Libraries

library(TSA) # time series
library(TSclust)

library(tidyr)
library(readr)
library(ggplot2) # ggplot graphs
library(knitr)
library(readxl)
library(xlsx)
library(openxlsx)
library(reactable) # reactable(df)
library(naniar) # miss_case_summary

library(dplyr)

## KNN imputation
library(caret)
library(RANN)

# CLustering 
library(factoextra)    # Clustering visualization
library(cluster)       # Clustering algorithms
library(dendextend)    # For comparing two dendrograms
library(corrplot)      # Corelation between dendrograms
library(tidyverse)     # Data manupulation
library(NbClust)       # Determine optimal no. of clusters  [not working...]
library(TSclust)
library(mclust)        # Adjusted Rand index

#RandomForest
library(randomForest) # RandomForest Discrete Classification
library(imbalance) # To create a more balanced dataset

Functions

source("../../scripts/useful-functions/get_column_position.R")
# In a normal script it will be:  source("./scripts/useful-functions/get_column_position.R")

Reading Data

Time Series Data: cuantiles Heart Rate

cuantiles_TS_HR_P2 = data.frame(read_xlsx("../../data/clean-data/BoxBasedImputation/cuantiles_TS_HR_valid_patients_input_P2.xlsx", sheet = "FC_valid_patients_input_P2" ))

# First patients with OAF
name_patients_DETERIORO_OAF_0 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0.csv"))
name_patients_DETERIORO_OAF_0 <- name_patients_DETERIORO_OAF_0$x
name_patients_DETERIORO_OAF_0_8 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0_8.csv"))
name_patients_DETERIORO_OAF_0_8 <- name_patients_DETERIORO_OAF_0_8$x

## Deterioro and Not deterioro
file_patient_name_NO_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_NO_DETERIORO.csv"))
file_patient_name_NO_DETERIORO <- file_patient_name_NO_DETERIORO$x
file_patient_name_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_DETERIORO.csv"))
file_patient_name_DETERIORO <- file_patient_name_DETERIORO$x

Descriptive Data for Discriminant analysis

valid_patients_P2 <- data.frame(read_xlsx("../../data/clean-data/valid_patients_P2.xlsx"))
valid_patients_P2 <- valid_patients_P2$x
valid_patients_P2 <- valid_patients_P2[! valid_patients_P2 %in% union(name_patients_DETERIORO_OAF_0,name_patients_DETERIORO_OAF_0_8)]

file_patient_name <- data.frame(read_csv("../../data/clean-data/file_patient_name.csv", show_col_types = FALSE))
file_patient_name <- file_patient_name$x
  
df1 <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data.xlsx"))
rownames(df1) <- file_patient_name
df1 <- df1[valid_patients_P2,]
df_descriptive <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data_imputed.xlsx"), row.names = TRUE)
rownames(df_descriptive) <- file_patient_name
df_descriptive <- df_descriptive %>% select(-c(FR_8_16h, FR_16_24h, FLUJO2_8_16h,FLUJO2_16_24h,SCORE_WOOD_DOWNES_24H,SAPI_16_24h, SAPI_8_16h))
# Class
pos_1 = get_column_position(df_descriptive,"SAPI_0_8h")
pos_2 = get_column_position(df_descriptive,"PAUSAS_APNEA")
df_descriptive[,c(pos_1:pos_2)] <- lapply(df_descriptive[,c(pos_1:pos_2)], as.factor)
#lapply(df_descriptive,class)
df_descriptive <- df_descriptive[valid_patients_P2,]

Create a dataframe with ACF [Heart Rate ]

cuantiles_TS_HR_P2 <- cuantiles_TS_HR_P2[,valid_patients_P2]

Restando Media

#cuantiles_TS_HR_P2 = data.frame(scale(cuantiles_TS_HR_P2))
dimension_col <- dim(cuantiles_TS_HR_P2)[2]
dimension_row <- 480 #lag.max -1

# Heart Rate
cuantiles_TS_HR_P2_ACF <- data.frame(matrix(nrow = dimension_row, ncol = dimension_col))
colnames(cuantiles_TS_HR_P2_ACF) <- names(cuantiles_TS_HR_P2)[1:dimension_col]
for (i in names(cuantiles_TS_HR_P2_ACF)) {
  acf_result_FC <- forecast::Acf(cuantiles_TS_HR_P2[[i]], lag.max = (dimension_row - 1), plot = FALSE, drop.lag.0 = FALSE)
  cuantiles_TS_HR_P2_ACF[, i] <- acf_result_FC$acf
}

Create a dataframe with peridiogram

# Generar un dataset con varias series temporales
df <- cuantiles_TS_HR_P2

# Crear una matriz para almacenar los periodogramas
pg_mat <- data.frame(matrix(nrow = nrow(df), ncol =  ncol(df)))
colnames(pg_mat) = colnames(cuantiles_TS_HR_P2)

# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
library(stats)
# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
for (i in colnames(cuantiles_TS_HR_P2)) {
  pg_mat[,i] <- stats::spec.pgram(cuantiles_TS_HR_P2[,i], plot = FALSE)$spec
}

TsClust Comprobation

datos <- cuantiles_TS_HR_P2

diss.ACF Computes the dissimilarity between two time series as the distance between their estimated simple (ACF) or partial (PACF) autocorrelation coefficients

DD_ACF <- diss(datos, "ACF", lag.max = 50)
DD_ACF_matrix <- as.matrix(DD_ACF)

diss.EUCL

DD_EUCL <- diss(datos, "EUCL")
DD_EUCL_matrix <- as.matrix(DD_EUCL)

diss.PER

DD_PER <- diss(datos, "PER")
DD_PER_matrix <- as.matrix(DD_PER)

Euclidean Distance first 50 ACF

datos_ACF = t(cuantiles_TS_HR_P2_ACF[c(1:51),])
distance <- dist(t(cuantiles_TS_HR_P2_ACF[c(1:51),]), method = "euclidean")
distance_matrix_ACF <- as.matrix(distance)

Euclidean Distance

datos_EUCL <- t(datos)
distance <- dist(datos_EUCL, method = "euclidean")
distance_matrix_EUCL <- as.matrix(distance)

Eculidean PER Distance

datos_PER <- t(pg_mat)
distance_PER <- dist(t(pg_mat), method = "euclidean")
distance_matrix_PER <- as.matrix(distance_PER)
distance_matrix_PER_NORM = distance_matrix_PER / 480

TSCLust in Action

ACF TSclust

# DD_ACF <- diss(datos, "ACF", lag.max = 50)

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_ACF, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.7926496 0.5811764 0.9143518 0.9552261

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_ACF
res<-NbClust(datos_ACF, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.4721 0.3380 0.3412 0.3014
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.4721
#res$Best.partition
hcintper_ACF <- hclust(DD_ACF, "ward.D2")
fviz_dend(hcintper_ACF, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

DDclust_ACF_cuantiles <- cutree( hclust(DD_ACF, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_ACF_cuantiles))

fviz_silhouette(silhouette(DDclust_ACF_cuantiles, DD_ACF))
##   cluster size ave.sil.width
## 1       1   37          0.45
## 2       2   21          0.50

Contingency ACF lag.max = 50

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_ACF <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_ACF <- union(names(DDclust_ACF_cuantiles[DDclust_ACF_cuantiles == 2]),names(DDclust_ACF_cuantiles[DDclust_ACF_cuantiles == 1]))
fviz_dend(hcintper_ACF, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_ACF[,order_ACF]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 5 1
NO DETERIORO 32 20
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.1351351 0.047619
NO DETERIORO 0.8648649 0.952381

Random Forest: Discriminant TSCLust ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_cuantiles)
data_frame2 = df_descriptive
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
data_frame_merge_ACF$CLUSTER = factor(data_frame_merge_ACF$CLUSTER)
table(data_frame_merge_ACF$CLUSTER)
## 
##  1  2 
## 37 21
data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])]<- lapply(data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])], as.numeric)
head(data_frame_merge_ACF)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       2  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_ACF$CLUSTER <- factor(data_frame_merge_ACF$CLUSTER)
newMWMOTE_ACF <- data_frame_merge_ACF
table(newMWMOTE_ACF$CLUSTER)
## 
##  1  2 
## 37 21
set.seed(123)
pos_1 = get_column_position(newMWMOTE_ACF, "SAPI_0_8h")
pos_2 = get_column_position(newMWMOTE_ACF, "PAUSAS_APNEA")
col_names_factor <- names(newMWMOTE_ACF[pos_1:pos_2])
newMWMOTE_ACF[col_names_factor] <- lapply(newMWMOTE_ACF[col_names_factor] , factor)

RF_ACF <- randomForest(CLUSTER ~ ., data = newMWMOTE_ACF)
print(RF_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newMWMOTE_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 32.76%
## Confusion matrix:
##    1 2 class.error
## 1 30 7   0.1891892
## 2 12 9   0.5714286

Importance

kable(RF_ACF$importance[order(RF_ACF$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 3.1336476
PESO 3.1080877
EDAD 2.5533093
SCORE_CRUCES_INGRESO 2.3892629
FR_0_8h 1.7130177
FLUJO2_0_8H 1.6930335
DIAS_O2_TOTAL 1.4336942
EG 1.3948105
DIAS_GN 1.2519954
SAPI_0_8h 1.2253858
ALERGIAS 0.6168551
LM 0.5958568
SUERO 0.5354617
RADIOGRAFIA 0.5114914
ETIOLOGIA 0.4907219
ALIMENTACION 0.4453140
SEXO 0.4107877
ANALITICA 0.3519205
TABACO 0.3216323
ENFERMEDAD_BASE 0.3182639
GN_INGRESO 0.2200032
SNG 0.2189779
PREMATURIDAD 0.1942708
DIAS_OAF 0.1886144
DERMATITIS 0.1428792
PALIVIZUMAB 0.1408059
UCIP 0.0917510
OAF_TRAS_INGRESO 0.0853065
OAF 0.0790360
PAUSAS_APNEA 0.0565229
DETERIORO 0.0443805
OAF_AL_INGRESO 0.0000000

Importance of first 50 ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_cuantiles)
data_frame2_ACF = data.frame(t(cuantiles_TS_HR_P2_ACF[c(1:51),]))
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2_ACF,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
set.seed(123)
data_frame_merge_ACF$CLUSTER <- as.factor(data_frame_merge_ACF$CLUSTER)
RF_0_ACF <- randomForest(CLUSTER ~ ., data = data_frame_merge_ACF)
print(RF_0_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 7
## 
##         OOB estimate of  error rate: 3.45%
## Confusion matrix:
##    1  2 class.error
## 1 36  1  0.02702703
## 2  1 20  0.04761905
plot(RF_0_ACF$importance, type = "h")

### ACF by clusters

plot_data_ACF <- data.frame(datos_ACF)
cluster_data_ACF <- data.frame(DDclust_ACF_cuantiles)
plotting_ACF <- cbind(plot_data_ACF, cluster_data_ACF)
head(plotting_ACF)
##               X1        X2        X3        X4        X5        X6        X7
## ACR_11231843   1 0.2901794 0.1445375 0.1826255 0.1156195 0.1595519 0.1686698
## ADAO_11159808  1 0.6822253 0.6154150 0.5577162 0.4866438 0.4073035 0.3684635
## AGG_11236448   1 0.7487812 0.6219794 0.5160688 0.4487149 0.3684359 0.3383680
## AHL_11239959   1 0.7216901 0.6564194 0.6221447 0.5964008 0.5225439 0.4811643
## AJGD_11119689  1 0.4386855 0.4019033 0.3268365 0.2817262 0.2650908 0.2667877
## AMP_11228639   1 0.6734335 0.6218323 0.6125705 0.5636459 0.5638071 0.5570929
##                      X8        X9       X10        X11        X12        X13
## ACR_11231843  0.1356246 0.1593997 0.1304298 0.09766236 0.07545705 0.09004254
## ADAO_11159808 0.3012719 0.2706732 0.2346336 0.22413207 0.22797769 0.20471643
## AGG_11236448  0.2973079 0.3062705 0.3328523 0.37472707 0.32405037 0.33429534
## AHL_11239959  0.4616813 0.4034425 0.3739435 0.36798988 0.36492713 0.35433190
## AJGD_11119689 0.2261258 0.2193981 0.2139133 0.18065194 0.11638789 0.16416913
## AMP_11228639  0.5537405 0.5428936 0.5372326 0.53136078 0.52779325 0.53920328
##                      X14        X15        X16         X17        X18
## ACR_11231843  0.02677344 0.01490945 0.01974594 0.005618861 0.02212149
## ADAO_11159808 0.19577193 0.19279894 0.19305812 0.179245516 0.16695388
## AGG_11236448  0.34838297 0.31867504 0.26084171 0.210527705 0.18253497
## AHL_11239959  0.31897291 0.31616950 0.29874085 0.281647474 0.24081307
## AJGD_11119689 0.12788930 0.14870347 0.13484193 0.124073446 0.14696333
## AMP_11228639  0.54645529 0.57013229 0.55182133 0.526359661 0.52717011
##                      X19        X20         X21          X22        X23
## ACR_11231843  0.03849127 0.03282626 0.003204873 -0.004249007 0.02073291
## ADAO_11159808 0.17580519 0.14710489 0.129015944  0.170782789 0.17189297
## AGG_11236448  0.14966877 0.12161145 0.103789401  0.094552738 0.10727757
## AHL_11239959  0.23067472 0.22553114 0.237133230  0.240184218 0.24375071
## AJGD_11119689 0.11087734 0.13298761 0.136165841  0.195137849 0.14619485
## AMP_11228639  0.48020686 0.48482374 0.509726715  0.507047223 0.50808288
##                      X24        X25        X26         X27         X28
## ACR_11231843  0.02466074 0.02713623 0.02043259 -0.01376917 -0.01695976
## ADAO_11159808 0.15012713 0.13506276 0.13217362  0.14923846  0.11850756
## AGG_11236448  0.14700980 0.13544661 0.10712478  0.09278461  0.09252869
## AHL_11239959  0.22432351 0.21361062 0.22892399  0.19922700  0.17224130
## AJGD_11119689 0.15342557 0.13240827 0.17937112  0.14096474  0.16992387
## AMP_11228639  0.48679282 0.47317239 0.50401209  0.46815872  0.47064157
##                       X29         X30         X31          X32        X33
## ACR_11231843  -0.02843619 -0.03187011 -0.02893051 -0.005813193 0.02020365
## ADAO_11159808  0.13790996  0.10955812  0.11022192  0.104883947 0.10514811
## AGG_11236448   0.06886411  0.07736897  0.06724418  0.084017832 0.10480111
## AHL_11239959   0.17028158  0.18203776  0.13996073  0.115134809 0.13422126
## AJGD_11119689  0.14982150  0.11141859  0.12558391  0.092275395 0.09375120
## AMP_11228639   0.49272159  0.47053684  0.47026545  0.444397748 0.43388579
##                       X34         X35         X36        X37          X38
## ACR_11231843  0.004588561 0.001866749 -0.00523324 0.01269177 -0.004989279
## ADAO_11159808 0.079929832 0.081289713  0.10772381 0.11303981  0.107168473
## AGG_11236448  0.150856337 0.164490458  0.17492251 0.16206226  0.167132500
## AHL_11239959  0.136755465 0.168351378  0.17532094 0.17146793  0.152687949
## AJGD_11119689 0.113251976 0.126423103  0.09910879 0.09405352  0.141273644
## AMP_11228639  0.423813059 0.415792782  0.40051054 0.38992792  0.376832472
##                      X39        X40        X41        X42         X43
## ACR_11231843  0.02563682 0.05039609 0.05110837 0.02674054 -0.01933926
## ADAO_11159808 0.12992229 0.12115335 0.10100243 0.05577251  0.02655678
## AGG_11236448  0.14424185 0.13613581 0.12698526 0.14086689  0.14920918
## AHL_11239959  0.14823746 0.16937696 0.15642745 0.15168477  0.16870278
## AJGD_11119689 0.08395321 0.11352537 0.12545195 0.14934838  0.16166699
## AMP_11228639  0.36484784 0.37445809 0.33887233 0.34244924  0.36487856
##                        X44        X45         X46        X47        X48
## ACR_11231843  -0.006509836 0.03850558 -0.01982911 0.03179517 0.03820350
## ADAO_11159808  0.019706334 0.01700378  0.00151395 0.01989839 0.03861521
## AGG_11236448   0.154220525 0.17388005  0.16654921 0.15016039 0.15284631
## AHL_11239959   0.133464536 0.13227583  0.11398564 0.11309738 0.08914764
## AJGD_11119689  0.131890865 0.11416541  0.14351939 0.12466630 0.15183576
## AMP_11228639   0.361474591 0.34070437  0.31903501 0.32854206 0.29887161
##                        X49         X50           X51 DDclust_ACF_cuantiles
## ACR_11231843  -0.003788488 0.001135697 -0.0008443659                     1
## ADAO_11159808  0.008661457 0.027097721  0.0707360476                     1
## AGG_11236448   0.157301581 0.151940117  0.1402599507                     1
## AHL_11239959   0.068708135 0.072864831  0.0817941981                     1
## AJGD_11119689  0.080465356 0.107842017  0.0613762537                     1
## AMP_11228639   0.271305894 0.276383614  0.2682469887                     2
## Mean by groups
rp_tbl_ACF <- aggregate(plotting_ACF, by = list(plotting_ACF$DDclust_ACF_cuantiles), mean)
row.names(rp_tbl_ACF) <- paste0("Group",rp_tbl_ACF$DDclust_ACF_cuantiles)
rp_tbl_ACF <- rp_tbl_ACF %>%
  select(starts_with('X'))
rp_tbl_ACF <- data.frame(t(rp_tbl_ACF))
head(rp_tbl_ACF)
##       Group1    Group2
## X1 1.0000000 1.0000000
## X2 0.6762286 0.8512600
## X3 0.6186539 0.8110216
## X4 0.5652320 0.7819768
## X5 0.5184559 0.7538167
## X6 0.4779945 0.7317472
# Create plotting data-frame
ACF_values_by_group <- data.frame("value_ACF" = c(rp_tbl_ACF$Group1,rp_tbl_ACF$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_ACF$Group1)),
                                              rep("Group2", times = length(rp_tbl_ACF$Group2))),
                                  "index" = c(c(1:length(rp_tbl_ACF$Group1)),c(1:length(rp_tbl_ACF$Group2))))

p <- ggplot(ACF_values_by_group, aes(x = index, y = value_ACF, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

EUCL TSclust

# DD_EUCL <- diss(datos, "EUCL")

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.6074170 0.3927671 0.6968036 0.9489753

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_EUCL
res<-NbClust(datos, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.3008 0.1657 0.1653 0.1769
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.3008
#res$Best.partition
hcintper_EUCL <- hclust(DD_EUCL, "ward.D2")
fviz_dend(hcintper_EUCL, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)

DDclust_EUCL_cuantiles <- cutree( hclust(DD_EUCL, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_EUCL_cuantiles))

fviz_silhouette(silhouette(DDclust_EUCL_cuantiles, DD_EUCL))
##   cluster size ave.sil.width
## 1       1   39          0.37
## 2       2   19          0.15

Contingency EUCL

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_EUCL <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_EUCL <- union(names(DDclust_EUCL_cuantiles[DDclust_EUCL_cuantiles == 2]),names(DDclust_EUCL_cuantiles[DDclust_EUCL_cuantiles == 1]))
fviz_dend(hcintper_EUCL, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_EUCL[,order_EUCL]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 6 0
NO DETERIORO 33 19
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.1538462 0
NO DETERIORO 0.8461538 1

Random Forest: Discriminant TSCLust EUCL

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_cuantiles)
data_frame2 = df_descriptive
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
data_frame_merge_EUCL$CLUSTER = factor(data_frame_merge_EUCL$CLUSTER)
table(data_frame_merge_EUCL$CLUSTER)
## 
##  1  2 
## 39 19
data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])]<- lapply(data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])], as.numeric)
head(data_frame_merge_EUCL)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       2  3.1 5.66 37      44        1.00       4             4        0
## 4       2  5.3 8.44 38      65        0.40       3             3        0
## 5       2 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_EUCL$CLUSTER <- factor(data_frame_merge_EUCL$CLUSTER)
newMWMOTE_EUCL <- oversample(data_frame_merge_EUCL, ratio = 0.85, method = "MWMOTE", classAttr = "CLUSTER")
newMWMOTE_EUCL <- data.frame(newMWMOTE_EUCL)
pos_1 <- get_column_position(newMWMOTE_EUCL, "SAPI_0_8h")
pos_2 <- get_column_position(newMWMOTE_EUCL, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newMWMOTE_EUCL[, columns_to_round] <- lapply(newMWMOTE_EUCL[, columns_to_round], function(x) round(x, 1))
table(newMWMOTE_EUCL$CLUSTER)
## 
##  1  2 
## 39 34
set.seed(123)
pos_1 = get_column_position(newMWMOTE_EUCL, "SAPI_0_8h")
pos_2 = get_column_position(newMWMOTE_EUCL, "PAUSAS_APNEA")
col_names_factor <- names(newMWMOTE_EUCL[pos_1:pos_2])
newMWMOTE_EUCL[col_names_factor] <- lapply(newMWMOTE_EUCL[col_names_factor] , factor)

RF_EUCL <- randomForest(CLUSTER ~ ., data = newMWMOTE_EUCL)
print(RF_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newMWMOTE_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 36.99%
## Confusion matrix:
##    1  2 class.error
## 1 26 13   0.3333333
## 2 14 20   0.4117647

Importance

kable(RF_EUCL$importance[order(RF_EUCL$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 3.8597355
SCORE_CRUCES_INGRESO 3.3423195
PESO 3.2757830
DIAS_O2_TOTAL 2.8530298
FR_0_8h 2.6567973
EDAD 2.4953821
SAPI_0_8h 2.0102588
DIAS_GN 1.6183414
EG 1.6005812
FLUJO2_0_8H 1.4937520
SEXO 1.1383538
TABACO 1.1200215
LM 1.0384205
RADIOGRAFIA 1.0071133
ANALITICA 0.8374012
ETIOLOGIA 0.6741771
SUERO 0.5873746
ENFERMEDAD_BASE 0.5808818
GN_INGRESO 0.5312364
ALERGIAS 0.4417460
ALIMENTACION 0.4414810
PREMATURIDAD 0.4171263
DIAS_OAF 0.1833326
SNG 0.1727058
DERMATITIS 0.1725681
PALIVIZUMAB 0.1547595
PAUSAS_APNEA 0.1450905
OAF_TRAS_INGRESO 0.1229658
OAF 0.1192774
DETERIORO 0.0947380
UCIP 0.0081992
OAF_AL_INGRESO 0.0000000

Importance of the TS-data

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_cuantiles)
data_frame2_EUCL = data.frame(datos_EUCL)
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2_EUCL,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
set.seed(123)
data_frame_merge_EUCL$CLUSTER <- as.factor(data_frame_merge_EUCL$CLUSTER)
RF_0_EUCL <- randomForest(CLUSTER ~ ., data = data_frame_merge_EUCL)
print(RF_0_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 5.17%
## Confusion matrix:
##    1  2 class.error
## 1 39  0   0.0000000
## 2  3 16   0.1578947
plot(RF_0_EUCL$importance, type = "h")

EUCL by clusters

plot_data_EUCL <- data.frame(t(datos))
cluster_data_EUCL <- data.frame(DDclust_EUCL_cuantiles)
plotting_EUCL <- cbind(plot_data_EUCL, cluster_data_EUCL)
head(plotting_EUCL)
##                      X1        X2        X3        X4        X5        X6
## ACR_11231843  0.8619571 0.7949917 0.9122027 0.9945867 0.9995873 0.9945867
## ADAO_11159808 0.5612683 0.6354365 0.4848774 0.6354365 0.4848774 0.3601399
## AGG_11236448  0.5158019 0.5049792 0.4952942 0.5492029 0.4345703 0.4312846
## AHL_11239959  0.8255615 0.8255615 0.3898689 0.8863008 0.9388251 0.8987865
## AJGD_11119689 0.2944890 0.2304833 0.2059313 0.1170242 0.3613294 0.3320483
## AMP_11228639  0.9691826 0.7481586 0.8339437 0.4286186 0.5272855 0.6005238
##                      X7        X8        X9       X10       X11       X12
## ACR_11231843  0.9814195 0.9905952 0.9921454 0.9744921 0.9315044 0.9223077
## ADAO_11159808 0.4090392 0.4090392 0.3601399 0.3364692 0.3843594 0.2910958
## AGG_11236448  0.4793684 0.3642054 0.3391369 0.2466285 0.5766754 0.4962728
## AHL_11239959  0.9388251 0.7685352 0.9535354 0.9701419 0.9597441 0.9652613
## AJGD_11119689 0.2205346 0.0773939 0.1578963 0.1405510 0.1472977 0.2872519
## AMP_11228639  0.3119546 0.9404413 0.6925331 0.8939962 0.6925331 0.7737891
##                     X13       X14        X15        X16       X17        X18
## ACR_11231843  0.9315044 0.9122027 0.99059516 0.99059516 0.9655215 0.92230772
## ADAO_11159808 0.2488054 0.3601399 0.31342953 0.38435943 0.8218898 0.58637089
## AGG_11236448  0.2911670 0.6287538 0.78861097 0.92070450 0.9207045 0.76853521
## AHL_11239959  0.9889417 0.9936325 0.98681707 0.97014186 0.9388251 0.57667541
## AJGD_11119689 0.1702522 0.0958889 0.02506787 0.01844418 0.1750516 0.05765972
## AMP_11228639  0.6005238 0.4777816 0.62429782 0.62429782 0.7140068 0.85583874
##                     X19        X20         X21       X22       X23        X24
## ACR_11231843  0.9315044 0.91220267 0.901148228 0.9315044 0.8891082 0.93150439
## ADAO_11159808 0.5104184 0.38435943 0.459398309 0.2695349 0.4848774 0.33646919
## AGG_11236448  0.7023921 0.29116698 0.187303691 0.6539969 0.9744395 0.97820653
## AHL_11239959  0.3898689 0.31476118 0.807628499 0.3147612 0.4425521 0.36420541
## AJGD_11119689 0.3134295 0.03356055 0.009561289 0.8380867 0.1750516 0.02153844
## AMP_11228639  0.7737891 0.84127788 0.855838743 0.8412779 0.8412779 0.89399617
##                     X25       X26        X27         X28       X29        X30
## ACR_11231843  0.9655215 0.9122027 0.92230772 0.876052408 0.9011482 0.92230772
## ADAO_11159808 0.4593983 0.3843594 0.29109580 0.269534949 0.2910958 0.70484551
## AGG_11236448  0.9947464 0.9947464 0.99363255 0.986817068 0.9956835 0.94658044
## AHL_11239959  0.9597441 0.7474389 0.82556153 0.984348540 0.8581240 0.98434854
## AJGD_11119689 0.1750516 0.1299790 0.09365279 0.009561289 0.8380867 0.03862848
## AMP_11228639  0.9594853 0.8939962 0.96460556 0.893996173 0.7546823 0.69253309
##                     X31         X32       X33       X34         X35       X36
## ACR_11231843  0.9781871 0.984234811 0.9398376 0.9223077 0.960145689 0.9315044
## ADAO_11159808 0.5612683 0.611125290 0.4848774 0.6354365 0.635436457 0.7674546
## AGG_11236448  0.9207045 0.999030151 0.6029441 0.3391369 0.678573488 0.3391369
## AHL_11239959  0.9868171 0.988941703 0.9971224 0.9843485 0.858124002 0.9465804
## AJGD_11119689 0.6354365 0.006733018 0.2289565 0.9330496 0.006733018 0.3364692
## AMP_11228639  0.7737891 0.915004699 0.7737891 0.6476090 0.692533085 0.7347403
##                     X37       X38       X39       X40       X41       X42
## ACR_11231843  0.9702867 0.9781871 0.8891082 0.9398376 0.9122027 0.9921454
## ADAO_11159808 0.7265534 0.8047076 0.9043587 0.8047076 0.7865546 0.8930219
## AGG_11236448  0.2258099 0.3391369 0.2060235 0.6287538 0.4425521 0.6287538
## AHL_11239959  0.8255615 0.8423949 0.9744395 0.8863008 0.9102420 0.8987865
## AJGD_11119689 0.9837916 0.9930416 0.9545813 0.9837916 0.1920531 0.1169202
## AMP_11228639  0.6703784 0.8093636 0.8093636 0.7737891 0.7140068 0.8093636
##                      X43        X44        X45       X46        X47       X48
## ACR_11231843  0.98141954 0.98141954 0.99458674 0.9969948 0.99839139 0.9983914
## ADAO_11159808 0.70484551 0.70484551 0.82188985 0.6354365 0.91478567 0.6592147
## AGG_11236448  0.09794449 0.01493212 0.09794449 0.4693427 0.05894743 0.1531456
## AHL_11239959  0.87275440 0.82556153 0.72537103 0.9207045 0.65399692 0.7474389
## AJGD_11119689 0.45939831 0.02506050 0.04430325 0.1750516 0.10481961 0.5612683
## AMP_11228639  0.79202527 0.80936362 0.88218468 0.8939962 0.86947096 0.8694710
##                       X49         X50         X51        X52        X53
## ACR_11231843  0.999476896 0.997550027 0.996328711 0.99458674 0.99346629
## ADAO_11159808 0.659214659 0.484877378 0.586370888 0.80470761 0.38435943
## AGG_11236448  0.169673669 0.153145625 0.123392425 0.29116698 0.06731491
## AHL_11239959  0.807628499 0.678573488 0.725371032 0.67857349 0.67857349
## AJGD_11119689 0.002149111 0.008038418 0.008038418 0.03862848 0.24880536
## AMP_11228639  0.882184675 0.855838743 0.904927276 0.86947096 0.94744551
##                      X54         X55        X56        X57        X58       X59
## ACR_11231843  0.99059516 0.988783610 0.98667603 0.97818713 0.97818713 0.9781871
## ADAO_11159808 0.65921466 0.853292327 0.65921466 0.51041836 0.53591668 0.6354365
## AGG_11236448  0.02861380 0.038663594 0.49627279 0.07657227 0.38986888 0.4693427
## AHL_11239959  0.98149352 0.496272787 0.55006125 0.55006125 0.57667541 0.6539969
## AJGD_11119689 0.05063153 0.002149111 0.02905308 0.04430325 0.03862848 0.9409654
## AMP_11228639  0.90492728 0.893996173 0.90492728 0.84127788 0.80936362 0.7920253
##                     X60       X61       X62        X63       X64       X65
## ACR_11231843  0.9655215 0.9702867 0.9744921 0.97818713 0.9781871 0.9744921
## ADAO_11159808 0.6823764 0.8675089 0.9330496 0.80470761 0.6592147 0.9330496
## AGG_11236448  0.2060235 0.2911670 0.1531456 0.05894743 0.1233924 0.4962728
## AHL_11239959  0.6029441 0.5500612 0.6029441 0.62875379 0.5766754 0.5500612
## AJGD_11119689 0.9883141 0.6592147 0.9972785 0.51041836 0.9981792 0.2100287
## AMP_11228639  0.8412779 0.9049273 0.8558387 0.85583874 0.9049273 0.9150047
##                      X66        X67       X68        X69       X70        X71
## ACR_11231843  0.94735531 0.96552152 0.9655215 0.98423481 0.9866760 0.99059516
## ADAO_11159808 0.70484551 0.80470761 0.7265534 0.74744014 0.9603730 0.83808673
## AGG_11236448  0.08676751 0.13772126 0.3642054 0.57667541 0.3642054 0.60294413
## AHL_11239959  0.82556153 0.92070450 0.9597441 0.89878648 0.9936325 0.93882508
## AJGD_11119689 0.01133059 0.03356055 0.0250605 0.03356055 0.0250605 0.02153844
## AMP_11228639  0.93272581 0.86947096 0.8412779 0.93272581 0.8821847 0.86947096
##                      X72        X73        X74        X75       X76       X77
## ACR_11231843  0.99458674 0.99059516 0.99553303 0.98878361 0.9866760 0.9934663
## ADAO_11159808 0.70484551 0.90435865 0.83808673 0.70484551 0.7674546 0.8218898
## AGG_11236448  0.41602180 0.18730369 0.29116698 0.88630083 0.6029441 0.5232199
## AHL_11239959  0.99568352 0.97014186 0.97443947 0.99076202 0.9907620 0.9535354
## AJGD_11119689 0.03356055 0.08338983 0.02905308 0.01573686 0.7265534 0.0250605
## AMP_11228639  0.93272581 0.84127788 0.90492728 0.88218468 0.7920253 0.8093636
##                     X78       X79       X80       X81       X82       X83
## ACR_11231843  0.9934663 0.9963287 0.9945867 0.9945867 0.9887836 0.9945867
## ADAO_11159808 0.7865546 0.5612683 0.5863709 0.7674546 0.7265534 0.7865546
## AGG_11236448  0.3898689 0.5232199 0.3391369 0.4160218 0.3391369 0.4425521
## AHL_11239959  0.9535354 0.9868171 0.9597441 0.9907620 0.9964683 0.9465804
## AJGD_11119689 0.6592147 0.7265534 0.9243367 0.9951658 0.9742405 0.9043587
## AMP_11228639  0.9594853 0.9150047 0.7546823 0.7920253 0.8093636 0.7546823
##                     X84       X85       X86       X87       X88         X89
## ACR_11231843  0.9945867 0.9945867 0.9905952 0.9814195 0.9887836 0.984234811
## ADAO_11159808 0.7265534 0.7265534 0.7265534 0.7048455 0.8532923 0.682376447
## AGG_11236448  0.6287538 0.7474389 0.1873037 0.0286138 0.0286138 0.001776958
## AHL_11239959  0.9302165 0.7886110 0.9102420 0.7685352 0.9102420 0.725371032
## AJGD_11119689 0.9545813 0.9951658 0.9966916 0.7674546 0.9481275 0.991698168
## AMP_11228639  0.9732584 0.8694710 0.9594853 0.8821847 0.9875007 0.940441332
##                     X90        X91        X92         X93         X94
## ACR_11231843  0.9781871 0.97449209 0.97449209 0.978187135 0.978187135
## ADAO_11159808 0.6111253 0.70484551 0.86750890 0.611125290 0.804707611
## AGG_11236448  0.2060235 0.01493212 0.01767585 0.004085238 0.007298943
## AHL_11239959  0.8255615 0.82556153 0.72537103 0.678573488 0.993632550
## AJGD_11119689 0.3601399 0.61112529 0.29109580 0.384359435 0.747440143
## AMP_11228639  0.9768739 0.98288088 0.80936362 0.893996173 0.932725811
##                      X95        X96         X97       X98         X99
## ACR_11231843  0.98141954 0.97449209 0.978187135 0.9702867 0.986676032
## ADAO_11159808 0.70484551 0.76745456 0.747440143 0.7048455 0.867508904
## AGG_11236448  0.06731491 0.01767585 0.004977864 0.0087834 0.008783400
## AHL_11239959  0.99231451 0.65399692 0.550061248 0.6287538 0.576675409
## AJGD_11119689 0.21002875 0.99669159 0.994189293 0.5359167 0.006733018
## AMP_11228639  0.94044133 0.89399617 0.964605556 0.8694710 0.893996173
##                     X100        X101        X102        X103        X104
## ACR_11231843  0.95410756 0.974492089 0.970286714 0.965521524 0.978187135
## ADAO_11159808 0.65921466 0.635436457 0.747440143 0.704845513 0.635436457
## AGG_11236448  0.01256281 0.004977864 0.006040257 0.006040257 0.003338666
## AHL_11239959  0.49627279 0.628753792 0.550061248 0.442552103 0.946580443
## AJGD_11119689 0.03356055 0.057659723 0.313429528 0.853292327 0.682376447
## AMP_11228639  0.86947096 0.953779464 0.953779464 0.940441332 0.924259383
##                      X105        X106        X107       X108        X109
## ACR_11231843  0.970286714 0.981419536 0.954107565 0.99059516 0.986676032
## ADAO_11159808 0.561268274 0.535916678 0.484877378 0.88074642 0.635436457
## AGG_11236448  0.002717094 0.004085238 0.001427936 0.01256281 0.000274233
## AHL_11239959  0.678573488 0.523219920 0.653996918 0.52321992 0.469342657
## AJGD_11119689 0.986212039 0.360139895 0.065433303 0.06543330 0.093652790
## AMP_11228639  0.940441332 0.893996173 0.953779464 0.91500470 0.893996173
##                      X110         X111        X112       X113        X114
## ACR_11231843  0.978187135 0.9905951610 0.986676032 0.98423481 0.990595161
## ADAO_11159808 0.659214659 0.6592146589 0.767454561 0.68237645 0.635436457
## AGG_11236448  0.004977864 0.0003516147 0.007298943 0.01052615 0.002201951
## AHL_11239959  0.959744055 0.7685352079 0.442552103 0.38986888 0.389868878
## AJGD_11119689 0.786554647 0.9603729609 0.313429528 0.94096537 0.409039171
## AMP_11228639  0.882184675 0.8939961729 0.932725811 0.91500470 0.904927276
##                      X115      X116      X117      X118      X119      X120
## ACR_11231843  0.984234811 0.9887836 0.9945867 0.9945867 0.9842348 0.9781871
## ADAO_11159808 0.484877378 0.5359167 0.5104184 0.6823764 0.8675089 0.7865546
## AGG_11236448  0.006040257 0.7474389 0.9597441 0.9207045 0.9302165 0.9102420
## AHL_11239959  0.364205405 0.3898689 0.3642054 0.3898689 0.4425521 0.3642054
## AJGD_11119689 0.210028749 0.9742405 0.9930416 0.9837916 0.5612683 0.4848774
## AMP_11228639  0.792025266 0.9404413 0.8412779 0.9242594 0.9537795 0.8257849
##                     X121       X122      X123       X124       X125       X126
## ACR_11231843  0.98423481 0.98667603 0.9921454 0.98141954 0.98878361 0.97449209
## ADAO_11159808 0.90435865 0.90435865 0.8807464 0.95458129 0.82188985 0.99992884
## AGG_11236448  0.07657227 0.01767585 0.3147612 0.04467562 0.01256281 0.03866359
## AHL_11239959  0.38986888 0.49627279 0.2911670 0.36420541 0.38986888 0.36420541
## AJGD_11119689 0.99013214 0.98831408 0.9701565 0.97015647 0.97015647 0.94096537
## AMP_11228639  0.79202527 0.95377946 0.9800687 0.89399617 0.88218468 0.89399617
##                    X127       X128      X129      X130       X131       X132
## ACR_11231843  0.9866760 0.97449209 0.9702867 0.9905952 0.97818713 0.97449209
## ADAO_11159808 0.9996044 0.99992884 0.9330496 0.9043587 0.93304961 0.68237645
## AGG_11236448  0.2258099 0.07657227 0.2258099 0.3898689 0.04467562 0.03866359
## AHL_11239959  0.3642054 0.36420541 0.3391369 0.2060235 0.11014195 0.24662852
## AJGD_11119689 0.8807464 0.76745456 0.3843594 0.7265534 0.72655341 0.58637089
## AMP_11228639  0.9474455 0.79202527 0.9537795 0.9049273 0.75468226 0.91500470
##                     X133       X134       X135       X136       X137       X138
## ACR_11231843  0.98141954 0.99346629 0.98878361 0.97028671 0.97028671 0.99059516
## ADAO_11159808 0.76745456 0.74744014 0.72655341 0.61112529 0.58637089 0.63543646
## AGG_11236448  0.08676751 0.05141874 0.08676751 0.06731491 0.05141874 0.05141874
## AHL_11239959  0.24662852 0.20602351 0.18730369 0.26843330 0.26843330 0.85812400
## AJGD_11119689 0.51041836 0.70484551 0.56126827 0.63543646 0.56126827 0.29109580
## AMP_11228639  0.84127788 0.96918264 0.94044133 0.95948531 0.89399617 0.96460556
##                     X139      X140      X141       X142       X143       X144
## ACR_11231843  0.98423481 0.9655215 0.9814195 0.96014569 0.97449209 0.97028671
## ADAO_11159808 0.61112529 0.6111253 0.4848774 0.43408498 0.56126827 0.63543646
## AGG_11236448  0.08676751 0.1101420 0.1531456 0.07657227 0.05141874 0.08676751
## AHL_11239959  0.95353537 0.4176306 0.3808987 0.36193905 0.43693368 0.42241424
## AJGD_11119689 0.31342953 0.3601399 0.9330496 0.33646919 0.43408498 0.33646919
## AMP_11228639  0.91500470 0.4777816 0.7920253 0.62429782 0.64760899 0.60052379
##                     X145      X146       X147       X148       X149       X150
## ACR_11231843  0.98141954 0.9655215 0.95410756 0.96552152 0.97818713 0.98423481
## ADAO_11159808 0.51041836 0.3134295 0.33646919 0.53591668 0.53591668 0.29109580
## AGG_11236448  0.06731491 0.1531456 0.04467562 0.01493212 0.03866359 0.05141874
## AHL_11239959  0.59349343 0.9535354 0.97820653 0.80762850 0.57667541 0.88630083
## AJGD_11119689 0.56126827 0.3843594 0.51041836 0.92433672 0.82188985 0.53591668
## AMP_11228639  0.47778157 0.7546823 0.80936362 0.67037839 0.47778157 0.90492728
##                    X151       X152       X153       X154       X155       X156
## ACR_11231843  0.9655215 0.93150439 0.97818713 0.99947690 0.99980226 0.99059516
## ADAO_11159808 0.5612683 0.61112529 0.53591668 0.76745456 0.58637089 0.65921466
## AGG_11236448  0.2060235 0.02446806 0.06731491 0.06731491 0.03866359 0.04467562
## AHL_11239959  0.9465804 0.97443947 0.84239487 0.92070450 0.08676751 0.02861380
## AJGD_11119689 0.7265534 0.99304157 0.68237645 0.21002875 0.26953495 0.08338983
## AMP_11228639  0.6703784 0.75468226 0.94044133 0.62429782 0.57637094 0.57637094
##                     X157       X158      X159       X160      X161        X162
## ACR_11231843  0.96552152 0.96014569 0.9398376 0.93150439 0.9223077 0.889108250
## ADAO_11159808 0.70484551 0.72655341 0.6354365 0.80470761 0.6111253 0.804707611
## AGG_11236448  0.01767585 0.01767585 0.0087834 0.01052615 0.0286138 0.001776958
## AHL_11239959  0.20602351 0.20602351 0.4693427 0.52321992 0.8076285 0.550061248
## AJGD_11119689 0.40903917 0.99599329 0.2100287 0.45939831 0.9972785 0.747440143
## AMP_11228639  0.40439887 0.29033629 0.6925331 0.64760899 0.6703784 0.754682264
##                     X163       X164       X165       X166       X167       X168
## ACR_11231843  0.92230772 0.94735531 0.92230772 0.93150439 0.91220267 0.93983761
## ADAO_11159808 0.40903917 0.38435943 0.48487738 0.86750890 0.38435943 0.61112529
## AGG_11236448  0.02083869 0.02083869 0.01493212 0.01052615 0.01767585 0.01493212
## AHL_11239959  0.65399692 0.76853521 0.70239212 0.41602180 0.65399692 0.93882508
## AJGD_11119689 0.98101598 0.98831408 0.56126827 0.15903717 0.36013990 0.96554920
## AMP_11228639  0.85583874 0.90492728 0.57637094 0.67037839 0.57637094 0.57637094
##                     X169      X170       X171      X172        X173       X174
## ACR_11231843  0.96014569 0.9655215 0.95410756 0.9781871 0.978187135 0.98878361
## ADAO_11159808 0.58637089 0.5863709 0.48487738 0.6111253 0.726553413 0.98621204
## AGG_11236448  0.02083869 0.0087834 0.02083869 0.0286138 0.006040257 0.02446806
## AHL_11239959  0.46934266 0.4160218 0.67857349 0.8076285 0.807628499 0.36420541
## AJGD_11119689 0.12997898 0.8807464 0.88074642 0.8218898 0.269534949 0.98101598
## AMP_11228639  0.57637094 0.5025384 0.52728547 0.4531102 0.692533085 0.89399617
##                     X175       X176      X177       X178       X179       X180
## ACR_11231843  0.98423481 0.96014569 0.9601457 0.99214543 0.96552152 0.96552152
## ADAO_11159808 0.99304157 0.98621204 0.9883141 0.76745456 0.86750890 0.82188985
## AGG_11236448  0.01493212 0.01493212 0.0087834 0.01052615 0.01493212 0.02446806
## AHL_11239959  0.93021654 0.07657227 0.2258099 0.44255210 0.16967367 0.24662852
## AJGD_11119689 0.56126827 0.97015647 0.1750516 0.53591668 0.07399615 0.85329233
## AMP_11228639  0.85583874 0.62429782 0.8093636 0.52728547 0.55192762 0.50253841
##                      X181       X182        X183        X184       X185
## ACR_11231843  0.830592548 0.93150439 0.970286714 0.947355314 0.96014569
## ADAO_11159808 0.821889846 0.72655341 0.611125290 0.977846026 0.86750890
## AGG_11236448  0.004977864 0.01767585 0.007298943 0.004085238 0.01493212
## AHL_11239959  0.169673669 0.24662852 0.469342657 0.314761178 0.31476118
## AJGD_11119689 0.083389830 0.03862848 0.104819609 0.880746422 0.21002875
## AMP_11228639  0.825784930 0.35712754 0.502538410 0.527285472 0.69253309
##                      X186       X187       X188       X189       X190
## ACR_11231843  0.939837606 0.99553303 0.98878361 0.97818713 0.93983761
## ADAO_11159808 0.704845513 0.78655465 0.91478567 0.85329233 0.61112529
## AGG_11236448  0.006040257 0.36420541 0.06731491 0.41602180 0.05894743
## AHL_11239959  0.416021797 0.38986888 0.46934266 0.29116698 0.36420541
## AJGD_11119689 0.384359435 0.04430325 0.09365279 0.01844418 0.03356055
## AMP_11228639  0.380540191 0.50253841 0.52728547 0.64760899 0.67037839
##                     X191       X192       X193        X194        X195
## ACR_11231843  0.93150439 0.94735531 0.88910825 0.922307721 0.954107565
## ADAO_11159808 0.43408498 0.36013990 0.26953495 0.535916678 0.867508904
## AGG_11236448  0.01256281 0.07657227 0.03332782 0.007298943 0.007298943
## AHL_11239959  0.36420541 0.38986888 0.36420541 0.389868878 0.291166982
## AJGD_11119689 0.40903917 0.05063153 0.07399615 0.038628475 0.038628475
## AMP_11228639  0.73474032 0.38054019 0.60052379 0.502538410 0.576370945
##                      X196       X197       X198       X199       X200
## ACR_11231843  0.954107565 0.94735531 0.98878361 0.98141954 0.99755003
## ADAO_11159808 0.434084976 0.43408498 0.58637089 0.38435943 0.43408498
## AGG_11236448  0.007298943 0.01493212 0.01256281 0.01767585 0.02446806
## AHL_11239959  0.206023506 0.46934266 0.36420541 0.36420541 0.36420541
## AJGD_11119689 0.073996154 0.97784603 0.31342953 0.72655341 0.06543330
## AMP_11228639  0.882184675 0.55192762 0.62429782 0.67037839 0.38054019
##                     X201       X202       X203        X204        X205
## ACR_11231843  0.99458674 0.99458674 0.99458674 0.997550027 0.998704500
## ADAO_11159808 0.38435943 0.38435943 0.31342953 0.409039171 0.434084976
## AGG_11236448  0.02446806 0.01493212 0.01052615 0.004977864 0.006040257
## AHL_11239959  0.26843330 0.29116698 0.31476118 0.416021797 0.268433300
## AJGD_11119689 0.05765972 0.03356055 0.03862848 0.965549195 0.535916678
## AMP_11228639  0.31195462 0.62429782 0.38054019 0.404398873 0.527285472
##                     X206       X207       X208       X209       X210       X211
## ACR_11231843  0.99755003 0.99553303 0.99214543 0.99458674 0.99632871 0.99346629
## ADAO_11159808 0.33646919 0.31342953 0.38435943 0.29109580 0.22895652 0.29109580
## AGG_11236448  0.00878340 0.01767585 0.01256281 0.01493212 0.01767585 0.01256281
## AHL_11239959  0.29116698 0.36420541 0.36420541 0.41602180 0.41602180 0.26843330
## AJGD_11119689 0.01573686 0.01133059 0.03862848 0.02506050 0.05063153 0.03862848
## AMP_11228639  0.55192762 0.40439887 0.35712754 0.42861858 0.26944658 0.26944658
##                     X212      X213       X214        X215       X216       X217
## ACR_11231843  0.98878361 0.9781871 0.97028671 0.960145689 0.96014569 0.94735531
## ADAO_11159808 0.45939831 0.3843594 0.19205313 0.248805364 0.26953495 0.36013990
## AGG_11236448  0.03332782 0.2684333 0.03866359 0.007298943 0.03332782 0.01493212
## AHL_11239959  0.18730369 0.2060235 0.22580994 0.314761178 0.31476118 0.36420541
## AJGD_11119689 0.10481961 0.6592147 0.61112529 0.175051609 0.26953495 0.89302189
## AMP_11228639  0.35712754 0.2694466 0.35712754 0.404398873 0.38054019 0.31195462
##                      X218       X219       X220       X221       X222
## ACR_11231843  0.931504387 0.95410756 0.94735531 0.94735531 0.94735531
## ADAO_11159808 0.248805364 0.29109580 0.31342953 0.24880536 0.19205313
## AGG_11236448  0.004977864 0.02083869 0.05141874 0.09794449 0.06731491
## AHL_11239959  0.389868878 0.44255210 0.41602180 0.29116698 0.29116698
## AJGD_11119689 0.484877378 0.02905308 0.07399615 0.21002875 0.03356055
## AMP_11228639  0.211640290 0.40439887 0.42861858 0.35712754 0.38054019
##                     X223       X224       X225       X226       X227      X228
## ACR_11231843  0.92230772 0.96014569 0.92230772 0.93983761 0.91220267 0.8305925
## ADAO_11159808 0.74744014 0.17505161 0.29109580 0.40903917 0.43408498 0.4848774
## AGG_11236448  0.04467562 0.05141874 0.05894743 0.02446806 0.05141874 0.1873037
## AHL_11239959  0.38986888 0.29116698 0.18730369 0.38986888 0.36420541 0.4425521
## AJGD_11119689 0.24880536 0.15903717 0.89302189 0.11692019 0.72655341 0.3364692
## AMP_11228639  0.40439887 0.38054019 0.33424094 0.35712754 0.38054019 0.4531102
##                    X229       X230      X231      X232       X233       X234
## ACR_11231843  0.9473553 0.97449209 0.9814195 0.9702867 0.97028671 0.97028671
## ADAO_11159808 0.2910958 0.29109580 0.4090392 0.3843594 0.40903917 0.72655341
## AGG_11236448  0.1233924 0.02446806 0.1377213 0.1873037 0.06731491 0.15314562
## AHL_11239959  0.3898689 0.31476118 0.3391369 0.7474389 0.36420541 0.38986888
## AJGD_11119689 0.9655492 0.05765972 0.3843594 0.9545813 0.31342953 0.07399615
## AMP_11228639  0.2903363 0.45311021 0.3342409 0.4286186 0.35712754 0.35712754
##                     X235       X236        X237      X238       X239       X240
## ACR_11231843  0.95410756 0.99458674 0.970286714 0.9473553 0.97449209 0.93150439
## ADAO_11159808 0.72655341 0.31342953 0.360139895 0.3843594 0.29109580 0.43408498
## AGG_11236448  0.05894743 0.04467562 0.097944494 0.1233924 0.04467562 0.02083869
## AHL_11239959  0.46934266 0.70239212 0.339136925 0.4425521 0.38986888 0.95353537
## AJGD_11119689 0.68237645 0.12997898 0.002624277 0.8047076 0.89302189 0.02506050
## AMP_11228639  0.45311021 0.47778157 0.754682264 0.5272855 0.31195462 0.60052379
##                    X241       X242       X243       X244       X245       X246
## ACR_11231843  0.9541076 0.98141954 0.97449209 0.95410756 0.97449209 0.98423481
## ADAO_11159808 0.2695349 0.38435943 0.36013990 0.31342953 0.26953495 0.22895652
## AGG_11236448  0.0286138 0.05894743 0.02446806 0.03866359 0.06731491 0.03866359
## AHL_11239959  0.1696737 0.24662852 0.31476118 0.80762850 0.26843330 0.31476118
## AJGD_11119689 0.9810160 0.29109580 0.12997898 0.98379161 0.09365279 0.98379161
## AMP_11228639  0.2694466 0.26944658 0.40439887 0.21164029 0.17750562 0.19411607
##                     X247        X248       X249       X250       X251
## ACR_11231843  0.97028671 0.978187135 0.91220267 0.98141954 0.98667603
## ADAO_11159808 0.24880536 0.248805364 0.26953495 0.21002875 0.24880536
## AGG_11236448  0.05141874 0.044675617 0.02861380 0.01767585 0.02083869
## AHL_11239959  0.36420541 0.364205405 0.33913693 0.33913693 0.82556153
## AJGD_11119689 0.05765972 0.009561289 0.09365279 0.96554920 0.05765972
## AMP_11228639  0.38054019 0.734740320 0.50253841 0.38054019 0.57637094
##                     X252       X253       X254       X255       X256       X257
## ACR_11231843  0.68872943 0.79499172 0.99632871 0.99214543 0.98423481 0.97449209
## ADAO_11159808 0.22895652 0.22895652 0.22895652 0.24880536 0.22895652 0.21002875
## AGG_11236448  0.02861380 0.01052615 0.01767585 0.01052615 0.03866359 0.03332782
## AHL_11239959  0.20602351 0.16967367 0.24662852 0.36420541 0.29116698 0.29116698
## AJGD_11119689 0.03862848 0.04430325 0.04430325 0.04430325 0.24880536 0.02506050
## AMP_11228639  0.52728547 0.19411607 0.24933856 0.38054019 0.33424094 0.60052379
##                     X258       X259       X260       X261      X262       X263
## ACR_11231843  0.96014569 0.93150439 0.91220267 0.91220267 0.9702867 0.94735531
## ADAO_11159808 0.22895652 0.51041836 0.74744014 0.92433672 0.9043587 0.76745456
## AGG_11236448  0.03866359 0.05141874 0.02083869 0.02083869 0.0087834 0.02083869
## AHL_11239959  0.33913693 0.33913693 0.36420541 0.33913693 0.4425521 0.41602180
## AJGD_11119689 0.01573686 0.78655465 0.80470761 0.51041836 0.3601399 0.26953495
## AMP_11228639  0.33424094 0.45311021 0.33424094 0.33424094 0.7347403 0.82578493
##                     X264       X265       X266       X267       X268       X269
## ACR_11231843  0.93983761 0.92230772 0.98423481 0.98141954 0.98423481 0.98667603
## ADAO_11159808 0.65921466 0.83808673 0.82188985 0.48487738 0.31342953 0.31342953
## AGG_11236448  0.03332782 0.05894743 0.01767585 0.03866359 0.01493212 0.01493212
## AHL_11239959  0.26843330 0.41602180 0.46934266 0.38986888 0.44255210 0.97443947
## AJGD_11119689 0.38435943 0.61112529 0.43408498 0.12997898 0.08338983 0.03862848
## AMP_11228639  0.73474032 0.82578493 0.80936362 0.50253841 0.80936362 0.71400677
##                     X270       X271       X272       X273       X274       X275
## ACR_11231843  0.98141954 0.94735531 0.94735531 0.94735531 0.96014569 0.94735531
## ADAO_11159808 0.31342953 0.33646919 0.61112529 0.65921466 0.43408498 0.65921466
## AGG_11236448  0.02083869 0.02446806 0.03332782 0.02861380 0.02446806 0.00878340
## AHL_11239959  0.98894170 0.97014186 0.78861097 0.93021654 0.97443947 0.36420541
## AJGD_11119689 0.06543330 0.05765972 0.08338983 0.03356055 0.01844418 0.02905308
## AMP_11228639  0.89399617 0.92425938 0.55192762 0.40439887 0.45311021 0.26944658
##                     X276       X277       X278       X279        X280
## ACR_11231843  0.96014569 0.97028671 0.97028671 0.97449209 0.960145689
## ADAO_11159808 0.56126827 0.36013990 0.45939831 0.53591668 0.360139895
## AGG_11236448  0.05894743 0.01767585 0.02083869 0.01767585 0.003338666
## AHL_11239959  0.24662852 0.41602180 0.31476118 0.41602180 0.920704503
## AJGD_11119689 0.09365279 0.04430325 0.08338983 0.05765972 0.065433303
## AMP_11228639  0.29033629 0.79202527 0.64760899 0.52728547 0.249338564
##                      X281       X282       X283       X284       X285
## ACR_11231843  0.960145689 0.97028671 0.95410756 0.93150439 0.95410756
## ADAO_11159808 0.747440143 0.53591668 0.56126827 0.94812752 0.97784603
## AGG_11236448  0.001776958 0.36420541 0.24662852 0.93021654 0.44255210
## AHL_11239959  0.364205405 0.36420541 0.36420541 0.49627279 0.74743887
## AJGD_11119689 0.038628475 0.03356055 0.02153844 0.01573686 0.01844418
## AMP_11228639  0.380540191 0.86947096 0.50253841 0.62429782 0.69253309
##                     X286       X287       X288       X289       X290       X291
## ACR_11231843  0.97449209 0.95410756 0.96014569 0.96014569 0.97028671 0.93150439
## ADAO_11159808 0.61112529 0.76745456 0.58637089 0.74744014 0.40903917 0.58637089
## AGG_11236448  0.12339242 0.18730369 0.06731491 0.01256281 0.26843330 0.02861380
## AHL_11239959  0.99568352 0.98149352 0.60294413 0.60294413 0.93882508 0.95353537
## AJGD_11119689 0.05063153 0.03862848 0.02506050 0.02506050 0.01573686 0.02153844
## AMP_11228639  0.57637094 0.94044133 0.42861858 0.38054019 0.71400677 0.62429782
##                     X292       X293      X294       X295        X296
## ACR_11231843  0.91220267 0.97449209 0.9541076 0.96552152 0.965521524
## ADAO_11159808 0.40903917 0.45939831 0.4340850 0.45939831 0.838086734
## AGG_11236448  0.01256281 0.05894743 0.1377213 0.07657227 0.858124002
## AHL_11239959  0.94658044 0.88630083 0.9744395 0.99646826 0.988941703
## AJGD_11119689 0.02905308 0.01844418 0.0133778 0.01573686 0.008038418
## AMP_11228639  0.55192762 0.62429782 0.6703784 0.62429782 0.714006767
##                      X297        X298        X299      X300        X301
## ACR_11231843  0.965521524 0.988783610 0.965521524 0.9601457 0.931504387
## ADAO_11159808 0.635436457 0.535916678 0.747440143 0.8380867 0.954581290
## AGG_11236448  0.990762024 0.938825080 0.978206535 0.7253710 0.768535208
## AHL_11239959  0.858124002 0.981493519 0.678573488 0.5232199 0.339136925
## AJGD_11119689 0.008038418 0.005618609 0.005618609 0.0133778 0.009561289
## AMP_11228639  0.576370945 0.624297821 0.809363621 0.7347403 0.576370945
##                      X302      X303        X304        X305        X306
## ACR_11231843  0.960145689 0.9655215 0.954107565 0.970286714 0.939837606
## ADAO_11159808 0.838086734 0.6823764 0.409039171 0.510418361 0.535916678
## AGG_11236448  0.550061248 0.2466285 0.137721255 0.058947431 0.086767509
## AHL_11239959  0.339136925 0.3391369 0.291166982 0.268433300 0.291166982
## AJGD_11119689 0.004671141 0.0133778 0.001753322 0.004671141 0.003192404
## AMP_11228639  0.624297821 0.6005238 0.502538410 0.670378389 0.600523788
##                      X307        X308        X309        X310        X311
## ACR_11231843  0.965521524 0.965521524 0.978187135 0.947355314 0.954107565
## ADAO_11159808 0.409039171 0.434084976 0.192053134 0.434084976 0.586370888
## AGG_11236448  0.012562813 0.010526149 0.496272787 0.038663594 0.028613803
## AHL_11239959  0.314761178 0.920704503 0.153145625 0.291166982 0.314761178
## AJGD_11119689 0.008038418 0.008038418 0.009561289 0.009561289 0.006733018
## AMP_11228639  0.624297821 0.428618577 0.600523788 0.624297821 0.670378389
##                     X312       X313        X314        X315        X316
## ACR_11231843  0.97028671 0.96552152 0.981419536 0.970286714 0.947355314
## ADAO_11159808 0.61112529 0.61112529 0.586370888 0.704845513 0.635436457
## AGG_11236448  0.03866359 0.38986888 0.523219920 0.076572273 0.058947431
## AHL_11239959  0.98149352 0.26843330 0.268433300 0.628753792 0.187303691
## AJGD_11119689 0.01133059 0.01573686 0.008038418 0.006733018 0.006733018
## AMP_11228639  0.67037839 0.62429782 0.600523788 0.624297821 0.714006767
##                      X317        X318        X319        X320        X321
## ACR_11231843  0.954107565 0.965521524 0.939837606 0.939837606 0.965521524
## ADAO_11159808 0.726553413 0.704845513 0.747440143 0.682376447 0.659214659
## AGG_11236448  0.187303691 0.038663594 0.153145625 0.169673669 0.123392425
## AHL_11239959  0.268433300 0.291166982 0.246628519 0.291166982 0.246628519
## AJGD_11119689 0.006733018 0.006733018 0.005618609 0.003192404 0.005618609
## AMP_11228639  0.551927625 0.576370945 0.600523788 0.600523788 0.551927625
##                      X322       X323       X324       X325      X326      X327
## ACR_11231843  0.931504387 0.95410756 0.95410756 0.93983761 0.9702867 0.9541076
## ADAO_11159808 0.682376447 0.85329233 0.68237645 0.70484551 0.6354365 0.5863709
## AGG_11236448  0.169673669 0.07657227 0.09794449 0.07657227 0.1531456 0.1531456
## AHL_11239959  0.389868878 0.29116698 0.78861097 0.20602351 0.2466285 0.1873037
## AJGD_11119689 0.005618609 0.01337780 0.10481961 0.33646919 0.6823764 0.4593983
## AMP_11228639  0.600523788 0.62429782 0.57637094 0.62429782 0.6005238 0.6703784
##                     X328        X329       X330      X331       X332       X333
## ACR_11231843  0.87605241 0.960145689 0.93150439 0.9223077 0.87605241 0.88910825
## ADAO_11159808 0.72655341 0.682376447 0.45939831 0.7048455 0.51041836 0.53591668
## AGG_11236448  0.18730369 0.187303691 0.07657227 0.2466285 0.02083869 0.08676751
## AHL_11239959  0.41602180 0.314761178 0.36420541 0.3898689 0.44255210 0.38986888
## AJGD_11119689 0.02905308 0.009561289 0.56126827 0.4340850 0.07399615 0.02506050
## AMP_11228639  0.52728547 0.527285472 0.62429782 0.5763709 0.57637094 0.50253841
##                       X334      X335       X336      X337       X338      X339
## ACR_11231843  0.9702867137 0.9223077 0.88910825 0.9315044 0.91220267 0.9122027
## ADAO_11159808 0.4593983094 0.4340850 0.36013990 0.3843594 0.33646919 0.5359167
## AGG_11236448  0.3147611783 0.1531456 0.09794449 0.1531456 0.06731491 0.1531456
## AHL_11239959  0.5766754088 0.5500612 0.31476118 0.4962728 0.41602180 0.2466285
## AJGD_11119689 0.0003790265 0.7474401 0.08338983 0.8047076 0.03356055 0.5612683
## AMP_11228639  0.5272854717 0.4531102 0.35712754 0.7546823 0.64760899 0.6925331
##                    X340       X341       X342       X343       X344      X345
## ACR_11231843  0.8891082 0.94735531 0.88910825 0.93983761 0.90114823 0.9473553
## ADAO_11159808 0.4340850 0.40903917 0.38435943 0.38435943 0.36013990 0.4090392
## AGG_11236448  0.1531456 0.02083869 0.06731491 0.04467562 0.05894743 0.1101420
## AHL_11239959  0.2060235 0.20602351 0.20602351 0.18730369 0.29116698 0.2911670
## AJGD_11119689 0.9330496 0.03862848 0.12997898 0.10481961 0.31342953 0.7265534
## AMP_11228639  0.6703784 0.73474032 0.88218468 0.38054019 0.57637094 0.5763709
##                     X346      X347       X348       X349      X350        X351
## ACR_11231843  0.93983761 0.9955330 0.99214543 0.96552152 0.9473553 0.931504387
## ADAO_11159808 0.40903917 0.4090392 0.40903917 0.40903917 0.4593983 0.384359435
## AGG_11236448  0.15314562 0.1873037 0.15314562 0.15314562 0.1233924 0.123392425
## AHL_11239959  0.24662852 0.4160218 0.36420541 0.41602180 0.3898689 0.364205405
## AJGD_11119689 0.01844418 0.2488054 0.07399615 0.07399615 0.0654333 0.005618609
## AMP_11228639  0.42861858 0.7546823 0.62429782 0.40439887 0.4531102 0.527285472
##                    X352      X353      X354       X355      X356      X357
## ACR_11231843  0.9223077 0.9814195 0.9223077 0.91220267 0.8891082 0.8891082
## ADAO_11159808 0.3843594 0.3601399 0.3601399 0.33646919 0.3601399 0.3601399
## AGG_11236448  0.1101420 0.1101420 0.1101420 0.06731491 0.1101420 0.1101420
## AHL_11239959  0.3642054 0.3898689 0.8727544 0.16967367 0.3642054 0.6539969
## AJGD_11119689 0.1920531 0.7048455 0.1048196 0.48487738 0.3364692 0.4090392
## AMP_11228639  0.8257849 0.4043989 0.4531102 0.40439887 0.7546823 0.3571275
##                    X358       X359      X360       X361       X362       X363
## ACR_11231843  0.9011482 0.92230772 0.8891082 0.87605241 0.93150439 0.88910825
## ADAO_11159808 0.3843594 0.38435943 0.7474401 0.68237645 0.65921466 0.90435865
## AGG_11236448  0.1233924 0.05141874 0.0087834 0.07657227 0.01767585 0.03332782
## AHL_11239959  0.2911670 0.57667541 0.1233924 0.16967367 0.29116698 0.82556153
## AJGD_11119689 0.4090392 0.24880536 0.6354365 0.08338983 0.40903917 0.31342953
## AMP_11228639  0.5763709 0.35712754 0.4531102 0.60052379 0.82578493 0.33424094
##                     X364       X365      X366      X367      X368       X369
## ACR_11231843  0.93150439 0.92230772 0.9011482 0.9122027 0.9011482 0.91220267
## ADAO_11159808 0.38435943 0.72655341 0.4848774 0.6354365 0.5104184 0.76745456
## AGG_11236448  0.03332782 0.07657227 0.1531456 0.0286138 0.1377213 0.06731491
## AHL_11239959  0.41602180 0.13772126 0.1873037 0.2466285 0.1873037 0.29116698
## AJGD_11119689 0.11692019 0.38435943 0.1590372 0.1750516 0.2100287 0.61112529
## AMP_11228639  0.45311021 0.50253841 0.4286186 0.5519276 0.5763709 0.57637094
##                    X370       X371      X372       X373      X374       X375
## ACR_11231843  0.9122027 0.93150439 0.9315044 0.95410756 0.9315044 0.93150439
## ADAO_11159808 0.5104184 0.53591668 0.3134295 0.36013990 0.4848774 0.40903917
## AGG_11236448  0.3391369 0.11014195 0.1377213 0.11014195 0.2060235 0.13772126
## AHL_11239959  0.2466285 0.08676751 0.2466285 0.13772126 0.8255615 0.31476118
## AJGD_11119689 0.5359167 0.56126827 0.1299790 0.09365279 0.2695349 0.02905308
## AMP_11228639  0.6005238 0.60052379 0.6242978 0.57637094 0.6005238 0.62429782
##                    X376       X377      X378       X379      X380       X381
## ACR_11231843  0.9315044 0.93150439 0.9223077 0.94735531 0.9223077 0.95410756
## ADAO_11159808 0.4340850 0.36013990 0.5863709 0.43408498 0.3843594 0.51041836
## AGG_11236448  0.1696737 0.09794449 0.0286138 0.29116698 0.1696737 0.20602351
## AHL_11239959  0.2258099 0.26843330 0.2911670 0.29116698 0.2060235 0.15314562
## AJGD_11119689 0.1440142 0.43408498 0.2488054 0.01133059 0.1048196 0.03356055
## AMP_11228639  0.6005238 0.67037839 0.5519276 0.55192762 0.5025384 0.52728547
##                     X382      X383      X384       X385       X386      X387
## ACR_11231843  0.95410756 0.9473553 0.9223077 0.99974625 0.96552152 0.9744921
## ADAO_11159808 0.33646919 0.3601399 0.3601399 0.36013990 0.36013990 0.3843594
## AGG_11236448  0.09794449 0.1233924 0.1101420 0.04467562 0.08676751 0.1873037
## AHL_11239959  0.09794449 0.1873037 0.1873037 0.18730369 0.70239212 0.7886110
## AJGD_11119689 0.33646919 0.3364692 0.3601399 0.29109580 0.12997898 0.1750516
## AMP_11228639  0.45311021 0.4043989 0.7347403 0.75468226 0.50253841 0.3805402
##                     X388       X389       X390       X391       X392       X393
## ACR_11231843  0.97818713 0.96014569 0.93150439 0.96014569 0.94735531 0.97818713
## ADAO_11159808 0.61112529 0.68237645 0.51041836 0.96554920 0.70484551 0.86750890
## AGG_11236448  0.15314562 0.13772126 0.12339242 0.11014195 0.09794449 0.13772126
## AHL_11239959  0.93882508 0.85812400 0.78861097 0.94658044 0.98894170 0.99712243
## AJGD_11119689 0.08338983 0.07399615 0.01573686 0.04430325 0.12997898 0.03862848
## AMP_11228639  0.71400677 0.55192762 0.42861858 0.75468226 0.73474032 0.73474032
##                     X394       X395       X396      X397       X398      X399
## ACR_11231843  0.99214543 0.98878361 0.99346629 0.9945867 0.99458674 0.9980107
## ADAO_11159808 0.94812752 0.90435865 0.72655341 0.5863709 0.68237645 0.5359167
## AGG_11236448  0.12339242 0.03332782 0.07657227 0.1233924 0.04467562 0.1377213
## AHL_11239959  0.94658044 0.99922961 0.99231451 0.9971224 0.97443947 0.8255615
## AJGD_11119689 0.05063153 0.03356055 0.03862848 0.8380867 0.06543330 0.5863709
## AMP_11228639  0.77378906 0.92425938 0.67037839 0.7546823 0.84127788 0.4777816
##                    X400      X401       X402       X403       X404       X405
## ACR_11231843  0.9969948 0.9975500 0.99839139 0.99553303 0.99214543 0.98667603
## ADAO_11159808 0.4340850 0.6592147 0.61112529 0.40903917 0.51041836 0.58637089
## AGG_11236448  0.1101420 0.1101420 0.02083869 0.05141874 0.05894743 0.09794449
## AHL_11239959  0.6539969 0.5500612 0.84239487 0.85812400 0.29116698 0.70239212
## AJGD_11119689 0.1048196 0.7048455 0.83808673 0.65921466 0.78655465 0.80470761
## AMP_11228639  0.9150047 0.5519276 0.55192762 0.47778157 0.60052379 0.93272581
##                     X406      X407      X408      X409      X410       X411
## ACR_11231843  0.97818713 0.9541076 0.9655215 0.9702867 0.9781871 0.96014569
## ADAO_11159808 0.63543646 0.5104184 0.5104184 0.5359167 0.7265534 0.43408498
## AGG_11236448  0.05894743 0.2258099 0.0286138 0.1531456 0.3642054 0.06731491
## AHL_11239959  0.62875379 0.2911670 0.8255615 0.5766754 0.5766754 0.05141874
## AJGD_11119689 0.70484551 0.5863709 0.6354365 0.6354365 0.2289565 0.45939831
## AMP_11228639  0.92425938 0.5519276 0.7140068 0.5763709 0.9646056 0.93272581
##                    X412       X413       X414       X415        X416       X417
## ACR_11231843  0.9122027 0.94735531 0.95410756 0.97818713 0.978187135 0.96552152
## ADAO_11159808 0.5359167 0.51041836 0.53591668 0.48487738 0.459398309 0.48487738
## AGG_11236448  0.2684333 0.05894743 0.26843330 0.06731491 0.364205405 0.88630083
## AHL_11239959  0.1377213 0.11014195 0.05141874 0.08676751 0.097944494 0.08676751
## AJGD_11119689 0.2488054 0.24880536 0.96037296 0.05063153 0.006733018 0.03356055
## AMP_11228639  0.8129198 0.76315256 0.84756712 0.81885741 0.774884343 0.86235243
##                    X418       X419      X420      X421       X422       X423
## ACR_11231843  0.9473553 0.96552152 0.9702867 0.9702867 0.93150439 0.96014569
## ADAO_11159808 0.5104184 0.45939831 0.5104184 0.4340850 0.40903917 0.40903917
## AGG_11236448  0.8076285 0.99231451 0.8727544 0.7474389 0.44255210 0.31476118
## AHL_11239959  0.2060235 0.11014195 0.1873037 0.1696737 0.24662852 0.26843330
## AJGD_11119689 0.0654333 0.05765972 0.1299790 0.1048196 0.08338983 0.01573686
## AMP_11228639  0.7987106 0.76916335 0.7357314 0.5907512 0.61606017 0.75995038
##                     X424       X425       X426       X427       X428       X429
## ACR_11231843  0.96014569 0.96014569 0.98141954 0.94735531 0.96552152 0.99699483
## ADAO_11159808 0.43408498 0.40903917 0.89302189 0.72655341 0.76745456 0.63543646
## AGG_11236448  0.11014195 0.08676751 0.08676751 0.03866359 0.18730369 0.16967367
## AHL_11239959  0.29116698 0.15314562 0.07657227 0.16967367 0.20602351 0.13772126
## AJGD_11119689 0.05765972 0.06543330 0.08338983 0.07399615 0.08338983 0.08338983
## AMP_11228639  0.77378906 0.82578493 0.85583874 0.88218468 0.71400677 0.57637094
##                      X430      X431       X432       X433       X434       X435
## ACR_11231843  0.003559488 0.8305925 0.96552152 0.90114823 0.94735531 0.88910825
## ADAO_11159808 0.747440143 0.8218898 0.89302189 0.96037296 0.89302189 0.45939831
## AGG_11236448  0.788610967 0.8581240 0.67857349 0.09794449 0.02861380 0.12339242
## AHL_11239959  0.110141952 0.1873037 0.16967367 0.62875379 0.22580994 0.29116698
## AJGD_11119689 0.083389830 0.2488054 0.05063153 0.31342953 0.03862848 0.09365279
## AMP_11228639  0.924259383 0.7140068 0.71400677 0.67037839 0.79202527 0.82578493
##                    X436       X437       X438       X439      X440      X441
## ACR_11231843  0.8305925 0.86195710 0.86195710 0.86195710 0.8891082 0.9315044
## ADAO_11159808 0.5863709 0.43408498 0.38435943 0.45939831 0.4090392 0.4848774
## AGG_11236448  0.2258099 0.03866359 0.01052615 0.07657227 0.1873037 0.8727544
## AHL_11239959  0.2911670 0.29116698 0.41602180 0.18730369 0.2684333 0.2258099
## AJGD_11119689 0.1750516 0.06543330 0.10481961 0.02506050 0.1440142 0.1920531
## AMP_11228639  0.8093636 0.89399617 0.86947096 0.86947096 0.6925331 0.9049273
##                    X442       X443       X444      X445       X446      X447
## ACR_11231843  0.9398376 0.97028671 0.95410756 0.9315044 0.98423481 0.9473553
## ADAO_11159808 0.5863709 0.63543646 0.72655341 0.8807464 0.63543646 0.7474401
## AGG_11236448  0.1101420 0.02083869 0.02446806 0.8076285 0.38986888 0.2911670
## AHL_11239959  0.2466285 0.13772126 0.26843330 0.2911670 0.18730369 0.2466285
## AJGD_11119689 0.4340850 0.70484551 0.14401420 0.4848774 0.09365279 0.1048196
## AMP_11228639  0.8821847 0.97325844 0.79202527 0.4777816 0.52728547 0.6925331
##                    X448      X449      X450       X451      X452      X453
## ACR_11231843  0.9601457 0.9398376 0.9541076 0.98423481 0.9398376 0.9398376
## ADAO_11159808 0.8532923 0.9147857 0.9742405 0.68237645 0.7865546 0.5612683
## AGG_11236448  0.2911670 0.3147612 0.1377213 0.78861097 0.1377213 0.8581240
## AHL_11239959  0.1696737 0.2466285 0.1696737 0.13772126 0.2466285 0.2911670
## AJGD_11119689 0.1169202 0.1590372 0.2100287 0.03862848 0.0133778 0.3134295
## AMP_11228639  0.5519276 0.8412779 0.7737891 0.82578493 0.7347403 0.7920253
##                    X454      X455      X456      X457      X458      X459
## ACR_11231843  0.9655215 0.9541076 0.9921454 0.9994769 0.9994769 0.9998814
## ADAO_11159808 0.7265534 0.5359167 0.6823764 0.8047076 0.7265534 0.6111253
## AGG_11236448  0.9782065 0.9868171 0.6785735 0.4693427 0.3642054 0.3642054
## AHL_11239959  0.2684333 0.2466285 0.2466285 0.3391369 0.2258099 0.2466285
## AJGD_11119689 0.9481275 0.7265534 0.3134295 0.2488054 0.1750516 0.4090392
## AMP_11228639  0.9853468 0.7546823 0.8939962 0.8257849 0.6476090 0.8939962
##                    X460       X461      X462      X463      X464      X465
## ACR_11231843  0.9996757 0.98141954 0.9702867 0.9702867 0.9702867 0.9905952
## ADAO_11159808 0.6823764 0.58637089 0.5863709 0.4593983 0.6111253 0.2695349
## AGG_11236448  0.2684333 0.08676751 0.1531456 0.6785735 0.3898689 0.4693427
## AHL_11239959  0.3898689 0.07657227 0.1101420 0.2258099 0.1696737 0.1377213
## AJGD_11119689 0.4340850 0.78655465 0.4848774 0.5104184 0.6592147 0.1920531
## AMP_11228639  0.8412779 0.75468226 0.8412779 0.8257849 0.8093636 0.6703784
##                     X466       X467      X468      X469      X470      X471
## ACR_11231843  0.93983761 0.97449209 0.9744921 0.9122027 0.9122027 0.9011482
## ADAO_11159808 0.72655341 0.72655341 0.4593983 0.5612683 0.8218898 0.5359167
## AGG_11236448  0.16967367 0.38986888 0.7023921 0.2684333 0.1377213 0.3147612
## AHL_11239959  0.26843330 0.31476118 0.3391369 0.8863008 0.1873037 0.4962728
## AJGD_11119689 0.05063153 0.03862848 0.9545813 0.3364692 0.9409654 0.9243367
## AMP_11228639  0.90492728 0.69253309 0.6476090 0.7347403 0.6703784 0.7546823
##                    X472       X473      X474      X475       X476       X477
## ACR_11231843  0.9473553 0.92230772 0.8760524 0.9122027 0.91220267 0.90114823
## ADAO_11159808 0.5104184 0.65921466 0.3843594 0.7865546 0.40903917 0.53591668
## AGG_11236448  0.1873037 0.20602351 0.1531456 0.1873037 0.18730369 0.11014195
## AHL_11239959  0.2466285 0.20602351 0.1696737 0.2466285 0.05894743 0.15314562
## AJGD_11119689 0.8807464 0.05765972 0.1440142 0.1590372 0.03356055 0.04430325
## AMP_11228639  0.7140068 0.67037839 0.7347403 0.7737891 0.73474032 0.73474032
##                     X478       X479       X480 DDclust_EUCL_cuantiles
## ACR_11231843  0.94735531 0.92230772 0.94735531                      1
## ADAO_11159808 0.72655341 0.56126827 0.45939831                      1
## AGG_11236448  0.12339242 0.07657227 0.05894743                      2
## AHL_11239959  0.07657227 0.15314562 0.20602351                      2
## AJGD_11119689 0.00386890 0.07399615 0.86750890                      2
## AMP_11228639  0.62429782 0.71400677 0.69253309                      1
## Mean by groups
rp_tbl_EUCL <- aggregate(plotting_EUCL, by = list(plotting_EUCL$DDclust_EUCL_cuantiles), mean)
row.names(rp_tbl_EUCL) <- paste0("Group",rp_tbl_EUCL$DDclust_EUCL_cuantiles)
rp_tbl_EUCL <- rp_tbl_EUCL %>%
  select(starts_with('X'))
rp_tbl_EUCL <- data.frame(t(rp_tbl_EUCL))
head(rp_tbl_EUCL)
##       Group1    Group2
## X1 0.8853164 0.6335630
## X2 0.8897355 0.6406352
## X3 0.9071830 0.5938372
## X4 0.8942103 0.6367462
## X5 0.8909859 0.5910105
## X6 0.8531552 0.6037154
# Create plotting data-frame
EUCL_values_by_group <- data.frame("value_EUCL" = c(rp_tbl_EUCL$Group1,rp_tbl_EUCL$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_EUCL$Group1)),
                                              rep("Group2", times = length(rp_tbl_EUCL$Group2))),
                                  "index" = c(c(1:length(rp_tbl_EUCL$Group1)),c(1:length(rp_tbl_EUCL$Group2))))

p <- ggplot(EUCL_values_by_group, aes(x = index, y = value_EUCL, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

PER TSclust

# DD_PER <- diss(datos, "PER")
DD_PER <- distance_PER

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_PER, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.7836245 0.6756908 0.8445631 0.9099744

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_PER
res<-NbClust(datos_PER, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.4911 0.2491 0.2719 0.3057
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.4911
#res$Best.partition
hcintper_PER <- hclust(DD_PER, "ward.D2")
fviz_dend(hcintper_PER, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)

DDclust_PER_cuantiles <- cutree( hclust(DD_PER, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_PER_cuantiles))

fviz_silhouette(silhouette(DDclust_PER_cuantiles, DD_PER))
##   cluster size ave.sil.width
## 1       1   50          0.54
## 2       2    8          0.21

Contingency PER

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_PER <- cbind(NO_DETERIORO_patients,DETERIORO_patients)
order_PER <- union(names(DDclust_PER_cuantiles[DDclust_PER_cuantiles == 2]),names(DDclust_PER_cuantiles[DDclust_PER_cuantiles == 1]))
fviz_dend(hcintper_PER, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_PER[,order_PER]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 6 0
NO DETERIORO 44 8
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.12 0
NO DETERIORO 0.88 1

Random Forest: Discriminant TSCLust PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_cuantiles)
data_frame2_PER = df_descriptive
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
data_frame_merge_PER$CLUSTER = factor(data_frame_merge_PER$CLUSTER)
table(data_frame_merge_PER$CLUSTER)
## 
##  1  2 
## 50  8
data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])]<- lapply(data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])], as.numeric)
head(data_frame_merge_PER)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_PER$CLUSTER <- factor(data_frame_merge_PER$CLUSTER)
newMWMOTE_PER <- oversample(data_frame_merge_PER, ratio = 0.85, method = "MWMOTE", classAttr = "CLUSTER")
newMWMOTE_PER <- data.frame(newMWMOTE_PER)
pos_1 <- get_column_position(newMWMOTE_PER, "SAPI_0_8h")
pos_2 <- get_column_position(newMWMOTE_PER, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newMWMOTE_PER[, columns_to_round] <- lapply(newMWMOTE_PER[, columns_to_round], function(x) round(x, 1))
table(newMWMOTE_PER$CLUSTER)
## 
##  1  2 
## 50 43
set.seed(123)
pos_1 = get_column_position(newMWMOTE_PER, "SAPI_0_8h")
pos_2 = get_column_position(newMWMOTE_PER, "PAUSAS_APNEA")
col_names_factor <- names(newMWMOTE_PER[pos_1:pos_2])
newMWMOTE_PER[col_names_factor] <- lapply(newMWMOTE_PER[col_names_factor] , factor)

RF_PER <- randomForest(CLUSTER ~ ., data = newMWMOTE_PER)
print(RF_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newMWMOTE_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 4.3%
## Confusion matrix:
##    1  2 class.error
## 1 47  3  0.06000000
## 2  1 42  0.02325581

Importance

kable(RF_PER$importance[order(RF_PER$importance, decreasing = TRUE),])
x
SCORE_WOOD_DOWNES_INGRESO 7.4074045
SCORE_CRUCES_INGRESO 6.5504895
SAPI_0_8h 4.0000376
DIAS_O2_TOTAL 2.9619896
EDAD 2.9220530
LM 2.6634340
FR_0_8h 2.4910603
PESO 2.2133767
EG 2.1269391
FLUJO2_0_8H 2.0009500
DIAS_GN 1.7959205
TABACO 1.4615339
ETIOLOGIA 1.1743124
ANALITICA 0.9879309
SUERO 0.8663997
SEXO 0.6227099
ENFERMEDAD_BASE 0.5206316
RADIOGRAFIA 0.5204119
PREMATURIDAD 0.4381004
ALERGIAS 0.3717212
ALIMENTACION 0.3662804
GN_INGRESO 0.1921475
DERMATITIS 0.1474324
SNG 0.1265385
PALIVIZUMAB 0.1092629
PAUSAS_APNEA 0.0736971
DIAS_OAF 0.0481116
DETERIORO 0.0418404
OAF_TRAS_INGRESO 0.0337593
UCIP 0.0228858
OAF 0.0210478
OAF_AL_INGRESO 0.0000000

Importance of the PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_cuantiles)
data_frame2_PER = data.frame(datos_PER)
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
set.seed(123)
data_frame_merge_PER$CLUSTER <- as.factor(data_frame_merge_PER$CLUSTER)
RF_0_PER <- randomForest(CLUSTER ~ ., data = data_frame_merge_PER)
print(RF_0_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 13.79%
## Confusion matrix:
##    1 2 class.error
## 1 50 0           0
## 2  8 0           1
plot(RF_0_PER$importance, type = "h")

### PER by clusters

plot_data_PER <- data.frame(datos_PER)
cluster_data_PER <- data.frame(DDclust_PER_cuantiles)
plotting_PER <- cbind(plot_data_PER, cluster_data_PER)
head(plotting_PER)
##                        X1         X2          X3          X4          X5
## ACR_11231843  0.007372827 0.00257892 0.007552868 0.001244157 0.020794567
## ADAO_11159808 1.007935650 0.56734822 0.509011178 0.711561876 0.152613273
## AGG_11236448  2.380687539 0.39362122 0.182763413 0.324556130 0.255300891
## AHL_11239959  0.858419217 0.76083264 0.292720772 1.277966489 0.677624620
## AJGD_11119689 1.704367449 1.88947483 0.167634848 1.147035657 0.159517736
## AMP_11228639  3.032791148 0.84461522 0.954845276 0.287926093 0.004228085
##                       X6          X7          X8         X9         X10
## ACR_11231843  0.02046290 0.024877932 0.006955217 0.00852905 0.005777708
## ADAO_11159808 0.01857926 0.289120346 0.083830140 0.27147799 0.261912313
## AGG_11236448  0.12294867 0.245528755 0.190021222 0.54714897 0.357936063
## AHL_11239959  0.67498060 0.152061973 1.110688407 0.60742582 0.214555627
## AJGD_11119689 0.56597730 0.004861582 0.299313431 0.28474152 0.519772097
## AMP_11228639  0.09564877 0.058631508 0.006046857 0.01212086 0.001940349
##                      X11        X12        X13        X14          X15
## ACR_11231843  0.00361939 0.00435191 0.01065348 0.01471756 0.0007872641
## ADAO_11159808 0.21446360 0.10918664 0.02806076 0.20192584 0.2692548988
## AGG_11236448  0.85828890 0.06305132 0.29559245 0.06432647 0.0174924957
## AHL_11239959  0.08376783 0.64521099 0.22581482 0.08081757 0.6463845767
## AJGD_11119689 0.08121858 0.77620410 0.19579371 0.42442571 0.0894979525
## AMP_11228639  0.02175067 0.01076778 0.03683358 0.12466185 0.0214858725
##                      X16          X17         X18         X19         X20
## ACR_11231843  0.01076351 0.0003489152 0.008049351 0.002809187 0.004623149
## ADAO_11159808 0.13938618 0.2108637638 0.290507155 0.003438341 0.019503533
## AGG_11236448  0.30601982 0.0406872503 0.022436947 0.049450815 0.003606647
## AHL_11239959  0.04172188 0.0280735562 0.012784406 0.240191883 0.195912162
## AJGD_11119689 0.12438134 0.5053023159 0.352205824 0.144637524 0.010357443
## AMP_11228639  0.02376122 0.0078033808 0.032811310 0.021214619 0.061530402
##                       X21         X22          X23          X24         X25
## ACR_11231843  0.005164633 0.004330519 0.0022736838 0.0007047791 0.004851931
## ADAO_11159808 0.027427498 0.188078718 0.1789245805 0.0240478893 0.058047323
## AGG_11236448  0.237265370 0.040406625 0.0095648292 0.1388621834 0.020921329
## AHL_11239959  0.036026329 0.036877536 0.2543045150 0.4392662038 0.021776880
## AJGD_11119689 0.831887336 0.313210727 0.0668612025 0.5372328791 0.065391074
## AMP_11228639  0.007062599 0.093557787 0.0006829918 0.0105028378 0.008146914
##                       X26         X27          X28          X29          X30
## ACR_11231843  0.002144835 0.008373432 0.0002735066 0.0007708365 0.0008905531
## ADAO_11159808 0.161868011 0.090045009 0.0922563225 0.0651277179 0.1124013509
## AGG_11236448  0.170018443 0.208350085 0.0933683716 0.2468314324 0.0336384608
## AHL_11239959  0.099153264 0.004618835 0.0924651481 0.0301394053 0.0317340710
## AJGD_11119689 0.054890780 0.020306019 0.1012233067 0.1042789768 0.1574517184
## AMP_11228639  0.048240748 0.029180881 0.0190465607 0.0065503979 0.0522698989
##                       X31         X32          X33         X34          X35
## ACR_11231843  0.002032371 0.002317647 0.0016958597 0.001403045 0.0011982095
## ADAO_11159808 0.022024583 0.006397448 0.0703278891 0.023328410 0.0004846579
## AGG_11236448  0.013009456 0.396338337 0.0348680280 0.114694840 0.0955105787
## AHL_11239959  0.022523293 0.087238858 0.0008727816 0.070438693 0.0611351216
## AJGD_11119689 0.144292622 0.058033610 0.0617754210 0.179342003 0.0909365443
## AMP_11228639  0.035755652 0.049410170 0.1430888749 0.005412508 0.0424986167
##                        X36         X37         X38          X39         X40
## ACR_11231843  5.750899e-05 0.002079558 0.006312121 0.0006429736 0.002606208
## ADAO_11159808 1.063848e-01 0.127984297 0.081142783 0.0700151157 0.025565200
## AGG_11236448  1.471583e-01 0.255588052 0.046404691 0.0513010272 0.441123074
## AHL_11239959  2.481010e-01 0.004491484 0.064862935 0.1588556211 0.041632279
## AJGD_11119689 1.448960e-02 0.047356598 0.256559916 0.1218822084 0.038561113
## AMP_11228639  2.655492e-03 0.006847402 0.073235289 0.0335647431 0.022256135
##                       X41         X42         X43          X44         X45
## ACR_11231843  0.005788565 0.002102477 0.007890362 0.0001697639 0.003025530
## ADAO_11159808 0.008170481 0.004617634 0.034721995 0.0531080142 0.024514705
## AGG_11236448  0.025690873 0.027002880 0.316329631 0.0705171116 0.006359791
## AHL_11239959  0.048581902 0.077166941 0.109731714 0.0572732473 0.051898075
## AJGD_11119689 0.001543516 0.052186141 0.328208208 0.2504366359 0.038272278
## AMP_11228639  0.007867459 0.003691957 0.043585810 0.0286199404 0.020216874
##                        X46          X47         X48         X49         X50
## ACR_11231843  0.0033589622 0.0007003468 0.008267341 0.006361191 0.001096650
## ADAO_11159808 0.0003047917 0.0007115626 0.016639007 0.041382721 0.084623541
## AGG_11236448  0.1416208857 0.0081803384 0.101737710 0.035920671 0.001891900
## AHL_11239959  0.0156443837 0.0346447442 0.005004847 0.028493041 0.001818934
## AJGD_11119689 0.0567372955 0.0445087993 0.019482179 0.018269030 0.096374168
## AMP_11228639  0.0307668071 0.0124602401 0.004365088 0.001924741 0.006483497
##                       X51         X52         X53          X54         X55
## ACR_11231843  0.001599357 0.004085669 0.001554687 0.0062261567 0.002612204
## ADAO_11159808 0.036127719 0.012062281 0.002093560 0.0001519172 0.003455975
## AGG_11236448  0.029584171 0.023173475 0.037571953 0.0251882617 0.035620593
## AHL_11239959  0.003992290 0.006762357 0.022570057 0.0370565371 0.055114583
## AJGD_11119689 0.085268884 0.119952464 0.095525818 0.0432442829 0.004873117
## AMP_11228639  0.010832400 0.014569236 0.006101093 0.0066324566 0.004557694
##                        X56          X57          X58         X59         X60
## ACR_11231843  0.0029236565 5.853528e-03 0.0008167224 0.006193239 0.004250135
## ADAO_11159808 0.0008043863 1.576491e-05 0.0391016191 0.009013988 0.007809487
## AGG_11236448  0.1273769527 6.013307e-02 0.0643214016 0.002914453 0.008713679
## AHL_11239959  0.0016425975 6.716833e-02 0.0056750006 0.015766131 0.015340865
## AJGD_11119689 0.1144010217 2.025339e-02 0.1237645838 0.124102715 0.084806695
## AMP_11228639  0.0069791233 1.478991e-02 0.0140747641 0.011746632 0.003877042
##                       X61         X62         X63         X64         X65
## ACR_11231843  0.002651661 0.010910868 0.001616238 0.003420722 0.002515699
## ADAO_11159808 0.045383793 0.001874113 0.019276946 0.044470679 0.005277178
## AGG_11236448  0.065578386 0.003594029 0.005420103 0.014317012 0.066122365
## AHL_11239959  0.009329212 0.023590614 0.003999922 0.017104330 0.027153837
## AJGD_11119689 0.099636007 0.039945835 0.016521609 0.015431967 0.234383222
## AMP_11228639  0.028274740 0.011954563 0.001584067 0.044551011 0.049355480
##                        X66         X67         X68         X69          X70
## ACR_11231843  0.0009039589 0.003063311 0.003030873 0.001756251 0.0038989912
## ADAO_11159808 0.0043859102 0.034304900 0.005568489 0.002633567 0.0004644676
## AGG_11236448  0.0194265070 0.036824621 0.002515050 0.053896005 0.0272205325
## AHL_11239959  0.0716518247 0.036962582 0.094575011 0.083662308 0.0015803465
## AJGD_11119689 0.0701006321 0.286845291 0.043471702 0.021095290 0.0926341072
## AMP_11228639  0.0106956760 0.042416791 0.026442545 0.028863922 0.0351532573
##                       X71          X72          X73         X74        X75
## ACR_11231843  0.002395468 0.0008122179 9.540197e-03 0.002506233 0.00358983
## ADAO_11159808 0.003057918 0.0338378027 1.728320e-02 0.006021544 0.03078244
## AGG_11236448  0.002363956 0.0289872911 1.778069e-02 0.008147051 0.06254596
## AHL_11239959  0.019141441 0.0336587861 6.760815e-02 0.001904680 0.02728088
## AJGD_11119689 0.265119950 0.2075143863 2.285859e-02 0.073221775 0.05640236
## AMP_11228639  0.037213706 0.0247929825 2.625292e-05 0.002655831 0.03184893
##                       X76          X77         X78         X79         X80
## ACR_11231843  0.004299736 0.0002992080 0.005857324 0.007158136 0.001309858
## ADAO_11159808 0.002051022 0.0004341849 0.010746467 0.009371412 0.015246671
## AGG_11236448  0.007165748 0.0085344047 0.010118452 0.060762956 0.039074871
## AHL_11239959  0.023700272 0.0015598610 0.017390038 0.014537620 0.008198007
## AJGD_11119689 0.058302003 0.0629066762 0.061858529 0.010085570 0.004437876
## AMP_11228639  0.008451500 0.0091357923 0.026687995 0.003048407 0.004590435
##                       X81          X82         X83         X84         X85
## ACR_11231843  0.006356601 0.0004187628 0.004337170 0.004832361 0.005267023
## ADAO_11159808 0.022354364 0.0053927175 0.008236551 0.005957846 0.035160008
## AGG_11236448  0.028316978 0.0021685459 0.049872617 0.001946517 0.017398491
## AHL_11239959  0.035935927 0.0903719734 0.009380955 0.030338355 0.085156576
## AJGD_11119689 0.070188406 0.1149524177 0.068734097 0.129745412 0.009653725
## AMP_11228639  0.004500632 0.0075628477 0.003249839 0.022403960 0.031478504
##                       X86         X87         X88          X89         X90
## ACR_11231843  0.003410390 0.001809137 0.001069952 0.0017492336 0.003928266
## ADAO_11159808 0.039673212 0.043270208 0.002897255 0.0165603937 0.003792764
## AGG_11236448  0.056016522 0.002202799 0.027957899 0.0367266751 0.008695934
## AHL_11239959  0.047952959 0.033491404 0.012702894 0.0001972801 0.009670017
## AJGD_11119689 0.037672868 0.006023682 0.103721458 0.0780525664 0.041903822
## AMP_11228639  0.002703966 0.005146231 0.002314646 0.0186744152 0.019734296
##                       X91         X92         X93         X94         X95
## ACR_11231843  0.001694852 0.003187604 0.002454322 0.000364638 0.003783277
## ADAO_11159808 0.006888415 0.055685426 0.003472036 0.032121020 0.016832547
## AGG_11236448  0.013255778 0.005192139 0.006952358 0.017348862 0.038894720
## AHL_11239959  0.026499130 0.022496787 0.055854269 0.046954475 0.005543831
## AJGD_11119689 0.081385361 0.078940873 0.062760068 0.162238969 0.040715666
## AMP_11228639  0.031642931 0.032744706 0.002342143 0.007432832 0.006110115
##                       X96          X97         X98          X99        X100
## ACR_11231843  0.001335465 0.0046786558 0.003503886 0.0002060436 0.005161912
## ADAO_11159808 0.002876496 0.0003010287 0.010583644 0.0045792152 0.014628293
## AGG_11236448  0.030438591 0.0559000240 0.008505523 0.0170654900 0.040314073
## AHL_11239959  0.071481852 0.0184163701 0.081021481 0.0148453348 0.010648406
## AJGD_11119689 0.026152737 0.0862358458 0.005516163 0.0767369377 0.002698358
## AMP_11228639  0.012782289 0.0329449212 0.021224332 0.0076970259 0.027708890
##                       X101        X102        X103        X104        X105
## ACR_11231843  6.037923e-05 0.006914379 0.002666583 0.003519849 0.002355671
## ADAO_11159808 1.110574e-02 0.004439753 0.005664906 0.013966253 0.005963971
## AGG_11236448  1.096872e-01 0.036445572 0.006798097 0.025350519 0.015576249
## AHL_11239959  3.693500e-03 0.032989021 0.004987038 0.019007929 0.007781697
## AJGD_11119689 7.510475e-02 0.152652934 0.094053150 0.038574164 0.111431622
## AMP_11228639  1.458704e-02 0.013307193 0.005716929 0.009836704 0.015710329
##                       X106        X107         X108        X109        X110
## ACR_11231843  0.0020356429 0.002463969 0.0074877481 0.001019650 0.001286978
## ADAO_11159808 0.0206215366 0.029187967 0.0008514953 0.009641363 0.058081273
## AGG_11236448  0.0180310895 0.015730988 0.0222714636 0.043649470 0.012432768
## AHL_11239959  0.0002570743 0.008511673 0.0254773171 0.003715998 0.001116029
## AJGD_11119689 0.0091147194 0.006570532 0.1253431873 0.075085080 0.069665739
## AMP_11228639  0.0098276367 0.002578411 0.0026826513 0.022808013 0.016483776
##                      X111        X112        X113        X114         X115
## ACR_11231843  0.003885371 0.001969166 0.003852631 0.004010098 0.0002635215
## ADAO_11159808 0.001823264 0.001524924 0.004364322 0.001985458 0.0117415031
## AGG_11236448  0.023957009 0.002032810 0.012127867 0.012549329 0.0108082001
## AHL_11239959  0.003339720 0.017975773 0.069130370 0.110162806 0.0216373850
## AJGD_11119689 0.035666992 0.011340165 0.149919871 0.004078126 0.1530357733
## AMP_11228639  0.002194981 0.000840148 0.059254492 0.018531260 0.0088048719
##                      X116         X117        X118        X119         X120
## ACR_11231843  0.004890609 0.0009482344 0.001947810 0.004098602 0.0001479797
## ADAO_11159808 0.005464265 0.0049375102 0.006194246 0.012254741 0.0001599416
## AGG_11236448  0.015290372 0.0138877144 0.002644078 0.021793649 0.0079279084
## AHL_11239959  0.010396478 0.0006460461 0.015821643 0.049768298 0.0346859892
## AJGD_11119689 0.090702020 0.1045917508 0.029625094 0.048202785 0.0617486598
## AMP_11228639  0.016255561 0.0392805684 0.000114624 0.001445594 0.0102398801
##                       X121        X122         X123        X124         X125
## ACR_11231843  0.0060255859 0.006734871 0.0004745433 0.004380674 0.0012151951
## ADAO_11159808 0.0048772927 0.004911499 0.0150876618 0.016673799 0.0381429395
## AGG_11236448  0.0059132436 0.002409300 0.0008640730 0.016299762 0.0003490109
## AHL_11239959  0.0198951611 0.040296386 0.0075726409 0.035271866 0.0155654821
## AJGD_11119689 0.0425943548 0.012782149 0.0068919722 0.021642983 0.0472674649
## AMP_11228639  0.0009313942 0.007904873 0.0383047482 0.009660896 0.0058499205
##                       X126        X127         X128        X129        X130
## ACR_11231843  0.0009604692 0.005727827 0.0028767376 0.002220999 0.001709068
## ADAO_11159808 0.0195669205 0.003361383 0.0093018276 0.003318064 0.012014837
## AGG_11236448  0.0015930879 0.003392550 0.0003939956 0.023939065 0.009925056
## AHL_11239959  0.0254271587 0.078917825 0.0400517596 0.016762284 0.013707726
## AJGD_11119689 0.0276650887 0.014867056 0.0890894879 0.032339263 0.001728490
## AMP_11228639  0.0071384168 0.006751390 0.0048473217 0.009463716 0.012304021
##                      X131        X132         X133         X134        X135
## ACR_11231843  0.001598033 0.004384187 0.0046078676 0.0006473851 0.004004066
## ADAO_11159808 0.007913402 0.020084813 0.0096674215 0.0740894223 0.020697270
## AGG_11236448  0.021746969 0.002871925 0.0002796431 0.0125013608 0.006924342
## AHL_11239959  0.007586180 0.031688417 0.1510475912 0.0770788733 0.012740620
## AJGD_11119689 0.056448938 0.044503098 0.0202317116 0.0238556639 0.029180560
## AMP_11228639  0.007035311 0.012695566 0.0025718235 0.0247545880 0.050474368
##                      X136        X137         X138        X139        X140
## ACR_11231843  0.001460118 0.001985934 0.0049359951 0.000445727 0.002246056
## ADAO_11159808 0.027198499 0.018825547 0.0017854781 0.003780256 0.008889118
## AGG_11236448  0.007221970 0.026483477 0.0003334471 0.045886596 0.006148049
## AHL_11239959  0.001026920 0.085446263 0.0079458866 0.040514084 0.002561656
## AJGD_11119689 0.042220673 0.066663444 0.0947274340 0.045115969 0.001201257
## AMP_11228639  0.005438497 0.015352743 0.0354741025 0.029045288 0.001831793
##                      X141         X142        X143         X144        X145
## ACR_11231843  0.001284664 0.0018780730 0.003457497 0.0017815058 0.002766978
## ADAO_11159808 0.004843851 0.0001653445 0.012158313 0.0256914015 0.001542689
## AGG_11236448  0.014116530 0.0647134694 0.051030812 0.0005156368 0.006581315
## AHL_11239959  0.017668493 0.0265028033 0.002592314 0.0228965760 0.020417454
## AJGD_11119689 0.014650768 0.2145563346 0.065345577 0.0751601260 0.028721331
## AMP_11228639  0.012222389 0.0018829781 0.012819968 0.0041239310 0.012761213
##                      X146        X147        X148        X149        X150
## ACR_11231843  0.002354210 0.001561437 0.002757258 0.002159404 0.001457741
## ADAO_11159808 0.008312850 0.002723231 0.008342768 0.012810271 0.008019787
## AGG_11236448  0.006938600 0.044095657 0.029325799 0.067988476 0.015318743
## AHL_11239959  0.004469129 0.032634469 0.041537663 0.029264165 0.106784599
## AJGD_11119689 0.044765470 0.039006865 0.043600113 0.006072279 0.099345888
## AMP_11228639  0.012020039 0.044838760 0.016297887 0.002426662 0.002276423
##                      X151        X152         X153         X154       X155
## ACR_11231843  0.003142110 0.005358183 0.0008943519 0.0053795081 0.00132100
## ADAO_11159808 0.022208258 0.001122608 0.0198403034 0.0173150262 0.02440688
## AGG_11236448  0.009916432 0.028126644 0.0102557463 0.0001950864 0.01474133
## AHL_11239959  0.010160859 0.009960969 0.0227869428 0.0155654984 0.02449055
## AJGD_11119689 0.079767795 0.017398940 0.0199185381 0.0087850731 0.13000078
## AMP_11228639  0.004943980 0.010441542 0.0122252081 0.0255304122 0.02743810
##                      X156        X157        X158        X159         X160
## ACR_11231843  0.004196003 0.005052518 0.001001973 0.004389698 0.0038334117
## ADAO_11159808 0.001599489 0.008940554 0.007895663 0.004946808 0.0001332835
## AGG_11236448  0.021202344 0.010448636 0.022530581 0.001741918 0.0015605163
## AHL_11239959  0.021315728 0.008032114 0.040886533 0.007960652 0.0066909538
## AJGD_11119689 0.098115645 0.119126299 0.188776310 0.004917380 0.1176489568
## AMP_11228639  0.003708940 0.015304572 0.014752058 0.014406330 0.0027626485
##                       X161        X162        X163         X164        X165
## ACR_11231843  0.0002952432 0.004768847 0.001224221 0.0068927917 0.005624194
## ADAO_11159808 0.0165693463 0.013569218 0.008800430 0.0197832450 0.018056950
## AGG_11236448  0.0103056438 0.018677238 0.010850168 0.0179976895 0.019068281
## AHL_11239959  0.0026379310 0.014454532 0.024134852 0.0290149515 0.009289577
## AJGD_11119689 0.0380581150 0.116335169 0.082150051 0.0096393933 0.009606193
## AMP_11228639  0.0166000399 0.008329422 0.010294196 0.0006590615 0.027891199
##                      X166        X167        X168         X169         X170
## ACR_11231843  0.001974349 0.003623647 0.003107213 0.0014393661 0.0036844111
## ADAO_11159808 0.027491019 0.007595157 0.015175806 0.0038598000 0.0002076333
## AGG_11236448  0.004422378 0.008873990 0.010825079 0.0005208885 0.0004039750
## AHL_11239959  0.001148526 0.011042458 0.017779335 0.0474332653 0.0068163912
## AJGD_11119689 0.062201542 0.049070762 0.068686369 0.1799354475 0.0225691651
## AMP_11228639  0.011516010 0.025445083 0.022189273 0.0074401981 0.0246708080
##                       X171        X172        X173        X174        X175
## ACR_11231843  0.0009230126 0.003932500 0.004989508 0.002792348 0.002125151
## ADAO_11159808 0.0036080682 0.005305688 0.008175068 0.016008449 0.033323443
## AGG_11236448  0.0015998478 0.004634592 0.017889973 0.001792301 0.008552444
## AHL_11239959  0.0358267535 0.011143965 0.007233111 0.002212653 0.021987645
## AJGD_11119689 0.0497977292 0.059043601 0.026011510 0.142753897 0.044714370
## AMP_11228639  0.0324164918 0.007812833 0.005009228 0.058143613 0.045523433
##                       X176        X177         X178        X179        X180
## ACR_11231843  0.0014134924 0.002606901 0.0061348171 0.002534046 0.001527951
## ADAO_11159808 0.0001358812 0.015095114 0.0062381736 0.001875013 0.003922788
## AGG_11236448  0.0019213181 0.013914328 0.0008647023 0.003699604 0.010210024
## AHL_11239959  0.0034717910 0.013281290 0.0127965607 0.017040692 0.005776028
## AJGD_11119689 0.0857140836 0.082088177 0.0424761268 0.012070854 0.068183526
## AMP_11228639  0.0033134470 0.001166984 0.0070391417 0.006086372 0.005196420
##                      X181         X182        X183        X184        X185
## ACR_11231843  0.001956135 0.0001824963 0.006114042 0.001628895 0.002299060
## ADAO_11159808 0.017725434 0.0332986725 0.019359601 0.016026893 0.010209181
## AGG_11236448  0.021633657 0.0134838636 0.010732386 0.002635290 0.009419816
## AHL_11239959  0.009538895 0.0137761840 0.037468662 0.011361573 0.001937010
## AJGD_11119689 0.025580423 0.0341452621 0.028978066 0.107596794 0.099988858
## AMP_11228639  0.004539961 0.0040345774 0.013231915 0.015428982 0.005955688
##                      X186        X187        X188         X189        X190
## ACR_11231843  0.001959534 0.002895671 0.002034898 0.0034631728 0.002512409
## ADAO_11159808 0.006444412 0.002147021 0.015923457 0.0253095375 0.010124052
## AGG_11236448  0.033007899 0.014262566 0.002752943 0.0063445744 0.005400672
## AHL_11239959  0.014878974 0.031473715 0.015774219 0.0038368385 0.021070051
## AJGD_11119689 0.011298382 0.084669380 0.036206415 0.0001013254 0.041378800
## AMP_11228639  0.008107092 0.004164672 0.014822942 0.0059739986 0.002861308
##                      X191         X192        X193        X194        X195
## ACR_11231843  0.002139917 0.0026408516 0.001634892 0.001624848 0.005096672
## ADAO_11159808 0.012346128 0.0020638602 0.004602150 0.009813869 0.005905533
## AGG_11236448  0.012070029 0.0076454850 0.031188190 0.001264647 0.004462875
## AHL_11239959  0.006314724 0.0004838708 0.010997741 0.022556810 0.026950815
## AJGD_11119689 0.095775141 0.0098114106 0.119020878 0.044389731 0.309550487
## AMP_11228639  0.033386155 0.0140436595 0.012662284 0.014224790 0.014325051
##                      X196        X197         X198        X199         X200
## ACR_11231843  0.001600055 0.004648909 0.0006950449 0.001815009 0.0015097296
## ADAO_11159808 0.002033916 0.014805867 0.0024736123 0.001887653 0.0007154884
## AGG_11236448  0.028966759 0.013782612 0.0033169749 0.002698040 0.0072043440
## AHL_11239959  0.092662759 0.013159547 0.0239483768 0.003870477 0.0025498846
## AJGD_11119689 0.018637848 0.033257713 0.0454344500 0.019045720 0.0101626511
## AMP_11228639  0.001600465 0.019138606 0.0225169957 0.005897850 0.0029549110
##                      X201        X202         X203        X204         X205
## ACR_11231843  0.002915231 0.004496119 0.0006821579 0.001638866 0.0013166010
## ADAO_11159808 0.006758415 0.010558720 0.0197781308 0.020866383 0.0017031500
## AGG_11236448  0.006553657 0.037836293 0.0019381164 0.002492667 0.0019611384
## AHL_11239959  0.009493808 0.014659568 0.0245564670 0.008468273 0.0068285979
## AJGD_11119689 0.162925836 0.015494936 0.0745746727 0.033645347 0.0315858486
## AMP_11228639  0.002623044 0.001395195 0.0199687908 0.010958935 0.0000414788
##                      X206        X207        X208        X209         X210
## ACR_11231843  0.001705833 0.002155267 0.002938489 0.001563434 0.0016913359
## ADAO_11159808 0.014284512 0.004356601 0.001580822 0.013794678 0.0122416229
## AGG_11236448  0.005165989 0.001330134 0.029078111 0.017015390 0.0005169822
## AHL_11239959  0.039554307 0.036051450 0.001447832 0.041540078 0.0507737323
## AJGD_11119689 0.174121843 0.006420175 0.011512953 0.262637010 0.0495231170
## AMP_11228639  0.010555567 0.009126864 0.027717068 0.001513354 0.0117047959
##                       X211        X212        X213        X214        X215
## ACR_11231843  0.0011454122 0.002531867 0.001001203 0.001199534 0.001012105
## ADAO_11159808 0.0044044822 0.004567701 0.014283622 0.002825495 0.017195116
## AGG_11236448  0.0003730042 0.002036017 0.010083894 0.009524501 0.007992632
## AHL_11239959  0.0134972760 0.042595994 0.016019659 0.041293063 0.008845300
## AJGD_11119689 0.0230599369 0.022160424 0.055753435 0.036653655 0.077744872
## AMP_11228639  0.0265067845 0.007537867 0.000134721 0.007991157 0.006805094
##                      X216         X217        X218         X219        X220
## ACR_11231843  0.002901409 0.0012790861 0.002126382 0.0004990376 0.001286343
## ADAO_11159808 0.007301579 0.0006129838 0.013621005 0.0021834399 0.012427842
## AGG_11236448  0.008663268 0.0179627806 0.012625752 0.0239270580 0.004247566
## AHL_11239959  0.012840700 0.0043720914 0.038017552 0.0409157313 0.010603025
## AJGD_11119689 0.001628251 0.0083552841 0.004008203 0.0473291121 0.014775849
## AMP_11228639  0.002647968 0.0033259286 0.002671043 0.0222067956 0.004585452
##                      X221        X222        X223        X224         X225
## ACR_11231843  0.001905377 0.001653424 0.001518872 0.001558562 0.0004076182
## ADAO_11159808 0.008359206 0.041643049 0.006474549 0.001995487 0.0001375381
## AGG_11236448  0.000249191 0.001951449 0.017781944 0.011314477 0.0117390360
## AHL_11239959  0.005063536 0.003908493 0.015979987 0.003436973 0.0097358458
## AJGD_11119689 0.008044921 0.021760620 0.133924727 0.042301321 0.0261266792
## AMP_11228639  0.001855153 0.019776755 0.004444629 0.007786362 0.0096147812
##                      X226        X227        X228         X229        X230
## ACR_11231843  0.001079410 0.002042499 0.002444948 0.0023746838 0.002927610
## ADAO_11159808 0.010970877 0.025893293 0.003932126 0.0096733529 0.007607704
## AGG_11236448  0.015504724 0.008840224 0.012087977 0.0020367127 0.037346086
## AHL_11239959  0.017839258 0.031484905 0.006704746 0.0355160008 0.023771098
## AJGD_11119689 0.196134356 0.075386856 0.133282431 0.0533518708 0.056635072
## AMP_11228639  0.003124835 0.004864384 0.030126939 0.0002340561 0.012994589
##                       X231        X232        X233         X234        X235
## ACR_11231843  0.0011711000 0.001497628 0.002045806 0.0007346903 0.002849697
## ADAO_11159808 0.0115935515 0.004392633 0.008641028 0.0239998890 0.002308332
## AGG_11236448  0.0274383832 0.054922023 0.001047180 0.0159150738 0.012660231
## AHL_11239959  0.0032921410 0.003425980 0.006887291 0.0427070898 0.029683989
## AJGD_11119689 0.0008970865 0.164458097 0.065914014 0.0796018979 0.191574730
## AMP_11228639  0.0100510939 0.005124847 0.023849634 0.0005273842 0.004260781
##                       X236        X237        X238        X239         X240
## ACR_11231843  0.0009914444 0.001012983 0.001159732 0.003685346 3.353014e-03
## ADAO_11159808 0.0049430199 0.010582599 0.026189445 0.029035926 3.178474e-04
## AGG_11236448  0.0421503513 0.001919151 0.015872615 0.002443488 2.592733e-03
## AHL_11239959  0.0057535798 0.010793166 0.023248996 0.013417448 8.079576e-02
## AJGD_11119689 0.1305254752 0.007122585 0.001766798 0.077342542 6.035286e-05
## AMP_11228639  0.0129695143 0.012579008 0.004176968 0.014971229 3.595856e-03
##                      X241       X242        X243        X244        X245
## ACR_11231843  0.007372827 0.00257892 0.007552868 0.001244157 0.020794567
## ADAO_11159808 1.007935650 0.56734822 0.509011178 0.711561876 0.152613273
## AGG_11236448  2.380687539 0.39362122 0.182763413 0.324556130 0.255300891
## AHL_11239959  0.858419217 0.76083264 0.292720772 1.277966489 0.677624620
## AJGD_11119689 1.704367449 1.88947483 0.167634848 1.147035657 0.159517736
## AMP_11228639  3.032791148 0.84461522 0.954845276 0.287926093 0.004228085
##                     X246        X247        X248       X249        X250
## ACR_11231843  0.02046290 0.024877932 0.006955217 0.00852905 0.005777708
## ADAO_11159808 0.01857926 0.289120346 0.083830140 0.27147799 0.261912313
## AGG_11236448  0.12294867 0.245528755 0.190021222 0.54714897 0.357936063
## AHL_11239959  0.67498060 0.152061973 1.110688407 0.60742582 0.214555627
## AJGD_11119689 0.56597730 0.004861582 0.299313431 0.28474152 0.519772097
## AMP_11228639  0.09564877 0.058631508 0.006046857 0.01212086 0.001940349
##                     X251       X252       X253       X254         X255
## ACR_11231843  0.00361939 0.00435191 0.01065348 0.01471756 0.0007872641
## ADAO_11159808 0.21446360 0.10918664 0.02806076 0.20192584 0.2692548988
## AGG_11236448  0.85828890 0.06305132 0.29559245 0.06432647 0.0174924957
## AHL_11239959  0.08376783 0.64521099 0.22581482 0.08081757 0.6463845767
## AJGD_11119689 0.08121858 0.77620410 0.19579371 0.42442571 0.0894979525
## AMP_11228639  0.02175067 0.01076778 0.03683358 0.12466185 0.0214858725
##                     X256         X257        X258        X259        X260
## ACR_11231843  0.01076351 0.0003489152 0.008049351 0.002809187 0.004623149
## ADAO_11159808 0.13938618 0.2108637638 0.290507155 0.003438341 0.019503533
## AGG_11236448  0.30601982 0.0406872503 0.022436947 0.049450815 0.003606647
## AHL_11239959  0.04172188 0.0280735562 0.012784406 0.240191883 0.195912162
## AJGD_11119689 0.12438134 0.5053023159 0.352205824 0.144637524 0.010357443
## AMP_11228639  0.02376122 0.0078033808 0.032811310 0.021214619 0.061530402
##                      X261        X262         X263         X264        X265
## ACR_11231843  0.005164633 0.004330519 0.0022736838 0.0007047791 0.004851931
## ADAO_11159808 0.027427498 0.188078718 0.1789245805 0.0240478893 0.058047323
## AGG_11236448  0.237265370 0.040406625 0.0095648292 0.1388621834 0.020921329
## AHL_11239959  0.036026329 0.036877536 0.2543045150 0.4392662038 0.021776880
## AJGD_11119689 0.831887336 0.313210727 0.0668612025 0.5372328791 0.065391074
## AMP_11228639  0.007062599 0.093557787 0.0006829918 0.0105028378 0.008146914
##                      X266        X267         X268         X269         X270
## ACR_11231843  0.002144835 0.008373432 0.0002735066 0.0007708365 0.0008905531
## ADAO_11159808 0.161868011 0.090045009 0.0922563225 0.0651277179 0.1124013509
## AGG_11236448  0.170018443 0.208350085 0.0933683716 0.2468314324 0.0336384608
## AHL_11239959  0.099153264 0.004618835 0.0924651481 0.0301394053 0.0317340710
## AJGD_11119689 0.054890780 0.020306019 0.1012233067 0.1042789768 0.1574517184
## AMP_11228639  0.048240748 0.029180881 0.0190465607 0.0065503979 0.0522698989
##                      X271        X272         X273        X274         X275
## ACR_11231843  0.002032371 0.002317647 0.0016958597 0.001403045 0.0011982095
## ADAO_11159808 0.022024583 0.006397448 0.0703278891 0.023328410 0.0004846579
## AGG_11236448  0.013009456 0.396338337 0.0348680280 0.114694840 0.0955105787
## AHL_11239959  0.022523293 0.087238858 0.0008727816 0.070438693 0.0611351216
## AJGD_11119689 0.144292622 0.058033610 0.0617754210 0.179342003 0.0909365443
## AMP_11228639  0.035755652 0.049410170 0.1430888749 0.005412508 0.0424986167
##                       X276        X277        X278         X279        X280
## ACR_11231843  5.750899e-05 0.002079558 0.006312121 0.0006429736 0.002606208
## ADAO_11159808 1.063848e-01 0.127984297 0.081142783 0.0700151157 0.025565200
## AGG_11236448  1.471583e-01 0.255588052 0.046404691 0.0513010272 0.441123074
## AHL_11239959  2.481010e-01 0.004491484 0.064862935 0.1588556211 0.041632279
## AJGD_11119689 1.448960e-02 0.047356598 0.256559916 0.1218822084 0.038561113
## AMP_11228639  2.655492e-03 0.006847402 0.073235289 0.0335647431 0.022256135
##                      X281        X282        X283         X284        X285
## ACR_11231843  0.005788565 0.002102477 0.007890362 0.0001697639 0.003025530
## ADAO_11159808 0.008170481 0.004617634 0.034721995 0.0531080142 0.024514705
## AGG_11236448  0.025690873 0.027002880 0.316329631 0.0705171116 0.006359791
## AHL_11239959  0.048581902 0.077166941 0.109731714 0.0572732473 0.051898075
## AJGD_11119689 0.001543516 0.052186141 0.328208208 0.2504366359 0.038272278
## AMP_11228639  0.007867459 0.003691957 0.043585810 0.0286199404 0.020216874
##                       X286         X287        X288        X289        X290
## ACR_11231843  0.0033589622 0.0007003468 0.008267341 0.006361191 0.001096650
## ADAO_11159808 0.0003047917 0.0007115626 0.016639007 0.041382721 0.084623541
## AGG_11236448  0.1416208857 0.0081803384 0.101737710 0.035920671 0.001891900
## AHL_11239959  0.0156443837 0.0346447442 0.005004847 0.028493041 0.001818934
## AJGD_11119689 0.0567372955 0.0445087993 0.019482179 0.018269030 0.096374168
## AMP_11228639  0.0307668071 0.0124602401 0.004365088 0.001924741 0.006483497
##                      X291        X292        X293         X294        X295
## ACR_11231843  0.001599357 0.004085669 0.001554687 0.0062261567 0.002612204
## ADAO_11159808 0.036127719 0.012062281 0.002093560 0.0001519172 0.003455975
## AGG_11236448  0.029584171 0.023173475 0.037571953 0.0251882617 0.035620593
## AHL_11239959  0.003992290 0.006762357 0.022570057 0.0370565371 0.055114583
## AJGD_11119689 0.085268884 0.119952464 0.095525818 0.0432442829 0.004873117
## AMP_11228639  0.010832400 0.014569236 0.006101093 0.0066324566 0.004557694
##                       X296         X297         X298        X299        X300
## ACR_11231843  0.0029236565 5.853528e-03 0.0008167224 0.006193239 0.004250135
## ADAO_11159808 0.0008043863 1.576491e-05 0.0391016191 0.009013988 0.007809487
## AGG_11236448  0.1273769527 6.013307e-02 0.0643214016 0.002914453 0.008713679
## AHL_11239959  0.0016425975 6.716833e-02 0.0056750006 0.015766131 0.015340865
## AJGD_11119689 0.1144010217 2.025339e-02 0.1237645838 0.124102715 0.084806695
## AMP_11228639  0.0069791233 1.478991e-02 0.0140747641 0.011746632 0.003877042
##                      X301        X302        X303        X304        X305
## ACR_11231843  0.002651661 0.010910868 0.001616238 0.003420722 0.002515699
## ADAO_11159808 0.045383793 0.001874113 0.019276946 0.044470679 0.005277178
## AGG_11236448  0.065578386 0.003594029 0.005420103 0.014317012 0.066122365
## AHL_11239959  0.009329212 0.023590614 0.003999922 0.017104330 0.027153837
## AJGD_11119689 0.099636007 0.039945835 0.016521609 0.015431967 0.234383222
## AMP_11228639  0.028274740 0.011954563 0.001584067 0.044551011 0.049355480
##                       X306        X307        X308        X309         X310
## ACR_11231843  0.0009039589 0.003063311 0.003030873 0.001756251 0.0038989912
## ADAO_11159808 0.0043859102 0.034304900 0.005568489 0.002633567 0.0004644676
## AGG_11236448  0.0194265070 0.036824621 0.002515050 0.053896005 0.0272205325
## AHL_11239959  0.0716518247 0.036962582 0.094575011 0.083662308 0.0015803465
## AJGD_11119689 0.0701006321 0.286845291 0.043471702 0.021095290 0.0926341072
## AMP_11228639  0.0106956760 0.042416791 0.026442545 0.028863922 0.0351532573
##                      X311         X312         X313        X314       X315
## ACR_11231843  0.002395468 0.0008122179 9.540197e-03 0.002506233 0.00358983
## ADAO_11159808 0.003057918 0.0338378027 1.728320e-02 0.006021544 0.03078244
## AGG_11236448  0.002363956 0.0289872911 1.778069e-02 0.008147051 0.06254596
## AHL_11239959  0.019141441 0.0336587861 6.760815e-02 0.001904680 0.02728088
## AJGD_11119689 0.265119950 0.2075143863 2.285859e-02 0.073221775 0.05640236
## AMP_11228639  0.037213706 0.0247929825 2.625292e-05 0.002655831 0.03184893
##                      X316         X317        X318        X319        X320
## ACR_11231843  0.004299736 0.0002992080 0.005857324 0.007158136 0.001309858
## ADAO_11159808 0.002051022 0.0004341849 0.010746467 0.009371412 0.015246671
## AGG_11236448  0.007165748 0.0085344047 0.010118452 0.060762956 0.039074871
## AHL_11239959  0.023700272 0.0015598610 0.017390038 0.014537620 0.008198007
## AJGD_11119689 0.058302003 0.0629066762 0.061858529 0.010085570 0.004437876
## AMP_11228639  0.008451500 0.0091357923 0.026687995 0.003048407 0.004590435
##                      X321         X322        X323        X324        X325
## ACR_11231843  0.006356601 0.0004187628 0.004337170 0.004832361 0.005267023
## ADAO_11159808 0.022354364 0.0053927175 0.008236551 0.005957846 0.035160008
## AGG_11236448  0.028316978 0.0021685459 0.049872617 0.001946517 0.017398491
## AHL_11239959  0.035935927 0.0903719734 0.009380955 0.030338355 0.085156576
## AJGD_11119689 0.070188406 0.1149524177 0.068734097 0.129745412 0.009653725
## AMP_11228639  0.004500632 0.0075628477 0.003249839 0.022403960 0.031478504
##                      X326        X327        X328         X329        X330
## ACR_11231843  0.003410390 0.001809137 0.001069952 0.0017492336 0.003928266
## ADAO_11159808 0.039673212 0.043270208 0.002897255 0.0165603937 0.003792764
## AGG_11236448  0.056016522 0.002202799 0.027957899 0.0367266751 0.008695934
## AHL_11239959  0.047952959 0.033491404 0.012702894 0.0001972801 0.009670017
## AJGD_11119689 0.037672868 0.006023682 0.103721458 0.0780525664 0.041903822
## AMP_11228639  0.002703966 0.005146231 0.002314646 0.0186744152 0.019734296
##                      X331        X332        X333        X334        X335
## ACR_11231843  0.001694852 0.003187604 0.002454322 0.000364638 0.003783277
## ADAO_11159808 0.006888415 0.055685426 0.003472036 0.032121020 0.016832547
## AGG_11236448  0.013255778 0.005192139 0.006952358 0.017348862 0.038894720
## AHL_11239959  0.026499130 0.022496787 0.055854269 0.046954475 0.005543831
## AJGD_11119689 0.081385361 0.078940873 0.062760068 0.162238969 0.040715666
## AMP_11228639  0.031642931 0.032744706 0.002342143 0.007432832 0.006110115
##                      X336         X337        X338         X339        X340
## ACR_11231843  0.001335465 0.0046786558 0.003503886 0.0002060436 0.005161912
## ADAO_11159808 0.002876496 0.0003010287 0.010583644 0.0045792152 0.014628293
## AGG_11236448  0.030438591 0.0559000240 0.008505523 0.0170654900 0.040314073
## AHL_11239959  0.071481852 0.0184163701 0.081021481 0.0148453348 0.010648406
## AJGD_11119689 0.026152737 0.0862358458 0.005516163 0.0767369377 0.002698358
## AMP_11228639  0.012782289 0.0329449212 0.021224332 0.0076970259 0.027708890
##                       X341        X342        X343        X344        X345
## ACR_11231843  6.037923e-05 0.006914379 0.002666583 0.003519849 0.002355671
## ADAO_11159808 1.110574e-02 0.004439753 0.005664906 0.013966253 0.005963971
## AGG_11236448  1.096872e-01 0.036445572 0.006798097 0.025350519 0.015576249
## AHL_11239959  3.693500e-03 0.032989021 0.004987038 0.019007929 0.007781697
## AJGD_11119689 7.510475e-02 0.152652934 0.094053150 0.038574164 0.111431622
## AMP_11228639  1.458704e-02 0.013307193 0.005716929 0.009836704 0.015710329
##                       X346        X347         X348        X349        X350
## ACR_11231843  0.0020356429 0.002463969 0.0074877481 0.001019650 0.001286978
## ADAO_11159808 0.0206215366 0.029187967 0.0008514953 0.009641363 0.058081273
## AGG_11236448  0.0180310895 0.015730988 0.0222714636 0.043649470 0.012432768
## AHL_11239959  0.0002570743 0.008511673 0.0254773171 0.003715998 0.001116029
## AJGD_11119689 0.0091147194 0.006570532 0.1253431873 0.075085080 0.069665739
## AMP_11228639  0.0098276367 0.002578411 0.0026826513 0.022808013 0.016483776
##                      X351        X352        X353        X354         X355
## ACR_11231843  0.003885371 0.001969166 0.003852631 0.004010098 0.0002635215
## ADAO_11159808 0.001823264 0.001524924 0.004364322 0.001985458 0.0117415031
## AGG_11236448  0.023957009 0.002032810 0.012127867 0.012549329 0.0108082001
## AHL_11239959  0.003339720 0.017975773 0.069130370 0.110162806 0.0216373850
## AJGD_11119689 0.035666992 0.011340165 0.149919871 0.004078126 0.1530357733
## AMP_11228639  0.002194981 0.000840148 0.059254492 0.018531260 0.0088048719
##                      X356         X357        X358        X359         X360
## ACR_11231843  0.004890609 0.0009482344 0.001947810 0.004098602 0.0001479797
## ADAO_11159808 0.005464265 0.0049375102 0.006194246 0.012254741 0.0001599416
## AGG_11236448  0.015290372 0.0138877144 0.002644078 0.021793649 0.0079279084
## AHL_11239959  0.010396478 0.0006460461 0.015821643 0.049768298 0.0346859892
## AJGD_11119689 0.090702020 0.1045917508 0.029625094 0.048202785 0.0617486598
## AMP_11228639  0.016255561 0.0392805684 0.000114624 0.001445594 0.0102398801
##                       X361        X362         X363        X364         X365
## ACR_11231843  0.0060255859 0.006734871 0.0004745433 0.004380674 0.0012151951
## ADAO_11159808 0.0048772927 0.004911499 0.0150876618 0.016673799 0.0381429395
## AGG_11236448  0.0059132436 0.002409300 0.0008640730 0.016299762 0.0003490109
## AHL_11239959  0.0198951611 0.040296386 0.0075726409 0.035271866 0.0155654821
## AJGD_11119689 0.0425943548 0.012782149 0.0068919722 0.021642983 0.0472674649
## AMP_11228639  0.0009313942 0.007904873 0.0383047482 0.009660896 0.0058499205
##                       X366        X367         X368        X369        X370
## ACR_11231843  0.0009604692 0.005727827 0.0028767376 0.002220999 0.001709068
## ADAO_11159808 0.0195669205 0.003361383 0.0093018276 0.003318064 0.012014837
## AGG_11236448  0.0015930879 0.003392550 0.0003939956 0.023939065 0.009925056
## AHL_11239959  0.0254271587 0.078917825 0.0400517596 0.016762284 0.013707726
## AJGD_11119689 0.0276650887 0.014867056 0.0890894879 0.032339263 0.001728490
## AMP_11228639  0.0071384168 0.006751390 0.0048473217 0.009463716 0.012304021
##                      X371        X372         X373         X374        X375
## ACR_11231843  0.001598033 0.004384187 0.0046078676 0.0006473851 0.004004066
## ADAO_11159808 0.007913402 0.020084813 0.0096674215 0.0740894223 0.020697270
## AGG_11236448  0.021746969 0.002871925 0.0002796431 0.0125013608 0.006924342
## AHL_11239959  0.007586180 0.031688417 0.1510475912 0.0770788733 0.012740620
## AJGD_11119689 0.056448938 0.044503098 0.0202317116 0.0238556639 0.029180560
## AMP_11228639  0.007035311 0.012695566 0.0025718235 0.0247545880 0.050474368
##                      X376        X377         X378        X379        X380
## ACR_11231843  0.001460118 0.001985934 0.0049359951 0.000445727 0.002246056
## ADAO_11159808 0.027198499 0.018825547 0.0017854781 0.003780256 0.008889118
## AGG_11236448  0.007221970 0.026483477 0.0003334471 0.045886596 0.006148049
## AHL_11239959  0.001026920 0.085446263 0.0079458866 0.040514084 0.002561656
## AJGD_11119689 0.042220673 0.066663444 0.0947274340 0.045115969 0.001201257
## AMP_11228639  0.005438497 0.015352743 0.0354741025 0.029045288 0.001831793
##                      X381         X382        X383         X384        X385
## ACR_11231843  0.001284664 0.0018780730 0.003457497 0.0017815058 0.002766978
## ADAO_11159808 0.004843851 0.0001653445 0.012158313 0.0256914015 0.001542689
## AGG_11236448  0.014116530 0.0647134694 0.051030812 0.0005156368 0.006581315
## AHL_11239959  0.017668493 0.0265028033 0.002592314 0.0228965760 0.020417454
## AJGD_11119689 0.014650768 0.2145563346 0.065345577 0.0751601260 0.028721331
## AMP_11228639  0.012222389 0.0018829781 0.012819968 0.0041239310 0.012761213
##                      X386        X387        X388        X389        X390
## ACR_11231843  0.002354210 0.001561437 0.002757258 0.002159404 0.001457741
## ADAO_11159808 0.008312850 0.002723231 0.008342768 0.012810271 0.008019787
## AGG_11236448  0.006938600 0.044095657 0.029325799 0.067988476 0.015318743
## AHL_11239959  0.004469129 0.032634469 0.041537663 0.029264165 0.106784599
## AJGD_11119689 0.044765470 0.039006865 0.043600113 0.006072279 0.099345888
## AMP_11228639  0.012020039 0.044838760 0.016297887 0.002426662 0.002276423
##                      X391        X392         X393         X394       X395
## ACR_11231843  0.003142110 0.005358183 0.0008943519 0.0053795081 0.00132100
## ADAO_11159808 0.022208258 0.001122608 0.0198403034 0.0173150262 0.02440688
## AGG_11236448  0.009916432 0.028126644 0.0102557463 0.0001950864 0.01474133
## AHL_11239959  0.010160859 0.009960969 0.0227869428 0.0155654984 0.02449055
## AJGD_11119689 0.079767795 0.017398940 0.0199185381 0.0087850731 0.13000078
## AMP_11228639  0.004943980 0.010441542 0.0122252081 0.0255304122 0.02743810
##                      X396        X397        X398        X399         X400
## ACR_11231843  0.004196003 0.005052518 0.001001973 0.004389698 0.0038334117
## ADAO_11159808 0.001599489 0.008940554 0.007895663 0.004946808 0.0001332835
## AGG_11236448  0.021202344 0.010448636 0.022530581 0.001741918 0.0015605163
## AHL_11239959  0.021315728 0.008032114 0.040886533 0.007960652 0.0066909538
## AJGD_11119689 0.098115645 0.119126299 0.188776310 0.004917380 0.1176489568
## AMP_11228639  0.003708940 0.015304572 0.014752058 0.014406330 0.0027626485
##                       X401        X402        X403         X404        X405
## ACR_11231843  0.0002952432 0.004768847 0.001224221 0.0068927917 0.005624194
## ADAO_11159808 0.0165693463 0.013569218 0.008800430 0.0197832450 0.018056950
## AGG_11236448  0.0103056438 0.018677238 0.010850168 0.0179976895 0.019068281
## AHL_11239959  0.0026379310 0.014454532 0.024134852 0.0290149515 0.009289577
## AJGD_11119689 0.0380581150 0.116335169 0.082150051 0.0096393933 0.009606193
## AMP_11228639  0.0166000399 0.008329422 0.010294196 0.0006590615 0.027891199
##                      X406        X407        X408         X409         X410
## ACR_11231843  0.001974349 0.003623647 0.003107213 0.0014393661 0.0036844111
## ADAO_11159808 0.027491019 0.007595157 0.015175806 0.0038598000 0.0002076333
## AGG_11236448  0.004422378 0.008873990 0.010825079 0.0005208885 0.0004039750
## AHL_11239959  0.001148526 0.011042458 0.017779335 0.0474332653 0.0068163912
## AJGD_11119689 0.062201542 0.049070762 0.068686369 0.1799354475 0.0225691651
## AMP_11228639  0.011516010 0.025445083 0.022189273 0.0074401981 0.0246708080
##                       X411        X412        X413        X414        X415
## ACR_11231843  0.0009230126 0.003932500 0.004989508 0.002792348 0.002125151
## ADAO_11159808 0.0036080682 0.005305688 0.008175068 0.016008449 0.033323443
## AGG_11236448  0.0015998478 0.004634592 0.017889973 0.001792301 0.008552444
## AHL_11239959  0.0358267535 0.011143965 0.007233111 0.002212653 0.021987645
## AJGD_11119689 0.0497977292 0.059043601 0.026011510 0.142753897 0.044714370
## AMP_11228639  0.0324164918 0.007812833 0.005009228 0.058143613 0.045523433
##                       X416        X417         X418        X419        X420
## ACR_11231843  0.0014134924 0.002606901 0.0061348171 0.002534046 0.001527951
## ADAO_11159808 0.0001358812 0.015095114 0.0062381736 0.001875013 0.003922788
## AGG_11236448  0.0019213181 0.013914328 0.0008647023 0.003699604 0.010210024
## AHL_11239959  0.0034717910 0.013281290 0.0127965607 0.017040692 0.005776028
## AJGD_11119689 0.0857140836 0.082088177 0.0424761268 0.012070854 0.068183526
## AMP_11228639  0.0033134470 0.001166984 0.0070391417 0.006086372 0.005196420
##                      X421         X422        X423        X424        X425
## ACR_11231843  0.001956135 0.0001824963 0.006114042 0.001628895 0.002299060
## ADAO_11159808 0.017725434 0.0332986725 0.019359601 0.016026893 0.010209181
## AGG_11236448  0.021633657 0.0134838636 0.010732386 0.002635290 0.009419816
## AHL_11239959  0.009538895 0.0137761840 0.037468662 0.011361573 0.001937010
## AJGD_11119689 0.025580423 0.0341452621 0.028978066 0.107596794 0.099988858
## AMP_11228639  0.004539961 0.0040345774 0.013231915 0.015428982 0.005955688
##                      X426        X427        X428         X429        X430
## ACR_11231843  0.001959534 0.002895671 0.002034898 0.0034631728 0.002512409
## ADAO_11159808 0.006444412 0.002147021 0.015923457 0.0253095375 0.010124052
## AGG_11236448  0.033007899 0.014262566 0.002752943 0.0063445744 0.005400672
## AHL_11239959  0.014878974 0.031473715 0.015774219 0.0038368385 0.021070051
## AJGD_11119689 0.011298382 0.084669380 0.036206415 0.0001013254 0.041378800
## AMP_11228639  0.008107092 0.004164672 0.014822942 0.0059739986 0.002861308
##                      X431         X432        X433        X434        X435
## ACR_11231843  0.002139917 0.0026408516 0.001634892 0.001624848 0.005096672
## ADAO_11159808 0.012346128 0.0020638602 0.004602150 0.009813869 0.005905533
## AGG_11236448  0.012070029 0.0076454850 0.031188190 0.001264647 0.004462875
## AHL_11239959  0.006314724 0.0004838708 0.010997741 0.022556810 0.026950815
## AJGD_11119689 0.095775141 0.0098114106 0.119020878 0.044389731 0.309550487
## AMP_11228639  0.033386155 0.0140436595 0.012662284 0.014224790 0.014325051
##                      X436        X437         X438        X439         X440
## ACR_11231843  0.001600055 0.004648909 0.0006950449 0.001815009 0.0015097296
## ADAO_11159808 0.002033916 0.014805867 0.0024736123 0.001887653 0.0007154884
## AGG_11236448  0.028966759 0.013782612 0.0033169749 0.002698040 0.0072043440
## AHL_11239959  0.092662759 0.013159547 0.0239483768 0.003870477 0.0025498846
## AJGD_11119689 0.018637848 0.033257713 0.0454344500 0.019045720 0.0101626511
## AMP_11228639  0.001600465 0.019138606 0.0225169957 0.005897850 0.0029549110
##                      X441        X442         X443        X444         X445
## ACR_11231843  0.002915231 0.004496119 0.0006821579 0.001638866 0.0013166010
## ADAO_11159808 0.006758415 0.010558720 0.0197781308 0.020866383 0.0017031500
## AGG_11236448  0.006553657 0.037836293 0.0019381164 0.002492667 0.0019611384
## AHL_11239959  0.009493808 0.014659568 0.0245564670 0.008468273 0.0068285979
## AJGD_11119689 0.162925836 0.015494936 0.0745746727 0.033645347 0.0315858486
## AMP_11228639  0.002623044 0.001395195 0.0199687908 0.010958935 0.0000414788
##                      X446        X447        X448        X449         X450
## ACR_11231843  0.001705833 0.002155267 0.002938489 0.001563434 0.0016913359
## ADAO_11159808 0.014284512 0.004356601 0.001580822 0.013794678 0.0122416229
## AGG_11236448  0.005165989 0.001330134 0.029078111 0.017015390 0.0005169822
## AHL_11239959  0.039554307 0.036051450 0.001447832 0.041540078 0.0507737323
## AJGD_11119689 0.174121843 0.006420175 0.011512953 0.262637010 0.0495231170
## AMP_11228639  0.010555567 0.009126864 0.027717068 0.001513354 0.0117047959
##                       X451        X452        X453        X454        X455
## ACR_11231843  0.0011454122 0.002531867 0.001001203 0.001199534 0.001012105
## ADAO_11159808 0.0044044822 0.004567701 0.014283622 0.002825495 0.017195116
## AGG_11236448  0.0003730042 0.002036017 0.010083894 0.009524501 0.007992632
## AHL_11239959  0.0134972760 0.042595994 0.016019659 0.041293063 0.008845300
## AJGD_11119689 0.0230599369 0.022160424 0.055753435 0.036653655 0.077744872
## AMP_11228639  0.0265067845 0.007537867 0.000134721 0.007991157 0.006805094
##                      X456         X457        X458         X459        X460
## ACR_11231843  0.002901409 0.0012790861 0.002126382 0.0004990376 0.001286343
## ADAO_11159808 0.007301579 0.0006129838 0.013621005 0.0021834399 0.012427842
## AGG_11236448  0.008663268 0.0179627806 0.012625752 0.0239270580 0.004247566
## AHL_11239959  0.012840700 0.0043720914 0.038017552 0.0409157313 0.010603025
## AJGD_11119689 0.001628251 0.0083552841 0.004008203 0.0473291121 0.014775849
## AMP_11228639  0.002647968 0.0033259286 0.002671043 0.0222067956 0.004585452
##                      X461        X462        X463        X464         X465
## ACR_11231843  0.001905377 0.001653424 0.001518872 0.001558562 0.0004076182
## ADAO_11159808 0.008359206 0.041643049 0.006474549 0.001995487 0.0001375381
## AGG_11236448  0.000249191 0.001951449 0.017781944 0.011314477 0.0117390360
## AHL_11239959  0.005063536 0.003908493 0.015979987 0.003436973 0.0097358458
## AJGD_11119689 0.008044921 0.021760620 0.133924727 0.042301321 0.0261266792
## AMP_11228639  0.001855153 0.019776755 0.004444629 0.007786362 0.0096147812
##                      X466        X467        X468         X469        X470
## ACR_11231843  0.001079410 0.002042499 0.002444948 0.0023746838 0.002927610
## ADAO_11159808 0.010970877 0.025893293 0.003932126 0.0096733529 0.007607704
## AGG_11236448  0.015504724 0.008840224 0.012087977 0.0020367127 0.037346086
## AHL_11239959  0.017839258 0.031484905 0.006704746 0.0355160008 0.023771098
## AJGD_11119689 0.196134356 0.075386856 0.133282431 0.0533518708 0.056635072
## AMP_11228639  0.003124835 0.004864384 0.030126939 0.0002340561 0.012994589
##                       X471        X472        X473         X474        X475
## ACR_11231843  0.0011711000 0.001497628 0.002045806 0.0007346903 0.002849697
## ADAO_11159808 0.0115935515 0.004392633 0.008641028 0.0239998890 0.002308332
## AGG_11236448  0.0274383832 0.054922023 0.001047180 0.0159150738 0.012660231
## AHL_11239959  0.0032921410 0.003425980 0.006887291 0.0427070898 0.029683989
## AJGD_11119689 0.0008970865 0.164458097 0.065914014 0.0796018979 0.191574730
## AMP_11228639  0.0100510939 0.005124847 0.023849634 0.0005273842 0.004260781
##                       X476        X477        X478        X479         X480
## ACR_11231843  0.0009914444 0.001012983 0.001159732 0.003685346 3.353014e-03
## ADAO_11159808 0.0049430199 0.010582599 0.026189445 0.029035926 3.178474e-04
## AGG_11236448  0.0421503513 0.001919151 0.015872615 0.002443488 2.592733e-03
## AHL_11239959  0.0057535798 0.010793166 0.023248996 0.013417448 8.079576e-02
## AJGD_11119689 0.1305254752 0.007122585 0.001766798 0.077342542 6.035286e-05
## AMP_11228639  0.0129695143 0.012579008 0.004176968 0.014971229 3.595856e-03
##               DDclust_PER_cuantiles
## ACR_11231843                      1
## ADAO_11159808                     1
## AGG_11236448                      1
## AHL_11239959                      1
## AJGD_11119689                     1
## AMP_11228639                      1
## Mean by groups
rp_tbl_PER <- aggregate(plotting_PER, by = list(plotting_PER$DDclust_PER_cuantiles), mean)
row.names(rp_tbl_PER) <- paste0("Group",rp_tbl_PER$DDclust_PER_cuantiles)
rp_tbl_PER <- rp_tbl_PER %>%
  select(starts_with('X'))
rp_tbl_PER <- data.frame(t(rp_tbl_PER))
head(rp_tbl_PER)
##       Group1    Group2
## X1 1.0499550 4.9362862
## X2 0.8721602 3.6044422
## X3 0.5343588 1.0745436
## X4 0.5591749 1.0627817
## X5 0.3217129 0.5952355
## X6 0.2390891 0.6153139
# Create plotting data-frame
PER_values_by_group <- data.frame("value_PER" = c(rp_tbl_PER$Group1,rp_tbl_PER$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_PER$Group1)),
                                              rep("Group2", times = length(rp_tbl_PER$Group2))),
                                  "index" = c(c(1:length(rp_tbl_PER$Group1)),c(1:length(rp_tbl_PER$Group2))))

p <- ggplot(PER_values_by_group, aes(x = index, y = value_PER, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

Adjusted Rand Index

rand_index_table_cuantiles = data.frame(matrix(ncol = 3 , nrow = 3))
colnames(rand_index_table_cuantiles) <- c("DDclust_ACF_cuantiles", "DDclust_EUCL_cuantiles", "DDclust_PER_cuantiles")
rownames(rand_index_table_cuantiles) <- c("DDclust_ACF_cuantiles", "DDclust_EUCL_cuantiles", "DDclust_PER_cuantiles")
cluster_study_cuantiles <- list(DDclust_ACF_cuantiles, DDclust_EUCL_cuantiles, DDclust_PER_cuantiles)
for (i in c(1:length(cluster_study_cuantiles))) {
  for (j in c(1:length(cluster_study_cuantiles))){
  rand_index_table_cuantiles[i,j] <- adjustedRandIndex(cluster_study_cuantiles[[i]], cluster_study_cuantiles[[j]])
}}
head(rand_index_table_cuantiles)
##                        DDclust_ACF_cuantiles DDclust_EUCL_cuantiles
## DDclust_ACF_cuantiles            1.000000000            0.006549118
## DDclust_EUCL_cuantiles           0.006549118            1.000000000
## DDclust_PER_cuantiles            0.194712764            0.109127771
##                        DDclust_PER_cuantiles
## DDclust_ACF_cuantiles              0.1947128
## DDclust_EUCL_cuantiles             0.1091278
## DDclust_PER_cuantiles              1.0000000
write.csv(cluster_study_cuantiles, "../../data/clusters/cluster_study_cuantiles.csv")