.1396557  2.1683665 0.1250389 2.8256115 5.5947647 3.1100863
## ADAO_11159808  0.4273584  0.2771944 0.5334110 0.1598546 0.3858205 0.1582067
## AGG_11236448   2.7509132  4.4901924 2.6386424 0.8560534 1.6217626 5.0306564
## AHL_11239959   0.9681020  0.4756748 0.2781810 0.3449813 0.8562805 0.5352752
## AJGD_11119689  0.5421299  3.4884060 3.7096413 2.2215766 0.3176552 0.1345843
## AMP_11228639  10.2306950 14.3870829 2.7665920 0.7050920 4.4458964 0.4796000
##                     X171      X172      X173       X174       X175       X176
## ACR_11231843   0.4734626 5.7096548 1.7173744 5.69739671  6.0164241  2.5347856
## ADAO_11159808  0.1078960 0.8940043 0.2118074 0.14131343  0.4299174  0.6827341
## AGG_11236448   0.4996926 6.6760153 7.2639651 9.10910768  0.7728034 14.5309942
## AHL_11239959   0.0951920 0.6950725 0.5633619 0.09770190  2.5491493  0.8471888
## AJGD_11119689  1.0273650 2.0187771 0.5813334 0.03346851  0.5892873  1.9809981
## AMP_11228639  19.6883796 0.6314290 5.0525320 5.82877160 16.7620028  8.4460127
##                     X177      X178       X179        X180       X181       X182
## ACR_11231843   0.9190560 0.1120314  0.2530291  3.36161006 0.61098739  3.4261742
## ADAO_11159808  0.4042994 0.1015104  0.1641715  0.34164335 0.06392122  0.3730584
## AGG_11236448   3.5583855 6.3374178  0.1741007  0.66359234 0.19718988  4.7810208
## AHL_11239959   0.4878427 0.8233419  0.2983574  0.10363495 0.45896505  0.3680708
## AJGD_11119689  0.6905091 1.4569077  3.2326004  0.09489134 2.45122724  4.7921832
## AMP_11228639  11.8617528 8.5256958 19.7339069 56.07438587 1.74175493 18.8805353
##                     X183        X184      X185         X186        X187
## ACR_11231843  5.98141383  0.59938340 2.7341921  2.303690541  1.05861813
## ADAO_11159808 0.08575015  0.03267463 0.5400481  0.003856769  0.05452006
## AGG_11236448  0.54698325  4.54995654 6.1644218  0.653157321  3.87045316
## AHL_11239959  2.03671170  1.15512844 0.2099878  0.972032293  0.37519734
## AJGD_11119689 5.56125854  0.78066563 1.4656292  2.240882442  0.25841834
## AMP_11228639  5.96846568 19.24522118 7.0724204 14.487507009 24.41712360
##                      X188       X189        X190        X191       X192
## ACR_11231843   0.24995075  1.7660546  1.57118912  2.06752604 2.73636618
## ADAO_11159808  0.06516697  0.4209274  0.34283816  0.08832234 0.39733856
## AGG_11236448   2.50103226  9.5319824  0.15295773  0.81337072 1.07729377
## AHL_11239959   1.65231317  0.5014524  0.05099315  0.06888119 0.07886296
## AJGD_11119689  0.65588138  1.4214110  2.79663670  0.20407543 0.74860380
## AMP_11228639  19.62368972 13.4268022 26.14932446 82.11575613 3.57215962
##                    X193       X194      X195      X196      X197      X198
## ACR_11231843  0.3971704  1.1240872 7.8058416 0.2860373 5.0488452 2.9077658
## ADAO_11159808 0.4338560  0.2276968 0.5215772 0.7594468 0.1758369 1.3389821
## AGG_11236448  1.1167107  0.1950759 5.8292275 0.3914546 0.2124345 0.4648302
## AHL_11239959  0.7589685  0.1295652 0.4607371 0.2824607 0.2874024 0.9345262
## AJGD_11119689 0.1495800  0.2569443 1.1866951 0.5354896 2.8890761 0.4303639
## AMP_11228639  7.9217845 11.8611717 8.0128693 1.3785162 4.6957924 3.5117605
##                     X199        X200       X201       X202        X203
## ACR_11231843   0.7475640  0.07616359  5.0735746 6.00405755  5.96237794
## ADAO_11159808  0.3322807  0.29574768  0.2580489 0.05884420  0.03554613
## AGG_11236448   1.2127478  5.48633189  1.7100444 1.23345534  0.81774085
## AHL_11239959   1.0552976  1.26629801  0.6963185 0.09203756  1.55871335
## AJGD_11119689  0.4371993  1.88658001  2.4122339 2.59882023  0.27622353
## AMP_11228639  10.7430628 30.17546195 16.3856587 3.00272383 86.65419234
##                     X204       X205       X206       X207        X208      X209
## ACR_11231843   5.9558555  4.7932228  1.4213538  1.7124957  0.13953801 1.7473419
## ADAO_11159808  0.7867290  0.2375591  0.6401114  0.5359071  0.06544673 0.6475573
## AGG_11236448   1.7770559  3.3276966  1.7759371  5.8729541  2.46283975 7.5967716
## AHL_11239959   0.2240975  0.6980473  0.1572846  0.5498278  0.19101544 0.1099240
## AJGD_11119689  0.5135189  5.8247671  2.4952644  0.8592207  0.41722224 1.3363842
## AMP_11228639  13.0206981 23.8205253 22.9303584 38.6428509 12.78483804 1.6502920
##                     X210       X211       X212        X213        X214
## ACR_11231843  0.09644472  0.1779691  2.2905939  1.85104372  0.32301662
## ADAO_11159808 0.84555262  0.0800038  0.5133744  0.85873960  0.51399803
## AGG_11236448  2.65962642  0.1296346  1.8061166  3.20909638  0.29920766
## AHL_11239959  0.94384548  1.0420692  0.4324950  0.03046616  0.03779672
## AJGD_11119689 2.02579633  0.0304233  1.7086539  1.77783344  0.33679009
## AMP_11228639  4.25153894 18.0082387 16.9204894 13.44245276 28.54682363
##                     X215       X216        X217      X218       X219       X220
## ACR_11231843  4.21980130  2.5827710  2.37474050 2.8558115  3.7578991  1.3699196
## ADAO_11159808 0.07301315  0.1292316  0.23353910 0.6059223  0.3525472  0.3284839
## AGG_11236448  1.76609610  4.0283101  2.68889285 5.1444444  0.5805841  0.6531493
## AHL_11239959  1.02617704  0.6726032  0.04039316 1.9829224  0.5479089  0.1204094
## AJGD_11119689 0.25753796  0.8938505  0.41919061 1.4629935  0.5161031  0.6202013
## AMP_11228639  3.26978709 16.4744810 36.10439988 3.5903544 12.7169771 24.5197832
##                     X221      X222        X223       X224       X225      X226
## ACR_11231843   1.2117059 0.7480923 15.21042240  4.3575008 4.04697330 2.6545317
## ADAO_11159808  0.6602280 0.1822880  0.06374832  0.3118209 0.51729799 0.6438665
## AGG_11236448   0.6248186 8.2796934  2.32674759  2.5848339 4.42916370 0.1979652
## AHL_11239959   0.0330523 0.4901177  0.63444898  0.8258034 0.02232097 0.3104947
## AJGD_11119689  8.8914160 2.3021882  2.03235272  1.2078564 1.90485330 1.0240980
## AMP_11228639  16.9472960 2.0922122  3.69846096 39.3293051 2.66581814 5.8968017
##                     X227       X228       X229       X230      X231       X232
## ACR_11231843   1.7309899  1.4066905 0.06545876  3.0106503 2.3203072  4.0214309
## ADAO_11159808  0.0911962  0.1038657 0.16279743  1.3659718 0.1844041  0.0284395
## AGG_11236448   0.1092725  2.5959079 1.05933343  0.3745092 3.0631672  2.5686140
## AHL_11239959   0.1808797  0.7054476 0.01446630  2.6825362 0.3477136  1.8902592
## AJGD_11119689  3.5762388  1.1112865 1.00392098  0.4650652 0.5122473  2.2102840
## AMP_11228639  11.1945644 18.9597862 2.93204549 37.4800277 4.8883690 11.9982069
##                    X233       X234        X235      X236       X237        X238
## ACR_11231843  0.6157965 5.90435293  1.28498899 1.5905659  0.3947477  0.39491075
## ADAO_11159808 0.6032443 1.33715813  0.20732848 0.1290961  0.3697631  0.53614415
## AGG_11236448  5.1433290 0.08151819  4.80912184 8.4908668  4.0288281 14.27906879
## AHL_11239959  0.2294777 0.85067112  0.42182514 0.4342760  0.7703858  0.07511138
## AJGD_11119689 2.1864561 1.04038158  0.07550684 3.0983477  7.3318743  0.47104296
## AMP_11228639  2.0684866 0.04048644 31.96350278 0.9582038 22.4130041 63.80501519
##                     X239       X240      X241       X242       X243       X244
## ACR_11231843   2.9587937  0.4930386  63.34321   8.804109 149.970718  88.401531
## ADAO_11159808  0.2510000  1.3184045  36.84221 105.380705  27.414295   5.535132
## AGG_11236448   0.4329341 10.3397142 176.78687  82.545494   9.218756 141.274964
## AHL_11239959   1.2055245  0.1083238  58.08849  32.944168  22.670332  18.290623
## AJGD_11119689  3.2897818  5.1960287 132.52475  65.461483 235.745768  15.417801
## AMP_11228639  13.8662683  0.8309796 196.20848 210.962281 183.269971  43.081685
##                    X245      X246        X247      X248       X249      X250
## ACR_11231843   22.05811 81.060151  10.8683632 46.083096  21.235818 70.633662
## ADAO_11159808   8.37439  6.107621   0.3710764  4.747506   3.881014  4.622159
## AGG_11236448   22.83899  9.740057  22.6968927 15.621177  29.235335  5.688367
## AHL_11239959   11.66146 62.481321  20.3166148 10.377407   9.446535  8.092775
## AJGD_11119689  93.53463 45.924171   7.0683209  2.347478  21.169545 40.257378
## AMP_11228639  121.12504 23.070540 132.4421506 37.821216 143.958943 97.958445
##                    X251      X252       X253       X254       X255      X256
## ACR_11231843  81.459096 47.815877 11.9393303  80.316026 18.7317304 12.268367
## ADAO_11159808  2.135861  3.020235  0.9250451   7.958751  4.9832235  3.494020
## AGG_11236448  23.933592 17.277122 10.9448371   1.051881  3.4795239  1.145955
## AHL_11239959  11.019441  5.183153  8.9161978   9.135399  0.3164635  6.935179
## AJGD_11119689  9.556339 21.825076 64.1971923  28.204735 14.2932550 71.565628
## AMP_11228639  58.395636 12.544805 11.0915093 223.071204 13.6449688 24.140913
##                    X257       X258      X259     X260        X261      X262
## ACR_11231843  17.989420  28.605029 38.257693 2.824034  32.4229967 15.463484
## ADAO_11159808  1.921946   2.634994  1.353506 2.880389   0.5462331  5.123970
## AGG_11236448   6.251074   6.934874  3.686626 1.582984  13.4532152  1.680307
## AHL_11239959   2.137869   7.139524  4.637904 9.697475  13.9209315  2.368095
## AJGD_11119689  7.538120   9.683059  7.230665 6.366921   2.8536385  1.437046
## AMP_11228639  15.940775 145.194931  9.688285 4.921903 156.7317278 30.682827
##                    X263      X264       X265        X266     X267      X268
## ACR_11231843  12.602955 49.849574 10.6267902  7.90961069 6.930867  2.870991
## ADAO_11159808  1.321674  2.864160  0.5636077  1.12310701 2.847475  2.247278
## AGG_11236448   3.488362 20.912284  4.4554290 26.46785475 9.272394 14.027219
## AHL_11239959   4.817511  3.985751  3.7550746  3.41534065 2.365421  0.311328
## AJGD_11119689  1.986260 12.630199  4.7499956  0.08805868 1.137881  1.903208
## AMP_11228639  60.149055 96.023021 18.4405841  2.14397397 5.678396  9.817580
##                    X269      X270       X271      X272      X273       X274
## ACR_11231843  15.254742  7.293742 13.2323247  9.515291 2.8172371 13.3551221
## ADAO_11159808  2.957144  2.072708  0.9646299  1.822462 0.4988853  0.5931173
## AGG_11236448   2.488577  8.518406 16.9771896 10.790757 2.2824382  3.4707868
## AHL_11239959   5.290309  1.215995  0.4291100  3.160707 4.7306339  6.7084776
## AJGD_11119689  3.517403 10.900673 11.0199016  5.875834 8.7029281  1.2572906
## AMP_11228639  38.111001  5.701528 39.3275497 11.746390 5.6081134 25.8939664
##                    X275       X276       X277       X278      X279       X280
## ACR_11231843  7.4129249  4.5593280 10.0132018 10.2899680  1.146353  0.2884168
## ADAO_11159808 1.1582696  0.1939320  6.7964561  2.0170858  0.252977  1.1664212
## AGG_11236448  0.4036638 10.4557534 15.5905162  0.4347703  2.471872  9.1131598
## AHL_11239959  2.2831056  6.2989200  2.0153037  5.4197216  3.054855  0.2835575
## AJGD_11119689 1.3788886  0.2296991  0.1783269  0.6666589  5.574594  3.4846162
## AMP_11228639  5.8960381 62.5939122 51.7879115  6.9963574 16.832360 32.8022234
##                    X281      X282       X283        X284       X285      X286
## ACR_11231843  5.1318245  2.419986 26.6837983  5.01786799 21.1691428  8.233676
## ADAO_11159808 1.6280188  4.222803  0.5067394  0.58412914  0.2864248  1.193573
## AGG_11236448  6.6324975  2.535306  0.7008720  2.44399796  5.6885786  1.415491
## AHL_11239959  0.9750323  1.180768  3.4925288  3.87413108  8.6126877  1.738123
## AJGD_11119689 6.8549208  9.240505  6.7544966  0.03581313  1.5948770  4.370756
## AMP_11228639  0.8702049 10.396920 30.7002967 79.02008325 15.7850884 13.308740
##                    X287       X288      X289       X290        X291       X292
## ACR_11231843  0.1769897 14.6585402 5.5479897  2.2447384  4.26475409 10.5414486
## ADAO_11159808 1.3968459  0.1549375 0.6748814  0.9956261  0.06366724  0.2028089
## AGG_11236448  2.4528260  9.6034709 1.5689776 14.2444263  0.13461373  0.7938609
## AHL_11239959  5.2796679  7.6317663 2.7727955  3.4933547  1.50818075  0.5917350
## AJGD_11119689 1.6471838  2.9019614 1.2145541  0.5081058  1.95224027  2.3062108
## AMP_11228639  6.7816018 54.0875809 4.6863463 12.6834981 40.49270750 11.4440069
##                    X293       X294       X295       X296       X297       X298
## ACR_11231843  2.1880920 29.4269164  0.4547142  7.8853524 26.6905483  2.2193812
## ADAO_11159808 0.1008996  1.5827742  1.6882057  0.8671078  1.5904964  0.2044874
## AGG_11236448  6.3006843  6.3469789  2.9325977 12.2179192 16.9900184 12.7981143
## AHL_11239959  0.3230123  0.7723974  1.1189397  2.2168669  0.7253355  3.2628869
## AJGD_11119689 6.0323330 11.3875319  1.9043719  0.0995816  1.8773444  1.7359038
## AMP_11228639  3.7968497 11.9888700 10.9223057 17.1030156 28.0324155 10.7626707
##                     X299       X300       X301       X302       X303      X304
## ACR_11231843  10.8856793  8.1272113 10.4285895 22.1553621  0.1873565 6.7557521
## ADAO_11159808  0.4996113  0.1452373  0.3807241  0.1103688  0.1542464 0.8262244
## AGG_11236448   4.3336262 10.5372949  4.6652361  1.4212415  0.5211929 2.9851455
## AHL_11239959   2.3493105  4.1425600  1.6583981  8.5784697  3.2512996 2.0283131
## AJGD_11119689  7.1133271  8.6060255 11.5300195  4.4089149  1.8512887 1.3122566
## AMP_11228639   9.8027188  1.1235034 18.4759156 15.2608004 18.9140909 8.3750294
##                     X305       X306       X307       X308      X309       X310
## ACR_11231843  15.9172563  1.3383732 14.8319760  1.8529143 4.5736285  8.7093139
## ADAO_11159808  0.2052170  0.5759879  0.7864593  0.5142474 0.9645969  0.5114217
## AGG_11236448   9.2788022  2.6763260  5.8855064  3.3628887 9.2170083  2.5109460
## AHL_11239959   6.3612701  7.4985686  2.8645084  1.6744746 2.7033955  4.8981839
## AJGD_11119689  0.9470481  1.8046908  1.0604933  0.1682712 1.9213682  2.0826333
## AMP_11228639   9.2441257 68.0419853  8.2843640 12.1028460 8.4742292 44.9636426
##                     X311      X312       X313         X314       X315
## ACR_11231843   9.4925877 3.0539801 16.5850018  3.986366690 14.0521031
## ADAO_11159808  1.6905453 0.5653769  0.4381563  0.007834983  0.6567072
## AGG_11236448   0.8513963 1.5081150  3.8567234  0.392288569  5.6216801
## AHL_11239959   9.0780969 7.6970677  4.3483046  2.071081928  4.5028410
## AJGD_11119689  5.8017148 2.0327891  1.3753797  1.439396938  4.4613088
## AMP_11228639  28.8303098 7.6021069 13.7584895 20.924489732  3.6480345
##                     X316      X317       X318       X319        X320       X321
## ACR_11231843   7.4049430 0.3028456 13.7117019  8.1660841 13.19886911 17.8335260
## ADAO_11159808  0.5202654 2.5031132  0.8378059  0.3020811  0.07218197  0.1140574
## AGG_11236448   2.1835732 5.3898056  2.6245558  1.1381900  0.05285022  0.9724201
## AHL_11239959   3.9851043 2.7108724  0.7990704  1.3357630  2.79213385  1.2819393
## AJGD_11119689  5.2693486 3.6992390  7.9400047  1.3048949  0.57357780  0.4621902
## AMP_11228639  14.2416241 4.2564746  8.4223137 16.0665829 30.95569242 41.3571903
##                     X322       X323       X324       X325       X326       X327
## ACR_11231843   1.1715776  2.8906789  5.8848036  2.5171602 24.8705703  0.8022650
## ADAO_11159808  0.8103329  0.5883821  0.9382038  0.1214446  0.2262521  0.6956008
## AGG_11236448   6.9019854  2.6723793  0.8663802  7.7130087  2.3752326  4.5435013
## AHL_11239959   2.5894579  2.4948705  5.9151523  3.3235673  0.7645684  1.0193560
## AJGD_11119689  0.1677105  3.3450485  1.0753882  1.6431958  1.3957595  1.6681565
## AMP_11228639  18.0118633 11.8566067 17.6291154 36.8284536  4.5769514 65.1525810
##                      X328         X329      X330       X331       X332
## ACR_11231843   2.42420922 19.368988055 0.7525603  3.9629429  0.1518997
## ADAO_11159808  0.02661939  0.002379936 1.0380908  0.4694261  0.2321663
## AGG_11236448   1.70330872  1.381016327 3.8609216 11.5354294  2.2803819
## AHL_11239959   6.93332156  3.456882070 1.5162512  1.2561523  2.0712678
## AJGD_11119689  8.49678981  6.008529503 5.9882392  1.2924799  0.8959029
## AMP_11228639  64.35819291  3.135586452 7.4492678  8.4624308 30.6671089
##                     X333      X334       X335      X336      X337        X338
## ACR_11231843   3.1612271 1.9525130 11.3414677 2.3828966 2.4897002  1.52363944
## ADAO_11159808  0.3744431 0.5348566  0.6057966 0.9631920 0.7629763  0.04930203
## AGG_11236448   5.5330310 4.2055970 18.4963326 1.3286518 2.7821870  2.88508934
## AHL_11239959   0.3440545 0.8770131  4.5450189 2.4381883 0.9398997  3.65638291
## AJGD_11119689  1.3901661 0.5679558  2.0044142 7.2327525 0.4658782  0.73126479
## AMP_11228639  14.5571460 1.1264306  7.0231739 0.4990224 9.6231026 11.91901382
##                    X339       X340      X341       X342      X343      X344
## ACR_11231843  3.4700734 25.4142877 6.6240795  4.0316520  0.360054 1.6819318
## ADAO_11159808 0.1778209  0.4192574 0.6817611  0.2559650  2.095070 0.2536700
## AGG_11236448  9.4098213  4.4195116 6.8624776  1.8621123  5.310998 0.1874846
## AHL_11239959  1.0831158  2.5898990 1.2791752  0.7278099  1.634212 2.3196570
## AJGD_11119689 2.2925140  0.6395044 0.4506342  1.3070641  1.151868 1.7485166
## AMP_11228639  4.4280782  1.1406044 4.9663945 24.7404825 14.140511 4.6686136
##                    X345      X346       X347      X348       X349       X350
## ACR_11231843   7.372784 3.1574862  7.4832447 6.6589537  6.6027316  7.4118830
## ADAO_11159808  0.637686 1.0561880  0.3838186 0.7872085  0.2739714  0.5478482
## AGG_11236448   1.866520 0.5413669  6.9513357 1.9318438  1.4363975  5.7628482
## AHL_11239959   3.011525 1.6195227  1.6337904 0.2771766  2.8620438  2.8980697
## AJGD_11119689  3.399601 1.9653717  1.1430034 1.6740247  1.3173545  2.4158176
## AMP_11228639  16.134162 1.7038167 37.7748773 5.9230075 14.2035836 11.0575510
##                       X351      X352         X353       X354        X355
## ACR_11231843  3.591789e-01 0.7386980  0.066717668  4.6723432  5.21670459
## ADAO_11159808 5.005781e-01 0.4243604  0.003422015  0.5845329  1.11601782
## AGG_11236448  9.586251e+00 2.8340960  1.700439614  4.5672717  3.62361616
## AHL_11239959  2.845085e+00 1.7205604  3.745760267  2.8239057  2.51623331
## AJGD_11119689 4.014607e-04 1.1548911  0.060699404  1.3999257  0.02210621
## AMP_11228639  3.109086e+01 7.1852090 16.326723830 13.1666892 15.78390072
##                      X356      X357       X358       X359       X360
## ACR_11231843   9.17126396 1.6990968 8.76846745  2.0808144 0.29367873
## ADAO_11159808  1.55189386 1.2924043 0.09221122  1.0289680 0.09169136
## AGG_11236448   2.71638254 0.3236832 0.22050096  3.9605813 0.07860607
## AHL_11239959   3.54546398 1.9548379 0.19585927  0.8602858 3.07059521
## AJGD_11119689  0.04558142 3.5221383 3.69106596  1.4529946 3.82614053
## AMP_11228639  18.38168650 4.3062201 0.61368231 12.1714935 8.21020057
##                      X361       X362       X363        X364       X365
## ACR_11231843  13.98285065  4.5115484 4.06381395 12.01751907 10.2641113
## ADAO_11159808  0.04523647  0.4989915 0.04744316  0.15752631  2.1232122
## AGG_11236448   2.13101322  3.7272558 5.11416651  2.42337543  0.4076115
## AHL_11239959   2.79692512  0.8588625 0.22931248  0.41052815  1.1354936
## AJGD_11119689  2.95561111  0.9775363 0.75516116  0.04392191  1.2702708
## AMP_11228639   1.93314720 13.6245868 1.36635045  8.46387899  1.2520937
##                    X366     X367       X368      X369     X370      X371
## ACR_11231843  1.2433863 0.237207 10.1048106 1.1885266 1.161114 1.4732604
## ADAO_11159808 0.4857401 1.183417  0.2494351 0.2465117 1.267549 1.1118693
## AGG_11236448  5.5489916 3.217711  1.2308394 0.8857493 5.481754 0.3795889
## AHL_11239959  2.0416424 1.543890  2.3398673 0.5438318 3.108199 0.4936366
## AJGD_11119689 1.0257717 3.066184  0.3712139 0.2985001 3.968729 3.0523974
## AMP_11228639  1.8725832 6.998584 11.9561922 9.1589403 2.986988 1.4951705
##                   X372       X373       X374        X375        X376       X377
## ACR_11231843  2.226283  0.6303585  2.3684273  1.49857078  3.62321741 2.16137457
## ADAO_11159808 1.255284  0.8883771  0.5407307  0.02712975  1.39178882 1.14452678
## AGG_11236448  4.475602  0.1879412  1.5107810  9.68412840  0.08558425 1.40952758
## AHL_11239959  1.917680  0.5286069  0.1456123  0.57136932  0.87325821 0.05234215
## AJGD_11119689 2.019123  1.9463560  4.0602182  0.21594428  5.41680094 3.41086884
## AMP_11228639  4.156780 53.1739739 47.1664594 16.53741783 13.43917900 9.07463475
##                     X378      X379       X380       X381      X382       X383
## ACR_11231843  12.1231774 0.3573286  0.8549416  6.3498232 1.6759142  4.5722421
## ADAO_11159808  0.5386929 0.1480573  0.2168780  0.2976941 0.3238780  0.3184413
## AGG_11236448   5.4215972 6.2604711  1.7454461  0.6220094 0.3011754  2.0521386
## AHL_11239959   1.0095620 1.5512634  0.8063490  0.9730691 1.0051741  0.7053865
## AJGD_11119689  3.0831632 0.2758462  0.4687653 10.0297407 2.7791707  6.2941515
## AMP_11228639  14.4683935 0.7875425 34.1932873 12.0507516 7.2043588 22.0022401
##                     X384       X385        X386       X387       X388
## ACR_11231843  15.4419587 8.70393119 17.08545179 0.83822780  1.7811044
## ADAO_11159808  0.3064871 0.55521192  0.06188036 1.30127700  0.1289914
## AGG_11236448   3.3929363 1.60387233  0.60178844 2.96187896  1.3145196
## AHL_11239959   0.1613510 0.06303558  1.38611369 0.61107906  1.8098455
## AJGD_11119689  1.9705500 0.53601831  0.65501580 1.05185627  0.8895971
## AMP_11228639  16.7606420 7.65842652  0.35917826 0.06093996 39.1774178
##                     X389        X390       X391       X392      X393
## ACR_11231843  3.63996398  4.21539559  3.5037041 3.84029023 2.7514662
## ADAO_11159808 0.43246580  0.02994306  0.3587978 0.01610157 0.1093731
## AGG_11236448  0.83818314  0.95073711  4.2411586 4.72859472 0.2055687
## AHL_11239959  2.39615970  0.20649998  1.8521309 1.42834956 0.6711869
## AJGD_11119689 0.07325307  1.73634212  1.6078250 0.68868328 1.0097763
## AMP_11228639  0.15799054 17.35544456 24.2779640 0.43035483 1.0665819
##                      X394      X395      X396       X397       X398       X399
## ACR_11231843   0.02432612 3.3019360 0.6178072  2.7362999  0.6312085  3.9810301
## ADAO_11159808  0.35082811 0.1865965 0.3350513  0.1490592  0.1764462  0.0530203
## AGG_11236448   3.89878641 0.4936731 1.5367124  0.6327673  2.7508028  5.8271653
## AHL_11239959   0.11486818 0.1732010 0.1040641  0.6730607  0.1690408  0.1297706
## AJGD_11119689  1.28212483 0.7713180 1.1798139  0.1315944  0.5003738  2.8960695
## AMP_11228639  16.17873195 2.4725937 9.8980723 33.2699882 10.7776720 10.6611539
##                      X400       X401        X402        X403        X404
## ACR_11231843   4.30033713 1.16901693  0.02281927  0.21960310 1.179263270
## ADAO_11159808  0.45096512 0.09021543  0.05737048  0.08659491 0.008181057
## AGG_11236448   0.09272221 1.38011747  3.60282405 10.55519870 7.641763534
## AHL_11239959   0.36416392 0.16710781  0.09311028  0.36228685 1.621167944
## AJGD_11119689  8.91576020 3.69217344  2.64331881  4.79507728 6.580576771
## AMP_11228639  36.28968889 2.91378082 24.21241915  3.58376529 0.492945912
##                     X405       X406      X407      X408      X409      X410
## ACR_11231843   3.1396557  2.1683665 0.1250389 2.8256115 5.5947647 3.1100863
## ADAO_11159808  0.4273584  0.2771944 0.5334110 0.1598546 0.3858205 0.1582067
## AGG_11236448   2.7509132  4.4901924 2.6386424 0.8560534 1.6217626 5.0306564
## AHL_11239959   0.9681020  0.4756748 0.2781810 0.3449813 0.8562805 0.5352752
## AJGD_11119689  0.5421299  3.4884060 3.7096413 2.2215766 0.3176552 0.1345843
## AMP_11228639  10.2306950 14.3870829 2.7665920 0.7050920 4.4458964 0.4796000
##                     X411      X412      X413       X414       X415       X416
## ACR_11231843   0.4734626 5.7096548 1.7173744 5.69739671  6.0164241  2.5347856
## ADAO_11159808  0.1078960 0.8940043 0.2118074 0.14131343  0.4299174  0.6827341
## AGG_11236448   0.4996926 6.6760153 7.2639651 9.10910768  0.7728034 14.5309942
## AHL_11239959   0.0951920 0.6950725 0.5633619 0.09770190  2.5491493  0.8471888
## AJGD_11119689  1.0273650 2.0187771 0.5813334 0.03346851  0.5892873  1.9809981
## AMP_11228639  19.6883796 0.6314290 5.0525320 5.82877160 16.7620028  8.4460127
##                     X417      X418       X419        X420       X421       X422
## ACR_11231843   0.9190560 0.1120314  0.2530291  3.36161006 0.61098739  3.4261742
## ADAO_11159808  0.4042994 0.1015104  0.1641715  0.34164335 0.06392122  0.3730584
## AGG_11236448   3.5583855 6.3374178  0.1741007  0.66359234 0.19718988  4.7810208
## AHL_11239959   0.4878427 0.8233419  0.2983574  0.10363495 0.45896505  0.3680708
## AJGD_11119689  0.6905091 1.4569077  3.2326004  0.09489134 2.45122724  4.7921832
## AMP_11228639  11.8617528 8.5256958 19.7339069 56.07438587 1.74175493 18.8805353
##                     X423        X424      X425         X426        X427
## ACR_11231843  5.98141383  0.59938340 2.7341921  2.303690541  1.05861813
## ADAO_11159808 0.08575015  0.03267463 0.5400481  0.003856769  0.05452006
## AGG_11236448  0.54698325  4.54995654 6.1644218  0.653157321  3.87045316
## AHL_11239959  2.03671170  1.15512844 0.2099878  0.972032293  0.37519734
## AJGD_11119689 5.56125854  0.78066563 1.4656292  2.240882442  0.25841834
## AMP_11228639  5.96846568 19.24522118 7.0724204 14.487507009 24.41712360
##                      X428       X429        X430        X431       X432
## ACR_11231843   0.24995075  1.7660546  1.57118912  2.06752604 2.73636618
## ADAO_11159808  0.06516697  0.4209274  0.34283816  0.08832234 0.39733856
## AGG_11236448   2.50103226  9.5319824  0.15295773  0.81337072 1.07729377
## AHL_11239959   1.65231317  0.5014524  0.05099315  0.06888119 0.07886296
## AJGD_11119689  0.65588138  1.4214110  2.79663670  0.20407543 0.74860380
## AMP_11228639  19.62368972 13.4268022 26.14932446 82.11575613 3.57215962
##                    X433       X434      X435      X436      X437      X438
## ACR_11231843  0.3971704  1.1240872 7.8058416 0.2860373 5.0488452 2.9077658
## ADAO_11159808 0.4338560  0.2276968 0.5215772 0.7594468 0.1758369 1.3389821
## AGG_11236448  1.1167107  0.1950759 5.8292275 0.3914546 0.2124345 0.4648302
## AHL_11239959  0.7589685  0.1295652 0.4607371 0.2824607 0.2874024 0.9345262
## AJGD_11119689 0.1495800  0.2569443 1.1866951 0.5354896 2.8890761 0.4303639
## AMP_11228639  7.9217845 11.8611717 8.0128693 1.3785162 4.6957924 3.5117605
##                     X439        X440       X441       X442        X443
## ACR_11231843   0.7475640  0.07616359  5.0735746 6.00405755  5.96237794
## ADAO_11159808  0.3322807  0.29574768  0.2580489 0.05884420  0.03554613
## AGG_11236448   1.2127478  5.48633189  1.7100444 1.23345534  0.81774085
## AHL_11239959   1.0552976  1.26629801  0.6963185 0.09203756  1.55871335
## AJGD_11119689  0.4371993  1.88658001  2.4122339 2.59882023  0.27622353
## AMP_11228639  10.7430628 30.17546195 16.3856587 3.00272383 86.65419234
##                     X444       X445       X446       X447        X448      X449
## ACR_11231843   5.9558555  4.7932228  1.4213538  1.7124957  0.13953801 1.7473419
## ADAO_11159808  0.7867290  0.2375591  0.6401114  0.5359071  0.06544673 0.6475573
## AGG_11236448   1.7770559  3.3276966  1.7759371  5.8729541  2.46283975 7.5967716
## AHL_11239959   0.2240975  0.6980473  0.1572846  0.5498278  0.19101544 0.1099240
## AJGD_11119689  0.5135189  5.8247671  2.4952644  0.8592207  0.41722224 1.3363842
## AMP_11228639  13.0206981 23.8205253 22.9303584 38.6428509 12.78483804 1.6502920
##                     X450       X451       X452        X453        X454
## ACR_11231843  0.09644472  0.1779691  2.2905939  1.85104372  0.32301662
## ADAO_11159808 0.84555262  0.0800038  0.5133744  0.85873960  0.51399803
## AGG_11236448  2.65962642  0.1296346  1.8061166  3.20909638  0.29920766
## AHL_11239959  0.94384548  1.0420692  0.4324950  0.03046616  0.03779672
## AJGD_11119689 2.02579633  0.0304233  1.7086539  1.77783344  0.33679009
## AMP_11228639  4.25153894 18.0082387 16.9204894 13.44245276 28.54682363
##                     X455       X456        X457      X458       X459       X460
## ACR_11231843  4.21980130  2.5827710  2.37474050 2.8558115  3.7578991  1.3699196
## ADAO_11159808 0.07301315  0.1292316  0.23353910 0.6059223  0.3525472  0.3284839
## AGG_11236448  1.76609610  4.0283101  2.68889285 5.1444444  0.5805841  0.6531493
## AHL_11239959  1.02617704  0.6726032  0.04039316 1.9829224  0.5479089  0.1204094
## AJGD_11119689 0.25753796  0.8938505  0.41919061 1.4629935  0.5161031  0.6202013
## AMP_11228639  3.26978709 16.4744810 36.10439988 3.5903544 12.7169771 24.5197832
##                     X461      X462        X463       X464       X465      X466
## ACR_11231843   1.2117059 0.7480923 15.21042240  4.3575008 4.04697330 2.6545317
## ADAO_11159808  0.6602280 0.1822880  0.06374832  0.3118209 0.51729799 0.6438665
## AGG_11236448   0.6248186 8.2796934  2.32674759  2.5848339 4.42916370 0.1979652
## AHL_11239959   0.0330523 0.4901177  0.63444898  0.8258034 0.02232097 0.3104947
## AJGD_11119689  8.8914160 2.3021882  2.03235272  1.2078564 1.90485330 1.0240980
## AMP_11228639  16.9472960 2.0922122  3.69846096 39.3293051 2.66581814 5.8968017
##                     X467       X468       X469       X470      X471       X472
## ACR_11231843   1.7309899  1.4066905 0.06545876  3.0106503 2.3203072  4.0214309
## ADAO_11159808  0.0911962  0.1038657 0.16279743  1.3659718 0.1844041  0.0284395
## AGG_11236448   0.1092725  2.5959079 1.05933343  0.3745092 3.0631672  2.5686140
## AHL_11239959   0.1808797  0.7054476 0.01446630  2.6825362 0.3477136  1.8902592
## AJGD_11119689  3.5762388  1.1112865 1.00392098  0.4650652 0.5122473  2.2102840
## AMP_11228639  11.1945644 18.9597862 2.93204549 37.4800277 4.8883690 11.9982069
##                    X473       X474        X475      X476       X477        X478
## ACR_11231843  0.6157965 5.90435293  1.28498899 1.5905659  0.3947477  0.39491075
## ADAO_11159808 0.6032443 1.33715813  0.20732848 0.1290961  0.3697631  0.53614415
## AGG_11236448  5.1433290 0.08151819  4.80912184 8.4908668  4.0288281 14.27906879
## AHL_11239959  0.2294777 0.85067112  0.42182514 0.4342760  0.7703858  0.07511138
## AJGD_11119689 2.1864561 1.04038158  0.07550684 3.0983477  7.3318743  0.47104296
## AMP_11228639  2.0684866 0.04048644 31.96350278 0.9582038 22.4130041 63.80501519
##                     X479       X480 DDclust_PER_SatO2
## ACR_11231843   2.9587937  0.4930386                 1
## ADAO_11159808  0.2510000  1.3184045                 1
## AGG_11236448   0.4329341 10.3397142                 1
## AHL_11239959   1.2055245  0.1083238                 1
## AJGD_11119689  3.2897818  5.1960287                 1
## AMP_11228639  13.8662683  0.8309796                 1
## Mean by groups
rp_tbl_PER <- aggregate(plotting_PER, by = list(plotting_PER$DDclust_PER_SatO2), mean)
row.names(rp_tbl_PER) <- paste0("Group",rp_tbl_PER$DDclust_PER_SatO2)
rp_tbl_PER <- rp_tbl_PER %>%
  select(starts_with('X'))
rp_tbl_PER <- data.frame(t(rp_tbl_PER))
head(rp_tbl_PER)
##       Group1   Group2
## X1 107.47746 329.8271
## X2  79.43177 488.4544
## X3  71.33078 442.6777
## X4  52.06231 257.4408
## X5  43.83955 249.9436
## X6  36.75993 122.9238
# Create plotting data-frame
PER_values_by_group <- data.frame("value_PER" = c(rp_tbl_PER$Group1,rp_tbl_PER$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_PER$Group1)),
                                              rep("Group2", times = length(rp_tbl_PER$Group2))),
                                  "index" = c(c(1:length(rp_tbl_PER$Group1)),c(1:length(rp_tbl_PER$Group2))))

p <- ggplot(PER_values_by_group, aes(x = index, y = value_PER, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

Adjusted Rand Index

rand_index_table_SatO2 = data.frame(matrix(ncol = 3 , nrow = 3))
colnames(rand_index_table_SatO2) <- c("DDclust_ACF_SatO2", "DDclust_EUCL_SatO2", "DDclust_PER_SatO2")
rownames(rand_index_table_SatO2) <- c("DDclust_ACF_SatO2", "DDclust_EUCL_SatO2", "DDclust_PER_SatO2")
cluster_study_SatO2 <- list(DDclust_ACF_SatO2, DDclust_EUCL_SatO2, DDclust_PER_SatO2)
for (i in c(1:length(cluster_study_SatO2))) {
  for (j in c(1:length(cluster_study_SatO2))){
  rand_index_table_SatO2[i,j] <- adjustedRandIndex(cluster_study_SatO2[[i]], cluster_study_SatO2[[j]])
}}
head(rand_index_table_SatO2)
##                    DDclust_ACF_SatO2 DDclust_EUCL_SatO2 DDclust_PER_SatO2
## DDclust_ACF_SatO2         1.00000000        0.010991521       0.115064289
## DDclust_EUCL_SatO2        0.01099152        1.000000000      -0.007839038
## DDclust_PER_SatO2         0.11506429       -0.007839038       1.000000000
write.csv(cluster_study_SatO2, "../../data/clusters/cluster_study_SatO2.csv")