Libraries

library(TSA) # time series
library(TSclust)

library(tidyr)
library(readr)
library(ggplot2) # ggplot graphs
library(knitr)
library(readxl)
library(xlsx)
library(openxlsx)
library(reactable) # reactable(df)
library(naniar) # miss_case_summary

library(dplyr)

## KNN imputation
library(caret)
library(RANN)

# CLustering 
library(factoextra)    # Clustering visualization
library(cluster)       # Clustering algorithms
library(dendextend)    # For comparing two dendrograms
library(corrplot)      # Corelation between dendrograms
library(tidyverse)     # Data manupulation
library(NbClust)       # Determine optimal no. of clusters  [not working...]
library(TSclust)
library(mclust)        # Adjusted Rand index

#RandomForest
library(randomForest) # RandomForest Discrete Classification
library(imbalance) # To create a more balanced dataset

Functions

source("../../scripts/useful-functions/get_column_position.R")
# In a normal script it will be:  source("./scripts/useful-functions/get_column_position.R")

Reading Data

Time Series Data: FC_scaled Heart Rate

FC_TS_HR_P2 = data.frame(read_xlsx("../../data/clean-data/BoxBasedImputation/FC_valid_patients_input_P2.xlsx", sheet = "FC_valid_patients_input_P2" ))
FC_scaled_TS_HR_P2<- as.data.frame(lapply(FC_TS_HR_P2, scale)) # Scaled Data

# First patients with OAF
name_patients_DETERIORO_OAF_0 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0.csv"))
name_patients_DETERIORO_OAF_0 <- name_patients_DETERIORO_OAF_0$x
name_patients_DETERIORO_OAF_0_8 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0_8.csv"))
name_patients_DETERIORO_OAF_0_8 <- name_patients_DETERIORO_OAF_0_8$x

## Deterioro and Not deterioro
file_patient_name_NO_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_NO_DETERIORO.csv"))
file_patient_name_NO_DETERIORO <- file_patient_name_NO_DETERIORO$x
file_patient_name_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_DETERIORO.csv"))
file_patient_name_DETERIORO <- file_patient_name_DETERIORO$x

Descriptive Data for Discriminant analysis

valid_patients_P2 <- data.frame(read_xlsx("../../data/clean-data/valid_patients_P2.xlsx"))
valid_patients_P2 <- valid_patients_P2$x
valid_patients_P2 <- valid_patients_P2[! valid_patients_P2 %in% union(name_patients_DETERIORO_OAF_0,name_patients_DETERIORO_OAF_0_8)]

file_patient_name <- data.frame(read_csv("../../data/clean-data/file_patient_name.csv", show_col_types = FALSE))
file_patient_name <- file_patient_name$x
  
df1 <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data.xlsx"))
rownames(df1) <- file_patient_name
df1 <- df1[valid_patients_P2,]
df_descriptive <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data_imputed.xlsx"), row.names = TRUE)
rownames(df_descriptive) <- file_patient_name
df_descriptive <- df_descriptive %>% select(-c(FR_8_16h, FR_16_24h, FLUJO2_8_16h,FLUJO2_16_24h,SCORE_WOOD_DOWNES_24H,SAPI_16_24h, SAPI_8_16h))
# Class
pos_1 = get_column_position(df_descriptive,"SAPI_0_8h")
pos_2 = get_column_position(df_descriptive,"PAUSAS_APNEA")
df_descriptive[,c(pos_1:pos_2)] <- lapply(df_descriptive[,c(pos_1:pos_2)], as.factor)
#lapply(df_descriptive,class)
df_descriptive <- df_descriptive[valid_patients_P2,]

Create a dataframe with ACF [Heart Rate ]

FC_scaled_TS_HR_P2 <- FC_scaled_TS_HR_P2[,valid_patients_P2]

Restando Media

#FC_scaled_TS_HR_P2 = data.frame(scale(FC_scaled_TS_HR_P2))
dimension_col <- dim(FC_scaled_TS_HR_P2)[2]
dimension_row <- 480 #lag.max -1

# Heart Rate
FC_scaled_TS_HR_P2_ACF <- data.frame(matrix(nrow = dimension_row, ncol = dimension_col))
colnames(FC_scaled_TS_HR_P2_ACF) <- names(FC_scaled_TS_HR_P2)[1:dimension_col]
for (i in names(FC_scaled_TS_HR_P2_ACF)) {
  acf_result_FC_scaled <- forecast::Acf(FC_scaled_TS_HR_P2[[i]], lag.max = (dimension_row - 1), plot = FALSE, drop.lag.0 = FALSE)
  FC_scaled_TS_HR_P2_ACF[, i] <- acf_result_FC_scaled$acf
}

Create a dataframe with peridiogram

# Generar un dataset con varias series temporales
df <- FC_scaled_TS_HR_P2

# Crear una matriz para almacenar los periodogramas
pg_mat <- data.frame(matrix(nrow = nrow(df), ncol =  ncol(df)))
colnames(pg_mat) = colnames(FC_scaled_TS_HR_P2)

# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
library(stats)
# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
for (i in colnames(FC_scaled_TS_HR_P2)) {
  pg_mat[,i] <- stats::spec.pgram(FC_scaled_TS_HR_P2[,i], plot = FALSE)$spec
}

TsClust Comprobation

datos <- FC_scaled_TS_HR_P2

diss.ACF Computes the dissimilarity between two time series as the distance between their estimated simple (ACF) or partial (PACF) autocorrelation coefficients

DD_ACF <- diss(datos, "ACF", lag.max = 50)
DD_ACF_matrix <- as.matrix(DD_ACF)

diss.EUCL

DD_EUCL <- diss(datos, "EUCL")
DD_EUCL_matrix <- as.matrix(DD_EUCL)

diss.PER

DD_PER <- diss(datos, "PER")
DD_PER_matrix <- as.matrix(DD_PER)

Euclidean Distance first 50 ACF

datos_ACF = t(FC_scaled_TS_HR_P2_ACF[c(1:51),])
distance <- dist(t(FC_scaled_TS_HR_P2_ACF[c(1:51),]), method = "euclidean")
distance_matrix_ACF <- as.matrix(distance)

Euclidean Distance

datos_EUCL <- t(datos)
distance <- dist(datos_EUCL, method = "euclidean")
distance_matrix_EUCL <- as.matrix(distance)

Eculidean PER Distance

datos_PER <- t(pg_mat)
distance_PER <- dist(t(pg_mat), method = "euclidean")
distance_matrix_PER <- as.matrix(distance_PER)
distance_matrix_PER_NORM = distance_matrix_PER / 480

TSCLust in Action

ACF TSclust

# DD_ACF <- diss(datos, "ACF", lag.max = 50)

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_ACF, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.8704366 0.6767717 0.9196194 0.9584022

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_ACF
res<-NbClust(datos_ACF, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.4944 0.3520 0.3354 0.2960
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.4944
#res$Best.partition
hcintper_ACF <- hclust(DD_ACF, "ward.D2")
fviz_dend(hcintper_ACF, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

DDclust_ACF_FC_scaled <- cutree( hclust(DD_ACF, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_ACF_FC_scaled))

fviz_silhouette(silhouette(DDclust_ACF_FC_scaled, DD_ACF))
##   cluster size ave.sil.width
## 1       1   37          0.45
## 2       2   21          0.58

Contingency ACF lag.max = 50

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_ACF <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_ACF <- union(names(DDclust_ACF_FC_scaled[DDclust_ACF_FC_scaled == 2]),names(DDclust_ACF_FC_scaled[DDclust_ACF_FC_scaled == 1]))
fviz_dend(hcintper_ACF, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_ACF[,order_ACF]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 4 2
NO DETERIORO 33 19
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.1081081 0.0952381
NO DETERIORO 0.8918919 0.9047619

Random Forest: Discriminant TSCLust ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_FC_scaled)
data_frame2 = df_descriptive
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
data_frame_merge_ACF$CLUSTER = factor(data_frame_merge_ACF$CLUSTER)
table(data_frame_merge_ACF$CLUSTER)
## 
##  1  2 
## 37 21
data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])]<- lapply(data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])], as.numeric)
head(data_frame_merge_ACF)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       2  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_ACF$CLUSTER <- factor(data_frame_merge_ACF$CLUSTER)
newSMOTE_ACF <-data_frame_merge_ACF
set.seed(123)
pos_1 = get_column_position(newSMOTE_ACF, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_ACF, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_ACF[pos_1:pos_2])
newSMOTE_ACF[col_names_factor] <- lapply(newSMOTE_ACF[col_names_factor] , factor)

RF_ACF <- randomForest(CLUSTER ~ ., data = newSMOTE_ACF)
print(RF_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 48.28%
## Confusion matrix:
##    1  2 class.error
## 1 26 11   0.2972973
## 2 17  4   0.8095238

Importance

kable(RF_ACF$importance[order(RF_ACF$importance, decreasing = TRUE),])
x
EDAD 2.6328715
SCORE_WOOD_DOWNES_INGRESO 2.5338316
PESO 2.3967813
SCORE_CRUCES_INGRESO 2.3630299
FR_0_8h 1.7007907
SAPI_0_8h 1.6392267
DIAS_O2_TOTAL 1.5501284
EG 1.4672375
DIAS_GN 1.3476104
FLUJO2_0_8H 1.3447355
RADIOGRAFIA 1.0722420
SEXO 0.7386009
ETIOLOGIA 0.7294733
ALIMENTACION 0.6162708
LM 0.4676251
ANALITICA 0.3376106
DIAS_OAF 0.3297077
PREMATURIDAD 0.3288944
TABACO 0.3274340
ENFERMEDAD_BASE 0.3257954
SUERO 0.3135917
ALERGIAS 0.3089164
GN_INGRESO 0.2477224
SNG 0.2476302
DERMATITIS 0.1752274
OAF 0.1405188
PALIVIZUMAB 0.1345768
OAF_TRAS_INGRESO 0.1273862
DETERIORO 0.1157549
PAUSAS_APNEA 0.0759802
UCIP 0.0517007
OAF_AL_INGRESO 0.0000000

Importance of first 50 ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_FC_scaled)
data_frame2_ACF = data.frame(t(FC_scaled_TS_HR_P2_ACF[c(1:51),]))
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2_ACF,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
set.seed(123)
data_frame_merge_ACF$CLUSTER <- as.factor(data_frame_merge_ACF$CLUSTER)
RF_0_ACF <- randomForest(CLUSTER ~ ., data = data_frame_merge_ACF)
print(RF_0_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 7
## 
##         OOB estimate of  error rate: 1.72%
## Confusion matrix:
##    1  2 class.error
## 1 37  0  0.00000000
## 2  1 20  0.04761905
plot(RF_0_ACF$importance, type = "h")

### ACF by clusters

plot_data_ACF <- data.frame(datos_ACF)
cluster_data_ACF <- data.frame(DDclust_ACF_FC_scaled)
plotting_ACF <- cbind(plot_data_ACF, cluster_data_ACF)
head(plotting_ACF)
##               X1        X2        X3        X4        X5        X6        X7
## ACR_11231843   1 0.5747954 0.4244149 0.3898310 0.3054550 0.2987537 0.2466085
## ADAO_11159808  1 0.6805727 0.5935279 0.5085316 0.4365390 0.3660983 0.3061974
## AGG_11236448   1 0.7659893 0.6522822 0.5752187 0.5026580 0.4312281 0.4003839
## AHL_11239959   1 0.7330013 0.6576631 0.6158813 0.5836972 0.5097892 0.4615090
## AJGD_11119689  1 0.4856503 0.4165173 0.3766304 0.3176037 0.3071462 0.2873193
## AMP_11228639   1 0.6595950 0.6178051 0.6037129 0.5651124 0.5755787 0.5525003
##                      X8        X9       X10       X11       X12        X13
## ACR_11231843  0.1833401 0.1800060 0.1590625 0.1193108 0.1028016 0.08907378
## ADAO_11159808 0.2645815 0.2238202 0.1822452 0.1658125 0.1617351 0.14100383
## AGG_11236448  0.3616214 0.3484616 0.3680116 0.3937240 0.3530302 0.34635666
## AHL_11239959  0.4253346 0.3663603 0.3350366 0.3211704 0.3012808 0.29708129
## AJGD_11119689 0.2504552 0.2382239 0.2213956 0.1841389 0.1555994 0.19398733
## AMP_11228639  0.5484309 0.5151089 0.5260231 0.5356568 0.5412524 0.53812733
##                      X14        X15        X16          X17         X18
## ACR_11231843  0.02692387 0.02098007 0.01292424 0.0006154294 0.004233393
## ADAO_11159808 0.13026706 0.13321015 0.13066704 0.1285902414 0.110254753
## AGG_11236448  0.35754880 0.32532530 0.27518679 0.2299503431 0.206868669
## AHL_11239959  0.26719489 0.25676612 0.24100162 0.2420480921 0.198732377
## AJGD_11119689 0.15437946 0.18278084 0.17649073 0.1750699756 0.190130736
## AMP_11228639  0.53846799 0.54239706 0.55188989 0.5360942030 0.531989902
##                        X19          X20         X21         X22          X23
## ACR_11231843  -0.006757205 -0.007036055 -0.01496791 -0.02636549 -0.001402886
## ADAO_11159808  0.127414548  0.087625607  0.07760646  0.09671878  0.104156536
## AGG_11236448   0.184265903  0.151694667  0.14302509  0.12456011  0.131032068
## AHL_11239959   0.197691766  0.174912058  0.19319050  0.21205775  0.206312141
## AJGD_11119689  0.148089255  0.169290584  0.18741791  0.23496989  0.197737591
## AMP_11228639   0.471925620  0.484153622  0.49282071  0.49739289  0.498560780
##                      X24        X25        X26         X27         X28
## ACR_11231843  0.01324269 0.02086305 0.02388871 -0.01035748 -0.03510893
## ADAO_11159808 0.10125899 0.07996171 0.07672970  0.09223638  0.06817663
## AGG_11236448  0.15374218 0.13654930 0.11173266  0.10480140  0.09948863
## AHL_11239959  0.18457331 0.17656272 0.19223655  0.17530399  0.13561442
## AJGD_11119689 0.19868995 0.18905268 0.22099258  0.18826589  0.20099552
## AMP_11228639  0.47651016 0.47433498 0.49124269  0.46617148  0.47121446
##                       X29         X30          X31        X32        X33
## ACR_11231843  -0.04784269 -0.05506440 -0.008593307 0.04976843 0.09740572
## ADAO_11159808  0.09274641  0.06786673  0.071169346 0.07319753 0.07839764
## AGG_11236448   0.06725227  0.07242530  0.075139440 0.09715155 0.11831388
## AHL_11239959   0.14198217  0.15516364  0.104568650 0.08413169 0.10251633
## AJGD_11119689  0.18028969  0.14769550  0.165832019 0.11516172 0.12166889
## AMP_11228639   0.49358464  0.45935156  0.460468415 0.43672572 0.43495816
##                      X34        X35        X36        X37        X38        X39
## ACR_11231843  0.06713914 0.04049820 0.01295611 0.03353650 0.02670075 0.05435805
## ADAO_11159808 0.04368361 0.05899972 0.06957130 0.06502349 0.04428139 0.08720689
## AGG_11236448  0.15119247 0.16481099 0.17926504 0.17486282 0.17939105 0.16038387
## AHL_11239959  0.09851785 0.13082361 0.13043217 0.13487428 0.11851440 0.13412057
## AJGD_11119689 0.13947771 0.13992780 0.11603972 0.12556575 0.13822745 0.08786577
## AMP_11228639  0.42293683 0.41076414 0.39748507 0.38724889 0.38415061 0.37327204
##                      X40        X41        X42         X43         X44
## ACR_11231843  0.05163509 0.04581221 0.03625811 0.006093607 0.015911426
## ADAO_11159808 0.08245975 0.07325789 0.02199331 0.010335726 0.005374176
## AGG_11236448  0.14700455 0.14244461 0.15426774 0.162140790 0.167102275
## AHL_11239959  0.14253952 0.14241159 0.13874827 0.152605118 0.122308403
## AJGD_11119689 0.11241510 0.12355936 0.14482627 0.151343806 0.125769167
## AMP_11228639  0.38356428 0.34057877 0.35432214 0.350061870 0.362196920
##                       X45          X46        X47        X48        X49
## ACR_11231843  0.065718135 -0.044529286 0.02727482 0.03598471 0.01538854
## ADAO_11159808 0.008207619  0.005354707 0.04384913 0.07181361 0.07248583
## AGG_11236448  0.193588145  0.189538586 0.17553872 0.17449402 0.19356802
## AHL_11239959  0.116989766  0.097048192 0.09234721 0.08137636 0.05817498
## AJGD_11119689 0.114462985  0.147833838 0.11542335 0.14404906 0.07111346
## AMP_11228639  0.348115576  0.328500927 0.32673600 0.28805596 0.28570880
##                      X50        X51 DDclust_ACF_FC_scaled
## ACR_11231843  0.03556238 0.03345494                     1
## ADAO_11159808 0.09748668 0.12009315                     1
## AGG_11236448  0.19300176 0.17783030                     1
## AHL_11239959  0.05753825 0.06746329                     1
## AJGD_11119689 0.10372669 0.07286803                     1
## AMP_11228639  0.27435691 0.26466781                     2
## Mean by groups
rp_tbl_ACF <- aggregate(plotting_ACF, by = list(plotting_ACF$DDclust_ACF_FC_scaled), mean)
row.names(rp_tbl_ACF) <- paste0("Group",rp_tbl_ACF$DDclust_ACF_FC_scaled)
rp_tbl_ACF <- rp_tbl_ACF %>%
  select(starts_with('X'))
rp_tbl_ACF <- data.frame(t(rp_tbl_ACF))
head(rp_tbl_ACF)
##       Group1    Group2
## X1 1.0000000 1.0000000
## X2 0.7226921 0.8428105
## X3 0.6451763 0.7923087
## X4 0.5790438 0.7612588
## X5 0.5311166 0.7314445
## X6 0.4874229 0.7109206
# Create plotting data-frame
ACF_values_by_group <- data.frame("value_ACF" = c(rp_tbl_ACF$Group1,rp_tbl_ACF$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_ACF$Group1)),
                                              rep("Group2", times = length(rp_tbl_ACF$Group2))),
                                  "index" = c(c(1:length(rp_tbl_ACF$Group1)),c(1:length(rp_tbl_ACF$Group2))))

p <- ggplot(ACF_values_by_group, aes(x = index, y = value_ACF, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

EUCL TSclust

# DD_EUCL <- diss(datos, "EUCL")

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.6500106 0.4878584 0.7349317 0.9441717

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_EUCL
res<-NbClust(datos, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.0671 0.0702 0.0615 0.0707
res$Best.nc
## Number_clusters     Value_Index 
##          5.0000          0.0707
#res$Best.partition
hcintper_EUCL <- hclust(DD_EUCL, "ward.D2")
fviz_dend(hcintper_EUCL, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 5)

DDclust_EUCL_FC_scaled <- cutree( hclust(DD_EUCL, "ward.D2"), k = 5)
fviz_cluster(list(data = t(datos), cluster = DDclust_EUCL_FC_scaled))

fviz_silhouette(silhouette(DDclust_EUCL_FC_scaled, DD_EUCL))
##   cluster size ave.sil.width
## 1       1   12          0.12
## 2       2   10          0.03
## 3       3   18          0.08
## 4       4   12         -0.02
## 5       5    6          0.18

Contingency EUCL

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_EUCL <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_EUCL <- union(names(DDclust_EUCL_FC_scaled[DDclust_EUCL_FC_scaled == 2]),names(DDclust_EUCL_FC_scaled[DDclust_EUCL_FC_scaled == 1]))
fviz_dend(hcintper_EUCL, k = 2,  
          k_colors = c("blue", "green"),
          label_cols =   as.vector(COLOR_EUCL[,order_EUCL]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 1 5
NO DETERIORO 21 31
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.0454545 0.1388889
NO DETERIORO 0.9545455 0.8611111

Random Forest: Discriminant TSCLust EUCL

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_FC_scaled)
data_frame2 = df_descriptive
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
data_frame_merge_EUCL$CLUSTER = factor(data_frame_merge_EUCL$CLUSTER)
table(data_frame_merge_EUCL$CLUSTER)
## 
##  1  2 
## 22 36
data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])]<- lapply(data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])], as.numeric)
head(data_frame_merge_EUCL)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       2  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       2 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_EUCL$CLUSTER <- factor(data_frame_merge_EUCL$CLUSTER)
newSMOTE_EUCL <- data_frame_merge_EUCL
set.seed(123)
pos_1 = get_column_position(newSMOTE_EUCL, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_EUCL, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_EUCL[pos_1:pos_2])
newSMOTE_EUCL[col_names_factor] <- lapply(newSMOTE_EUCL[col_names_factor] , factor)

RF_EUCL <- randomForest(CLUSTER ~ ., data = newSMOTE_EUCL)
print(RF_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 43.1%
## Confusion matrix:
##   1  2 class.error
## 1 6 16   0.7272727
## 2 9 27   0.2500000

Importance

kable(RF_EUCL$importance[order(RF_EUCL$importance, decreasing = TRUE),])
x
FR_0_8h 3.2107589
SCORE_CRUCES_INGRESO 2.8801769
SCORE_WOOD_DOWNES_INGRESO 2.8575468
PESO 2.3468291
EDAD 2.3045016
FLUJO2_0_8H 1.7144879
DIAS_GN 1.5597942
EG 1.4840537
DIAS_O2_TOTAL 1.2860841
SAPI_0_8h 1.0594950
ALERGIAS 0.7448684
ETIOLOGIA 0.6850869
RADIOGRAFIA 0.5925099
TABACO 0.4099089
LM 0.3672648
ENFERMEDAD_BASE 0.3633714
ALIMENTACION 0.3546204
SEXO 0.3073980
ANALITICA 0.3038037
PREMATURIDAD 0.2709365
DIAS_OAF 0.2251811
GN_INGRESO 0.2208036
SUERO 0.1705668
OAF 0.1271875
DERMATITIS 0.1168093
PALIVIZUMAB 0.1089798
PAUSAS_APNEA 0.1049091
OAF_TRAS_INGRESO 0.0995509
UCIP 0.0855689
SNG 0.0678775
DETERIORO 0.0667034
OAF_AL_INGRESO 0.0000000

Importance of the TS-data

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_FC_scaled)
data_frame2_EUCL = data.frame(datos_EUCL)
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2_EUCL,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
set.seed(123)
data_frame_merge_EUCL$CLUSTER <- as.factor(data_frame_merge_EUCL$CLUSTER)
RF_0_EUCL <- randomForest(CLUSTER ~ ., data = data_frame_merge_EUCL)
print(RF_0_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 15.52%
## Confusion matrix:
##    1  2 class.error
## 1 15  7  0.31818182
## 2  2 34  0.05555556
plot(RF_0_EUCL$importance, type = "h")

EUCL by clusters

plot_data_EUCL <- data.frame(t(datos))
cluster_data_EUCL <- data.frame(DDclust_EUCL_FC_scaled)
plotting_EUCL <- cbind(plot_data_EUCL, cluster_data_EUCL)
head(plotting_EUCL)
##                       X1         X2         X3         X4         X5         X6
## ACR_11231843  -1.5078367 -2.0261049 -0.9895684  1.3426387  2.8974434  1.3426387
## ADAO_11159808 -0.1643746  0.1260541 -0.4548032  0.1260541 -0.4548032 -0.9388510
## AGG_11236448   0.7783241  0.3728698  0.2071795  0.5914196  1.3204655  0.2339430
## AHL_11239959   0.7958952  0.7958952 -0.3920616  1.0598856  1.3898736  1.1258832
## AJGD_11119689  0.2134007 -0.1056155  0.2040179  0.7013079 -0.4340145 -0.2557408
## AMP_11228639   2.0594676 -0.2860160 -0.3893368 -1.1420189 -0.7539599 -0.4629157
##                       X7         X8         X9        X10         X11
## ACR_11231843   0.4356692  0.9539375  1.0835046  0.1765351 -0.73043431
## ADAO_11159808 -0.7452319 -0.7452319 -0.9388510 -1.0356606 -0.84204144
## AGG_11236448   0.2336995  0.7102987  0.6493752  0.4056814  1.19768631
## AHL_11239959   1.3898736  0.5979024  1.5218688  1.7198616  1.58786644
## AJGD_11119689  0.6731594  0.4855028  0.1477209  0.3072290 -0.01178718
## AMP_11228639  -1.6270926  1.5743939 -0.0748567  1.0893202 -0.07485670
##                      X12        X13        X14         X15        X16
## ACR_11231843  -0.8600014 -0.7304343 -0.9895684  0.95393749  0.9539375
## ADAO_11159808 -1.2292797 -1.4228988 -0.9388510 -1.13247011 -0.8420414
## AGG_11236448   1.0149160  0.5275283  1.3195332  1.74599740  2.2943085
## AHL_11239959   1.6538640  2.1158473  2.3138401  2.04984966  1.7198616
## AJGD_11119689 -0.3214206 -0.1243811  0.6168624 -0.08684982 -1.0720470
## AMP_11228639   0.3132023 -0.4629157 -0.9479894 -0.36590093 -0.3659009
##                       X17         X18        X19        X20        X21
## ACR_11231843  -0.08259900 -0.86000137 -0.7304343 -0.9895684 -1.1191355
## ADAO_11159808  0.99734010 -0.06756500 -0.3579937 -0.8420414 -0.5516128
## AGG_11236448   2.29430848  1.68507394  1.5023036  0.5275283  0.2229111
## AHL_11239959   1.38987364  0.06992159 -0.3920616 -0.5900544  0.7298976
## AJGD_11119689 -0.22759227 -0.69673376  0.1008068 -0.8843904 -1.2597036
## AMP_11228639   0.02215804  0.79827598  0.3132023  0.7012612  0.7982760
##                      X22        X23        X24        X25        X26        X27
## ACR_11231843  -0.7304343 -1.2487026 -0.7304343 -0.0825990 -0.9895684 -0.8600014
## ADAO_11159808 -1.3260892 -0.4548032 -1.0356606 -0.5516128 -0.8420414 -1.2292797
## AGG_11236448   1.3804567  2.7816961  2.8426196  3.3300072  3.3300072  3.2690837
## AHL_11239959  -0.5900544 -0.2600664 -0.4580592  1.5878664  0.5319048  0.7958952
## AJGD_11119689  1.1798322 -0.2275923 -1.0251328 -0.2275923 -0.3683347 -0.5090772
## AMP_11228639   0.7012612  0.7012612  1.0893202  1.8654382  1.0893202  1.9624529
##                     X28        X29        X30        X31         X32
## ACR_11231843  -1.378270 -1.1191355 -0.8600014  0.3061022  0.56523631
## ADAO_11159808 -1.326089 -1.2292797  0.4164828 -0.1643746  0.02924455
## AGG_11236448   3.025390  3.3909306  2.4770788  2.2943085  3.81739482
## AHL_11239959   1.983852  0.9278904  1.9838521  2.0498497  2.11584726
## AJGD_11119689 -1.259704  1.1798322 -0.8374762  0.7106907 -1.35353185
## AMP_11228639   1.089320  0.2161875 -0.0748567  0.3132023  1.28334970
##                       X33        X34        X35        X36         X37
## ACR_11231843  -0.60086725 -0.8600014 -0.2121661 -0.7304343  0.04696806
## ADAO_11159808 -0.45480322  0.1260541  0.1260541  0.7069114  0.51329233
## AGG_11236448   1.25860977  0.6493752  1.4413801  0.6493752  0.34475796
## AHL_11239959   2.57783048  1.9838521  0.9278904  1.4558712  0.79589522
## AJGD_11119689 -0.08684982  1.5551454 -1.3535319  0.1477209  2.02428690
## AMP_11228639   0.31320227 -0.2688862 -0.0748567  0.1191728 -0.17187144
##                     X38        X39        X40         X41        X42        X43
## ACR_11231843  0.3061022 -1.2487026 -0.6008672 -0.98956843  1.0835046  0.4356692
## ADAO_11159808 0.9005305  1.5781974  0.9005305  0.80372099  1.4813879  0.4164828
## AGG_11236448  0.6493752  0.2838345  1.3195332  0.89306904  1.3195332 -0.1426297
## AHL_11239959  0.8618928  1.7858593  1.0598856  1.19188083  1.1258832  0.9938880
## AJGD_11119689 2.2588577  1.6958879  2.0242869 -0.18067812 -0.4152489  0.3822917
## AMP_11228639  0.5072318  0.5072318  0.3132023  0.02215804  0.5072318  0.4102170
##                      X44        X45        X46        X47       X48        X49
## ACR_11231843   0.4356692  1.3426387  1.7313399  2.1200410 2.1200410  2.7678764
## ADAO_11159808  0.4164828  0.9973401  0.1260541  1.6750070 0.2228637  0.2228637
## AGG_11236448  -0.9346346 -0.1426297  0.9539925 -0.3863235 0.1010641  0.1619876
## AHL_11239959   0.7958952  0.4659072  1.2578784  0.2679144 0.5319048  0.7298976
## AJGD_11119689 -0.9782187 -0.7905621 -0.2275923 -0.4621630 0.5699483 -1.6350167
## AMP_11228639   0.5072318  0.9923055  1.0893202  0.8952907 0.8952907  0.9923055
##                      X50         X51        X52         X53        X54
## ACR_11231843   1.8609069  1.60177280  1.3426387  1.21307161  0.9539375
## ADAO_11159808 -0.4548032 -0.06756500  0.9005305 -0.84204144  0.2228637
## AGG_11236448   0.1010641 -0.02078276  0.5275283 -0.32540003 -0.6909408
## AHL_11239959   0.3339120  0.46590720  0.3339120  0.33391200  1.9178545
## AJGD_11119689 -1.3066177 -1.30661770 -0.8374762 -0.03993567 -0.7436479
## AMP_11228639   0.7982760  1.18633495  0.8952907  1.67140867  1.1863350
##                      X55          X56          X57         X58       X59
## ACR_11231843   0.8243704  0.694803367  0.306102183  0.30610218 0.3061022
## ADAO_11159808  1.1909592  0.222863663 -0.357993667 -0.26118411 0.1260541
## AGG_11236448  -0.5690938  1.014915952 -0.264476577  0.77122214 0.9539925
## AHL_11239959  -0.1280712  0.003923986  0.003923986  0.06992159 0.2679144
## AJGD_11119689 -1.6350167 -0.931304508 -0.790562060 -0.83747621 1.6020596
## AMP_11228639   1.0893202  1.186334954  0.701261241  0.50723176 0.4102170
##                      X60         X61       X62        X63         X64
## ACR_11231843  -0.0825990 0.046968060 0.1765351  0.3061022  0.30610218
## ADAO_11159808  0.3196732 1.287768769 1.8686261  0.9005305  0.22286366
## AGG_11236448   0.2838345 0.527528322 0.1010641 -0.3863235 -0.02078276
## AHL_11239959   0.1359192 0.003923986 0.1359192  0.2019168  0.06992159
## AJGD_11119689  2.1181152 0.757604870 2.4934284  0.4761200  2.58725670
## AMP_11228639   0.7012612 1.186334954 0.7982760  0.7982760  1.18633495
##                        X65        X66         X67        X68        X69
## ACR_11231843   0.176535121 -0.4713002 -0.08259900 -0.0825990  0.5652363
## ADAO_11159808  1.868626099  0.4164828  0.90053055  0.5132923  0.6101019
## AGG_11236448   1.014915952 -0.2035531  0.04014069  0.7102987  1.1976863
## AHL_11239959   0.003923986  0.7958952  1.25787843  1.5878664  1.1258832
## AJGD_11119689 -0.133763968 -1.2127894 -0.88439036 -0.9782187 -0.8843904
## AMP_11228639   1.283349697  1.4773792  0.89529073  0.7012612  1.4773792
##                      X70        X71        X72        X73        X74        X75
## ACR_11231843   0.6948034  0.9539375  1.3426387  0.9539375  1.4722057  0.8243704
## ADAO_11159808  2.2558643  1.0941497  0.4164828  1.5781974  1.0941497  0.4164828
## AGG_11236448   0.7102987  1.2586098  0.8321456  0.2229111  0.5275283  2.1115381
## AHL_11239959   2.3138401  1.3898736  2.4458353  1.7198616  1.7858593  2.1818449
## AJGD_11119689 -0.9782187 -1.0251328 -0.8843904 -0.5559913 -0.9313045 -1.1189611
## AMP_11228639   0.9923055  0.8952907  1.4773792  0.7012612  1.1863350  0.9923055
##                     X76        X77       X78        X79        X80       X81
## ACR_11231843  0.6948034  1.2130716 1.2130716  1.6017728  1.3426387 1.3426387
## ADAO_11159808 0.7069114  0.9973401 0.8037210 -0.1643746 -0.0675650 0.7069114
## AGG_11236448  1.2586098  1.0758394 0.7712221  1.0758394  0.6493752 0.8321456
## AHL_11239959  2.1818449  1.5218688 1.5218688  2.0498497  1.5878664 2.1818449
## AJGD_11119689 0.8983473 -0.9782187 0.7576049  0.8983473  1.5082313 2.3526859
## AMP_11228639  0.4102170  0.5072318 1.8654382  1.2833497  0.2161875 0.4102170
##                     X82       X83       X84       X85       X86        X87
## ACR_11231843  0.8243704 1.3426387 1.3426387 1.3426387 0.9539375  0.4356692
## ADAO_11159808 0.5132923 0.8037210 0.5132923 0.5132923 0.5132923  0.4164828
## AGG_11236448  0.6493752 0.8930690 1.3195332 1.6241505 0.2229111 -0.6909408
## AHL_11239959  2.5118329 1.4558712 1.3238760 0.6639000 1.1918808  0.5979024
## AJGD_11119689 1.8835445 1.4144030 1.6958879 2.3526859 2.4465142  0.9921756
## AMP_11228639  0.5072318 0.2161875 2.1564824 0.8952907 1.8654382  0.9923055
##                      X88        X89        X90        X91         X92
## ACR_11231843   0.8243704  0.5652363 0.30610218  0.1765351  0.17653512
## ADAO_11159808  1.1909592  0.3196732 0.02924455  0.4164828  1.28776877
## AGG_11236448  -0.6909408 -1.6047926 0.28383451 -0.9346346 -0.87371111
## AHL_11239959   1.1918808  0.4659072 0.79589522  0.7958952  0.46590720
## AJGD_11119689  1.6489737  2.2119435 0.19463508  0.6637766  0.05389263
## AMP_11228639   2.6415561  1.5743939 2.25349712  2.4475266  0.50723176
##                       X93        X94        X95        X96          X97
## ACR_11231843   0.30610218  0.3061022  0.4356692  0.1765351  0.306102183
## ADAO_11159808  0.02924455  0.9005305  0.4164828  0.7069114  0.610101883
## AGG_11236448  -1.36109874 -1.1783284 -0.3254000 -0.8737111 -1.300175290
## AHL_11239959   0.33391200  2.3138401  2.2478425  0.2679144  0.003923986
## AJGD_11119689  0.24154923  0.9452615 -0.1337640  2.4465142  2.305771800
## AMP_11228639   1.08932021  1.4773792  1.5743939  1.0893202  1.962452896
##                       X98         X99       X100       X101         X102
## ACR_11231843   0.04696806  0.69480337 -0.3417331  0.1765351  0.046968060
## ADAO_11159808  0.41648277  1.28776877  0.2228637  0.1260541  0.610101883
## AGG_11236448  -1.11740493 -1.11740493 -0.9955580 -1.3001753 -1.239251837
## AHL_11239959   0.20191679  0.06992159 -0.1280712  0.2019168  0.003923986
## AJGD_11119689  0.52303412 -1.35353185 -0.8843904 -0.6967338  0.100806779
## AMP_11228639   0.89529073  1.08932021  0.8952907  1.7684234  1.768423410
##                     X103       X104        X105        X106       X107
## ACR_11231843  -0.0825990  0.3061022  0.04696806  0.43566924 -0.3417331
## ADAO_11159808  0.4164828  0.1260541 -0.16437456 -0.26118411 -0.4548032
## AGG_11236448  -1.2392518 -1.4220222 -1.48294565 -1.36109874 -1.6657160
## AHL_11239959  -0.2600664  1.4558712  0.33391200 -0.06207362  0.2679144
## AJGD_11119689  1.2267464  0.8045190  2.07120105  0.19463508 -0.6498196
## AMP_11228639   1.5743939  1.3803644  1.57439393  1.08932021  1.7684234
##                      X108       X109       X110       X111       X112
## ACR_11231843   0.95393749  0.6948034  0.3061022  0.9539375  0.6948034
## ADAO_11159808  1.38457832  0.1260541  0.2228637  0.2228637  0.7069114
## AGG_11236448  -0.99555802 -2.0921802 -1.3001753 -2.0312567 -1.1783284
## AHL_11239959  -0.06207362 -0.1940688  1.5878664  0.5979024 -0.2600664
## AJGD_11119689 -0.64981961 -0.5090772  1.0390898  1.7428020  0.1008068
## AMP_11228639   1.28334970  1.0893202  0.9923055  1.0893202  1.4773792
##                     X113       X114       X115       X116       X117       X118
## ACR_11231843   0.5652363  0.9539375  0.5652363  0.8243704  1.3426387  1.3426387
## ADAO_11159808  0.3196732  0.1260541 -0.4548032 -0.2611841 -0.3579937  0.3196732
## AGG_11236448  -1.0564815 -1.5438691 -1.2392518  1.6241505  2.5989257  2.2943085
## AHL_11239959  -0.3920616 -0.3920616 -0.4580592 -0.3920616 -0.4580592 -0.3920616
## AJGD_11119689  1.6020596  0.2884634 -0.1337640  1.8835445  2.2588577  2.0242869
## AMP_11228639   1.2833497  1.1863350  0.4102170  1.5743939  0.7012612  1.3803644
##                     X119       X120       X121       X122       X123       X124
## ACR_11231843   0.5652363  0.3061022  0.5652363  0.6948034  1.0835046  0.4356692
## ADAO_11159808  1.2877688  0.8037210  1.5781974  1.5781974  1.3845783  2.1590548
## AGG_11236448   2.3552319  2.2333850 -0.2644766 -0.8737111  0.5884518 -0.5081704
## AHL_11239959  -0.2600664 -0.4580592 -0.3920616 -0.1280712 -0.6560520 -0.4580592
## AJGD_11119689  0.5699483  0.4292058  2.1650294  2.1181152  1.8366303  1.8366303
## AMP_11228639   1.7684234  0.6042465  0.4102170  1.7684234  2.3505119  1.0893202
##                     X125       X126       X127       X128        X129
## ACR_11231843   0.8243704  0.1765351  0.6948034  0.1765351  0.04696806
## ADAO_11159808  0.9973401  5.3537701  4.6761032  5.3537701  1.86862610
## AGG_11236448  -0.9955580 -0.5690938  0.3447580 -0.2644766  0.34475796
## AHL_11239959  -0.3920616 -0.4580592 -0.4580592 -0.4580592 -0.52405683
## AJGD_11119689  1.8366303  1.6020596  1.3205747  0.9921756  0.24154923
## AMP_11228639   0.9923055  1.0893202  1.6714087  0.4102170  1.76842341
##                     X130       X131       X132       X133       X134       X135
## ACR_11231843   0.9539375  0.3061022  0.1765351  0.4356692  1.2130716  0.8243704
## ADAO_11159808  1.5781974  1.8686261  0.3196732  0.7069114  0.6101019  0.5132923
## AGG_11236448   0.7712221 -0.5081704 -0.5690938 -0.2035531 -0.4472469 -0.2035531
## AHL_11239959  -0.9200424 -1.3160281 -0.7880472 -0.7880472 -0.9200424 -0.9860400
## AJGD_11119689  0.8983473  0.8983473  0.6168624  0.4761200  0.8514332  0.5699483
## AMP_11228639   1.1863350  0.2161875  1.2833497  0.7012612  2.0594676  1.5743939
##                      X136        X137        X138        X139        X140
## ACR_11231843   0.04696806  0.04696806  0.95393749  0.56523631 -0.08259900
## ADAO_11159808  0.02924455 -0.06756500  0.12605411  0.02924455  0.02924455
## AGG_11236448  -0.32540003 -0.44724694 -0.44724694 -0.20355312 -0.08170622
## AHL_11239959  -0.72204964 -0.72204964  0.92789042  1.52186884  0.17936370
## AJGD_11119689  0.71069072  0.56994827  0.05389263  0.10080678  0.19463508
## AMP_11228639   1.86543815  1.08932021  1.96245290  1.28334970 -0.94798938
##                      X141       X142       X143        X144       X145
## ACR_11231843   0.43566924 -0.2121661  0.1765351  0.04696806  0.4356692
## ADAO_11159808 -0.45480322 -0.6484223 -0.1643746  0.12605411 -0.3579937
## AGG_11236448   0.10106415 -0.2644766 -0.4472469 -0.20355312 -0.3254000
## AHL_11239959   0.05097887  0.2152986  0.2626828  0.44898558  0.3485986
## AJGD_11119689  1.55514541  0.1477209  0.3353775  0.14772093  0.5699483
## AMP_11228639   0.41021701 -0.3659009 -0.2688862 -0.46291567 -0.9479894
##                     X146       X147       X148        X149       X150
## ACR_11231843  -0.0825990 -0.3417331 -0.0825990  0.30610218  0.5652363
## ADAO_11159808 -1.1324701 -1.0356606 -0.2611841 -0.26118411 -1.2292797
## AGG_11236448   0.1010641 -0.5081704 -0.9346346 -0.56909385 -0.4472469
## AHL_11239959   1.5218688  1.8518569  0.7298976  0.06992159  1.0598856
## AJGD_11119689  0.2415492  0.4761200  1.5082313  1.13291807  0.5230341
## AMP_11228639   0.2161875  0.5072318 -0.1718714 -0.94798938  1.1863350
##                     X151        X152       X153       X154        X155
## ACR_11231843  -0.0825990 -0.73043431  0.3061022  2.7678764  3.28614460
## ADAO_11159808 -0.1643746  0.02924455 -0.2611841  0.7069114 -0.06756500
## AGG_11236448   0.2838345 -0.75186421 -0.3254000 -0.3254000 -0.56909385
## AHL_11239959   1.4558712  1.78585925  0.8618928  1.2578784 -1.44802327
## AJGD_11119689  0.8983473  2.25885765  0.8045190 -0.1337640  0.00697848
## AMP_11228639  -0.1718714  0.21618753  1.5743939 -0.3659009 -0.55993041
##                     X156       X157       X158       X159        X160
## ACR_11231843   0.9539375 -0.0825990 -0.2121661 -0.6008672 -0.73043431
## ADAO_11159808  0.2228637  0.4164828  0.5132923  0.1260541  0.90053055
## AGG_11236448  -0.5081704 -0.8737111 -0.8737111 -1.1174049 -1.05648148
## AHL_11239959  -1.9760041 -0.9200424 -0.9200424 -0.1940688 -0.06207362
## AJGD_11119689 -0.5559913  0.2884634  2.3996001 -0.1337640  0.38229167
## AMP_11228639  -0.5599304 -1.2390336 -1.7241073 -0.0748567 -0.26888619
##                      X161         X162       X163       X164       X165
## ACR_11231843  -0.86000137 -1.248702555 -0.8600014 -0.4713002 -0.8600014
## ADAO_11159808  0.02924455  0.900530548 -0.7452319 -0.8420414 -0.4548032
## AGG_11236448  -0.69094075 -1.604792559 -0.8127877 -0.8127877 -0.9346346
## AHL_11239959   0.72989761  0.003923986  0.2679144  0.5979024  0.3999096
## AJGD_11119689  2.49342840  0.945261468  1.9773728  2.1181152  0.5699483
## AMP_11228639  -0.17187144  0.216187528  0.7982760  1.1863350 -0.5599304
##                     X166       X167        X168       X169       X170
## ACR_11231843  -0.7304343 -0.9895684 -0.60086725 -0.2121661 -0.0825990
## ADAO_11159808  1.2877688 -0.8420414  0.02924455 -0.0675650 -0.0675650
## AGG_11236448  -1.0564815 -0.8737111 -0.93463457 -0.8127877 -1.1174049
## AHL_11239959  -0.3260640  0.2679144  1.38987364 -0.1940688 -0.3260640
## AJGD_11119689 -0.2745064  0.1946351  1.78971616 -0.3683347  1.3205747
## AMP_11228639  -0.1718714 -0.5599304 -0.55993041 -0.5599304 -0.8509746
##                     X171        X172        X173       X174       X175
## ACR_11231843  -0.3417331  0.30610218  0.30610218  0.8243704  0.5652363
## ADAO_11159808 -0.4548032  0.02924455  0.51329233  2.9335312  3.3207694
## AGG_11236448  -0.8127877 -0.69094075 -1.23925184 -0.7518642 -0.9346346
## AHL_11239959   0.3339120  0.72989761  0.72989761 -0.4580592  1.3238760
## AJGD_11119689  1.3205747  1.13291807  0.00697848  1.9773728  0.5699483
## AMP_11228639  -0.7539599 -1.04500413 -0.07485670  1.0893202  0.7982760
##                     X176       X177       X178       X179       X180       X181
## ACR_11231843  -0.2121661 -0.2121661  1.0835046 -0.0825990 -0.0825990 -1.7669708
## ADAO_11159808  2.9335312  3.0303408  0.7069114  1.2877688  0.9973401  0.9973401
## AGG_11236448  -0.9346346 -1.1174049 -1.0564815 -0.9346346 -0.7518642 -1.3001753
## AHL_11239959  -1.5140209 -0.8540448 -0.2600664 -1.0520377 -0.7880472 -1.0520377
## AJGD_11119689  1.8366303 -0.2275923  0.5230341 -0.6029055  1.2267464 -0.5559913
## AMP_11228639  -0.3659009  0.5072318 -0.7539599 -0.6569452 -0.8509746  0.6042465
##                     X182        X183       X184       X185       X186
## ACR_11231843  -0.7304343  0.04696806 -0.4713002 -0.2121661 -0.6008672
## ADAO_11159808  0.5132923  0.02924455  2.6431025  1.2877688  0.4164828
## AGG_11236448  -0.8737111 -1.17832838 -1.3610987 -0.9346346 -1.2392518
## AHL_11239959  -0.7880472 -0.19406882 -0.5900544 -0.5900544 -0.3260640
## AJGD_11119689 -0.8374762 -0.46216301  1.3205747 -0.1337640  0.2415492
## AMP_11228639  -1.4330631 -0.85097464 -0.7539599 -0.0748567 -1.3360484
##                     X187       X188       X189        X190       X191
## ACR_11231843   1.4722057  0.8243704  0.3061022 -0.60086725 -0.7304343
## ADAO_11159808  0.8037210  1.6750070  1.1909592  0.02924455 -0.6484223
## AGG_11236448   0.7102987 -0.3254000  0.8321456 -0.38632348 -0.9955580
## AHL_11239959  -0.3920616 -0.1940688 -0.6560520 -0.45805923 -0.4580592
## AJGD_11119689 -0.7905621 -0.5090772 -1.0720470 -0.88439036  0.2884634
## AMP_11228639  -0.8509746 -0.7539599 -0.2688862 -0.17187144  0.1191728
##                     X192       X193       X194       X195       X196       X197
## ACR_11231843  -0.4713002 -1.2487026 -0.8600014 -0.3417331 -0.3417331 -0.4713002
## ADAO_11159808 -0.9388510 -1.3260892 -0.2611841  1.2877688 -0.6484223 -0.6484223
## AGG_11236448  -0.2644766 -0.6300173 -1.1783284 -1.1783284 -1.1783284 -0.9346346
## AHL_11239959  -0.3920616 -0.4580592 -0.3920616 -0.6560520 -0.9200424 -0.1940688
## AJGD_11119689 -0.7436479 -0.6029055 -0.8374762 -0.8374762 -0.6029055  1.9304586
## AMP_11228639  -1.3360484 -0.4629157 -0.8509746 -0.5599304  0.9923055 -0.6569452
##                     X198       X199       X200       X201       X202       X203
## ACR_11231843   0.8243704  0.4356692  1.8609069  1.3426387  1.3426387  1.3426387
## ADAO_11159808 -0.0675650 -0.8420414 -0.6484223 -0.8420414 -0.8420414 -1.1324701
## AGG_11236448  -0.9955580 -0.8737111 -0.7518642 -0.7518642 -0.9346346 -1.0564815
## AHL_11239959  -0.4580592 -0.4580592 -0.4580592 -0.7220496 -0.6560520 -0.5900544
## AJGD_11119689  0.1008068  0.8983473 -0.6498196 -0.6967338 -0.8843904 -0.8374762
## AMP_11228639  -0.3659009 -0.1718714 -1.3360484 -1.6270926 -0.3659009 -1.3360484
##                     X204       X205       X206       X207       X208       X209
## ACR_11231843   1.8609069  2.2496081  1.8609069  1.4722057  1.0835046  1.3426387
## ADAO_11159808 -0.7452319 -0.6484223 -1.0356606 -1.1324701 -0.8420414 -1.2292797
## AGG_11236448  -1.3001753 -1.2392518 -1.1174049 -0.8737111 -0.9955580 -0.9346346
## AHL_11239959  -0.3260640 -0.7220496 -0.6560520 -0.4580592 -0.4580592 -0.3260640
## AJGD_11119689  1.7897162  0.5230341 -1.1189611 -1.2127894 -0.8374762 -0.9782187
## AMP_11228639  -1.2390336 -0.7539599 -0.6569452 -1.2390336 -1.4330631 -1.1420189
##                     X210       X211       X212       X213        X214
## ACR_11231843   1.6017728  1.2130716  0.8243704  0.3061022  0.04696806
## ADAO_11159808 -1.5197083 -1.2292797 -0.5516128 -0.8420414 -1.71332744
## AGG_11236448  -0.8737111 -0.9955580 -0.6300173  0.4666049 -0.56909385
## AHL_11239959  -0.3260640 -0.7220496 -0.9860400 -0.9200424 -0.85404485
## AJGD_11119689 -0.7436479 -0.8374762 -0.4621630  0.7576049  0.66377657
## AMP_11228639  -1.8211221 -1.8211221 -1.4330631 -1.8211221 -1.43306310
##                     X215        X216       X217       X218       X219
## ACR_11231843  -0.2121661 -0.21216606 -0.4713002 -0.7304343 -0.3417331
## ADAO_11159808 -1.4228988 -1.32608922 -0.9388510 -1.4228988 -1.2292797
## AGG_11236448  -1.1783284 -0.63001730 -0.9346346 -1.3001753 -0.8127877
## AHL_11239959  -0.5900544 -0.59005444 -0.4580592 -0.3920616 -0.2600664
## AJGD_11119689 -0.2275923  0.00697848  1.3674888  0.4292058 -0.9313045
## AMP_11228639  -1.2390336 -1.33604835 -1.6270926 -2.1121663 -1.2390336
##                     X220       X221       X222        X223       X224
## ACR_11231843  -0.4713002 -0.4713002 -0.4713002 -0.86000137 -0.2121661
## ADAO_11159808 -1.1324701 -1.4228988 -1.7133274  0.61010188 -1.8101370
## AGG_11236448  -0.4472469 -0.1426297 -0.3254000 -0.50817039 -0.4472469
## AHL_11239959  -0.3260640 -0.6560520 -0.6560520 -0.39206163 -0.6560520
## AJGD_11119689 -0.6029055 -0.1337640 -0.8843904 -0.03993567 -0.2745064
## AMP_11228639  -1.1420189 -1.4330631 -1.3360484 -1.23903361 -1.3360484
##                     X225       X226       X227       X228        X229
## ACR_11231843  -0.8600014 -0.6008672 -0.9895684 -1.7669708 -0.47130019
## ADAO_11159808 -1.2292797 -0.7452319 -0.6484223 -0.4548032 -1.22927966
## AGG_11236448  -0.3863235 -0.7518642 -0.4472469  0.2229111 -0.02078276
## AHL_11239959  -0.9860400 -0.3920616 -0.4580592 -0.2600664 -0.39206163
## AJGD_11119689  1.3674888 -0.4152489  0.8983473  0.1477209  1.78971616
## AMP_11228639  -1.5300778 -1.4330631 -1.3360484 -1.0450041 -1.72410733
##                     X230        X231        X232        X233        X234
## ACR_11231843   0.1765351  0.43566924  0.04696806  0.04696806  0.04696806
## ADAO_11159808 -1.2292797 -0.74523189 -0.84204144 -0.74523189  0.51329233
## AGG_11236448  -0.7518642  0.04014069  0.22291105 -0.32540003  0.10106415
## AHL_11239959  -0.5900544 -0.52405683  0.53190481 -0.45805923 -0.39206163
## AJGD_11119689 -0.6967338  0.24154923  1.69588786  0.10080678 -0.60290546
## AMP_11228639  -1.0450041 -1.53007784 -1.14201887 -1.43306310 -1.43306310
##                     X235       X236        X237        X238       X239
## ACR_11231843  -0.3417331  1.3426387  0.04696806 -0.47130019  0.1765351
## ADAO_11159808  0.5132923 -1.1324701 -0.93885100 -0.84204144 -1.2292797
## AGG_11236448  -0.3863235 -0.5081704 -0.14262967 -0.02078276 -0.5081704
## AHL_11239959  -0.1940688  0.3999096 -0.52405683 -0.26006642 -0.3920616
## AJGD_11119689  0.8045190 -0.3683347 -1.58810260  1.08600392  1.3674888
## AMP_11228639  -1.0450041 -0.9479894  0.21618753 -0.75395990 -1.6270926
##                     X240       X241        X242       X243       X244
## ACR_11231843  -0.7304343 -0.3417331  0.43566924  0.1765351 -0.3417331
## ADAO_11159808 -0.6484223 -1.3260892 -0.84204144 -0.9388510 -1.1324701
## AGG_11236448  -0.8127877 -0.6909408 -0.38632348 -0.7518642 -0.5690938
## AHL_11239959   1.5218688 -1.0520377 -0.78804724 -0.5900544  0.7298976
## AJGD_11119689 -0.9782187  1.9773728  0.05389263 -0.3683347  2.0242869
## AMP_11228639  -0.4629157 -1.8211221 -1.82112207 -1.2390336 -2.1121663
##                     X245       X246        X247       X248       X249
## ACR_11231843   0.1765351  0.5652363  0.04696806  0.3061022 -0.9895684
## ADAO_11159808 -1.3260892 -1.5197083 -1.42289877 -1.4228988 -1.3260892
## AGG_11236448  -0.3254000 -0.5690938 -0.44724694 -0.5081704 -0.6909408
## AHL_11239959  -0.7220496 -0.5900544 -0.45805923 -0.4580592 -0.5240568
## AJGD_11119689 -0.5090772  2.0242869 -0.69673376 -1.2597036 -0.5090772
## AMP_11228639  -2.3061958 -2.2091810 -1.33604835  0.1191728 -0.8509746
##                     X250       X251       X252       X253       X254       X255
## ACR_11231843   0.4356692  0.6948034 -2.6739402 -2.0261049  1.6017728  1.0835046
## ADAO_11159808 -1.6165179 -1.4228988 -1.5197083 -1.5197083 -1.5197083 -1.4228988
## AGG_11236448  -0.8737111 -0.8127877 -0.6909408 -1.0564815 -0.8737111 -1.0564815
## AHL_11239959  -0.5240568  0.7958952 -0.9200424 -1.0520377 -0.7880472 -0.4580592
## AJGD_11119689  1.7897162 -0.6967338 -0.8374762 -0.7905621 -0.7905621 -0.7905621
## AMP_11228639  -1.3360484 -0.5599304 -0.7539599 -2.2091810 -1.9181368 -1.3360484
##                      X256       X257       X258       X259       X260
## ACR_11231843   0.56523631  0.1765351 -0.2121661 -0.7304343 -0.9895684
## ADAO_11159808 -1.51970833 -1.6165179 -1.5197083 -0.3579937  0.6101019
## AGG_11236448  -0.56909385 -0.6300173 -0.5690938 -0.4472469 -0.8127877
## AHL_11239959  -0.65605204 -0.6560520 -0.5240568 -0.5240568 -0.4580592
## AJGD_11119689 -0.03993567 -0.9782187 -1.1189611  1.0390898  1.0860039
## AMP_11228639  -1.53007784 -0.4629157 -1.5300778 -1.0450041 -1.5300778
##                     X261        X262        X263       X264       X265
## ACR_11231843  -0.9895684  0.04696806 -0.47130019 -0.6008672 -0.8600014
## ADAO_11159808  1.7718165  1.57819743  0.70691144  0.2228637  1.0941497
## AGG_11236448  -0.8127877 -1.11740493 -0.81278766 -0.6300173 -0.3863235
## AHL_11239959  -0.5240568 -0.26006642 -0.32606403 -0.7220496 -0.3260640
## AJGD_11119689  0.4761200  0.19463508  0.00697848  0.2415492  0.6637766
## AMP_11228639  -1.5300778  0.11917279  0.60424650  0.1191728  0.6042465
##                     X266       X267       X268        X269       X270
## ACR_11231843   0.5652363  0.4356692  0.5652363  0.69480337  0.4356692
## ADAO_11159808  0.9973401 -0.4548032 -1.1324701 -1.13247011 -1.1324701
## AGG_11236448  -0.8737111 -0.5690938 -0.9346346 -0.93463457 -0.8127877
## AHL_11239959  -0.1940688 -0.3920616 -0.2600664  1.78585925  2.1158473
## AJGD_11119689  0.3353775 -0.3683347 -0.5559913 -0.83747621 -0.6498196
## AMP_11228639   0.5072318 -0.8509746  0.5072318  0.02215804  1.0893202
##                     X271        X272       X273       X274       X275
## ACR_11231843  -0.4713002 -0.47130019 -0.4713002 -0.2121661 -0.4713002
## ADAO_11159808 -1.0356606  0.02924455  0.2228637 -0.6484223  0.2228637
## AGG_11236448  -0.7518642 -0.63001730 -0.6909408 -0.7518642 -1.1174049
## AHL_11239959   1.7198616  0.66390001  1.3238760  1.7858593 -0.4580592
## AJGD_11119689 -0.6967338 -0.55599131 -0.8843904 -1.0720470 -0.9313045
## AMP_11228639   1.3803644 -0.65694516 -1.2390336 -1.0450041 -1.8211221
##                     X276        X277        X278       X279       X280
## ACR_11231843  -0.2121661  0.04696806  0.04696806  0.1765351 -0.2121661
## ADAO_11159808 -0.1643746 -0.93885100 -0.55161278 -0.2611841 -0.9388510
## AGG_11236448  -0.3863235 -0.87371111 -0.81278766 -0.8737111 -1.4220222
## AHL_11239959  -0.7880472 -0.32606403 -0.59005444 -0.3260640  1.2578784
## AJGD_11119689 -0.5090772 -0.79056206 -0.55599131 -0.6967338 -0.6498196
## AMP_11228639  -1.7241073  0.41021701 -0.26888619 -0.7539599 -1.9181368
##                     X281        X282       X283       X284       X285
## ACR_11231843  -0.2121661  0.04696806 -0.3417331 -0.7304343 -0.3417331
## ADAO_11159808  0.6101019 -0.26118411 -0.1643746  2.0622452  2.6431025
## AGG_11236448  -1.6047926  0.71029868  0.4056814  2.3552319  0.8930690
## AHL_11239959  -0.4580592 -0.45805923 -0.4580592 -0.1280712  0.5319048
## AJGD_11119689 -0.8374762 -0.88439036 -1.0251328 -1.1189611 -1.0720470
## AMP_11228639  -1.3360484  0.89529073 -0.8509746 -0.3659009 -0.0748567
##                      X286       X287       X288       X289        X290
## ACR_11231843   0.17653512 -0.3417331 -0.2121661 -0.2121661  0.04696806
## ADAO_11159808  0.02924455  0.7069114 -0.0675650  0.6101019 -0.74523189
## AGG_11236448  -0.02078276  0.2229111 -0.3254000 -0.9955580  0.46660487
## AHL_11239959   2.44583528  1.9178545  0.1359192  0.1359192  1.38987364
## AJGD_11119689 -0.74364791 -0.8374762 -0.9782187 -0.9782187 -1.11896111
## AMP_11228639  -0.55993041  1.5743939 -1.1420189 -1.3360484  0.02215804
##                     X291       X292       X293        X294       X295
## ACR_11231843  -0.7304343 -0.9895684  0.1765351 -0.34173312 -0.0825990
## ADAO_11159808 -0.0675650 -0.7452319 -0.5516128 -0.64842233 -0.5516128
## AGG_11236448  -0.6909408 -0.9955580 -0.3863235  0.04014069 -0.2644766
## AHL_11239959   1.5218688  1.4558712  1.0598856  1.78585925  2.5118329
## AJGD_11119689 -1.0251328 -0.9313045 -1.0720470 -1.16587526 -1.1189611
## AMP_11228639  -0.3659009 -0.6569452 -0.3659009 -0.17187144 -0.3659009
##                      X296       X297       X298       X299        X300
## ACR_11231843  -0.08259900 -0.0825990  0.8243704 -0.0825990 -0.21216606
## ADAO_11159808  1.09414966  0.1260541 -0.2611841  0.6101019  1.09414966
## AGG_11236448   1.98969121  3.1472368  2.4161554  2.8426196  1.56322704
## AHL_11239959   2.11584726  0.9278904  1.9178545  0.3339120 -0.06207362
## AJGD_11119689 -1.30661770 -1.3066177 -1.4004460 -1.4004460 -1.16587526
## AMP_11228639   0.02215804 -0.5599304 -0.3659009  0.5072318  0.11917279
##                     X301       X302       X303        X304        X305
## ACR_11231843  -0.7304343 -0.2121661 -0.0825990 -0.34173312  0.04696806
## ADAO_11159808  2.1590548  1.0941497  0.3196732 -0.74523189 -0.35799367
## AGG_11236448   1.6850739  1.1367629  0.4056814  0.04014069 -0.38632348
## AHL_11239959  -0.5240568 -0.5240568 -0.5240568 -0.65605204 -0.72204964
## AJGD_11119689 -1.2597036 -1.4473602 -1.1658753 -1.68193090 -1.44736015
## AMP_11228639  -0.5599304 -0.3659009 -0.4629157 -0.85097464 -0.17187144
##                     X306       X307       X308       X309       X310       X311
## ACR_11231843  -0.6008672 -0.0825990 -0.0825990  0.3061022 -0.4713002 -0.3417331
## ADAO_11159808 -0.2611841 -0.7452319 -0.6484223 -1.7133274 -0.6484223 -0.0675650
## AGG_11236448  -0.2035531 -0.9955580 -1.0564815  1.0149160 -0.5690938 -0.6909408
## AHL_11239959  -0.6560520 -0.5900544  1.2578784 -1.1180353 -0.6560520 -0.5900544
## AJGD_11119689 -1.5411885 -1.3066177 -1.3066177 -1.2597036 -1.2597036 -1.3535319
## AMP_11228639  -0.4629157 -0.3659009 -1.1420189 -0.4629157 -0.3659009 -0.1718714
##                      X312        X313       X314        X315        X316
## ACR_11231843   0.04696806 -0.08259900  0.4356692  0.04696806 -0.47130019
## ADAO_11159808  0.02924455  0.02924455 -0.0675650  0.41648277  0.12605411
## AGG_11236448  -0.56909385  0.77122214  1.0758394 -0.26447658 -0.38632348
## AHL_11239959   1.91785446 -0.72204964 -0.7220496  0.20191679 -0.98604005
## AJGD_11119689 -1.21278940 -1.11896111 -1.3066177 -1.35353185 -1.35353185
## AMP_11228639  -0.17187144 -0.36590093 -0.4629157 -0.36590093  0.02215804
##                     X317       X318       X319       X320        X321
## ACR_11231843  -0.3417331 -0.0825990 -0.6008672 -0.6008672 -0.08259900
## ADAO_11159808  0.5132923  0.4164828  0.6101019  0.3196732  0.22286366
## AGG_11236448   0.2229111 -0.5690938  0.1010641  0.1619876 -0.02078276
## AHL_11239959  -0.7220496 -0.6560520 -0.7880472 -0.6560520 -0.78804724
## AJGD_11119689 -1.3535319 -1.3535319 -1.4004460 -1.5411885 -1.40044600
## AMP_11228639  -0.6569452 -0.5599304 -0.4629157 -0.4629157 -0.65694516
##                     X322       X323       X324       X325        X326
## ACR_11231843  -0.7304343 -0.3417331 -0.3417331 -0.6008672  0.04696806
## ADAO_11159808  0.3196732  1.1909592  0.3196732  0.4164828  0.12605411
## AGG_11236448   0.1619876 -0.2644766 -0.1426297 -0.2644766  0.10106415
## AHL_11239959  -0.3920616 -0.6560520  0.6639000 -0.9200424 -0.78804724
## AJGD_11119689 -1.4004460 -1.1658753 -0.4621630  0.1477209  0.80451902
## AMP_11228639  -0.4629157 -0.3659009 -0.5599304 -0.3659009 -0.46291567
##                     X327       X328       X329       X330       X331       X332
## ACR_11231843  -0.3417331 -1.3782696 -0.2121661 -0.7304343 -0.8600014 -1.3782696
## ADAO_11159808 -0.0675650  0.5132923  0.3196732 -0.5516128  0.4164828 -0.3579937
## AGG_11236448   0.1010641  0.2229111  0.2229111 -0.2644766  0.4056814 -0.8127877
## AHL_11239959  -0.9860400 -0.3260640 -0.5900544 -0.4580592 -0.3920616 -0.2600664
## AJGD_11119689  0.3822917 -0.9313045 -1.2597036  0.5699483  0.3353775 -0.6029055
## AMP_11228639  -0.1718714 -0.7539599 -0.7539599 -0.3659009 -0.5599304 -0.5599304
##                     X333        X334         X335       X336       X337
## ACR_11231843  -1.2487026  0.04696806 -0.860001371 -1.2487026 -0.7304343
## ADAO_11159808 -0.2611841 -0.55161278 -0.648422332 -0.9388510 -0.8420414
## AGG_11236448  -0.2035531  0.58845178  0.101064146 -0.1426297  0.1010641
## AHL_11239959  -0.3920616  0.06992159  0.003923986 -0.5900544 -0.1280712
## AJGD_11119689 -0.9782187 -2.01032994  0.945261468 -0.5559913  1.0860039
## AMP_11228639  -0.8509746 -0.75395990 -1.045004127 -1.4330631  0.2161875
##                     X338       X339       X340       X341       X342       X343
## ACR_11231843  -0.9895684 -0.9895684 -1.2487026 -0.4713002 -1.2487026 -0.6008672
## ADAO_11159808 -1.0356606 -0.2611841 -0.6484223 -0.7452319 -0.8420414 -0.8420414
## AGG_11236448  -0.3254000  0.1010641  0.1010641 -0.8127877 -0.3254000 -0.5081704
## AHL_11239959  -0.3260640 -0.7880472 -0.9200424 -0.9200424 -0.9200424 -0.9860400
## AJGD_11119689 -0.8843904  0.5699483  1.5551454 -0.8374762 -0.3683347 -0.4621630
## AMP_11228639  -0.2688862 -0.0748567 -0.1718714  0.1191728  0.9923055 -1.3360484
##                     X344        X345       X346        X347       X348
## ACR_11231843  -1.1191355 -0.47130019 -0.6008672  1.47220574  1.0835046
## ADAO_11159808 -0.9388510 -0.74523189 -0.7452319 -0.74523189 -0.7452319
## AGG_11236448  -0.3863235 -0.08170622  0.1010641  0.22291105  0.1010641
## AHL_11239959  -0.6560520 -0.65605204 -0.7880472 -0.32606403 -0.4580592
## AJGD_11119689  0.1008068  0.89834732 -1.0720470 -0.03993567 -0.6029055
## AMP_11228639  -0.5599304 -0.55993041 -1.1420189  0.21618753 -0.3659009
##                     X349        X350        X351        X352        X353
## ACR_11231843  -0.0825990 -0.47130019 -0.73043431 -0.86000137  0.43566924
## ADAO_11159808 -0.7452319 -0.55161278 -0.84204144 -0.84204144 -0.93885100
## AGG_11236448   0.1010641 -0.02078276 -0.02078276 -0.08170622 -0.08170622
## AHL_11239959  -0.3260640 -0.39206163 -0.45805923 -0.45805923 -0.39206163
## AJGD_11119689 -0.6029055 -0.64981961 -1.40044600 -0.18067812  0.85143317
## AMP_11228639  -1.2390336 -1.04500413 -0.75395990  0.60424650 -1.23903361
##                      X354       X355        X356        X357        X358
## ACR_11231843  -0.86000137 -0.9895684 -1.24870256 -1.24870256 -1.11913549
## ADAO_11159808 -0.93885100 -1.0356606 -0.93885100 -0.93885100 -0.84204144
## AGG_11236448  -0.08170622 -0.3254000 -0.08170622 -0.08170622 -0.02078276
## AHL_11239959   0.99388802 -1.0520377 -0.45805923  0.26791440 -0.65605204
## AJGD_11119689 -0.46216301  0.4292058  0.14772093  0.28846338  0.28846338
## AMP_11228639  -1.04500413 -1.2390336  0.21618753 -1.43306310 -0.55993041
##                      X359       X360       X361       X362       X363
## ACR_11231843  -0.86000137 -1.2487026 -1.3782696 -0.7304343 -1.2487026
## ADAO_11159808 -0.84204144  0.6101019  0.3196732  0.2228637  1.5781974
## AGG_11236448  -0.44724694 -1.1174049 -0.2644766 -0.8737111 -0.6300173
## AHL_11239959   0.06992159 -1.2500305 -1.0520377 -0.6560520  0.7958952
## AJGD_11119689 -0.03993567  0.7106907 -0.5559913  0.2884634  0.1008068
## AMP_11228639  -1.43306310 -1.0450041 -0.4629157  0.6042465 -1.5300778
##                     X364       X365       X366       X367        X368
## ACR_11231843  -0.7304343 -0.8600014 -1.1191355 -0.9895684 -1.11913549
## ADAO_11159808 -0.8420414  0.5132923 -0.4548032  0.1260541 -0.35799367
## AGG_11236448  -0.6300173 -0.2644766  0.1010641 -0.6909408  0.04014069
## AHL_11239959  -0.3260640 -1.1840329 -0.9860400 -0.7880472 -0.98604005
## AJGD_11119689 -0.4152489  0.2415492 -0.2745064 -0.2275923 -0.13376397
## AMP_11228639  -1.0450041 -0.8509746 -1.1420189 -0.6569452 -0.55993041
##                     X369       X370        X371        X372        X373
## ACR_11231843  -0.9895684 -0.9895684 -0.73043431 -0.73043431 -0.34173312
## ADAO_11159808  0.7069114 -0.3579937 -0.26118411 -1.13247011 -0.93885100
## AGG_11236448  -0.3254000  0.6493752 -0.08170622  0.04014069 -0.08170622
## AHL_11239959  -0.6560520 -0.7880472 -1.44802327 -0.78804724 -1.18403286
## AJGD_11119689  0.6637766  0.5230341  0.56994827 -0.36833472 -0.50907716
## AMP_11228639  -0.5599304 -0.4629157 -0.46291567 -0.36590093 -0.55993041
##                      X374        X375       X376       X377        X378
## ACR_11231843  -0.73043431 -0.73043431 -0.7304343 -0.7304343 -0.86000137
## ADAO_11159808 -0.45480322 -0.74523189 -0.6484223 -0.9388510 -0.06756500
## AGG_11236448   0.28383451  0.04014069  0.1619876 -0.1426297 -0.69094075
## AHL_11239959   0.79589522 -0.59005444 -0.8540448 -0.7220496 -0.65605204
## AJGD_11119689  0.00697848 -0.93130451 -0.3214206  0.3353775 -0.03993567
## AMP_11228639  -0.46291567 -0.36590093 -0.4629157 -0.1718714 -0.65694516
##                     X379       X380       X381       X382        X383
## ACR_11231843  -0.4713002 -0.8600014 -0.3417331 -0.3417331 -0.47130019
## ADAO_11159808 -0.6484223 -0.8420414 -0.3579937 -1.0356606 -0.93885100
## AGG_11236448   0.5275283  0.1619876  0.2838345 -0.1426297 -0.02078276
## AHL_11239959  -0.6560520 -0.9200424 -1.1180353 -1.3820257 -0.98604005
## AJGD_11119689 -1.2127894 -0.4621630 -0.8843904  0.1477209  0.14772093
## AMP_11228639  -0.6569452 -0.8509746 -0.7539599 -1.0450041 -1.23903361
##                      X384        X385       X386       X387        X388
## ACR_11231843  -0.86000137  3.15657754 -0.0825990  0.1765351  0.30610218
## ADAO_11159808 -0.93885100 -0.93885100 -0.9388510 -0.8420414  0.02924455
## AGG_11236448  -0.08170622 -0.50817039 -0.2035531  0.2229111  0.10106415
## AHL_11239959  -0.98604005 -0.98604005  0.3999096  0.6639000  1.38987364
## AJGD_11119689  0.19463508  0.05389263 -0.3683347 -0.2275923 -0.55599131
## AMP_11228639   0.11917279  0.21618753 -0.8509746 -1.3360484  0.02215804
##                      X389        X390        X391       X392        X393
## ACR_11231843  -0.21216606 -0.73043431 -0.21216606 -0.4713002  0.30610218
## ADAO_11159808  0.31967322 -0.35799367  2.35267387  0.4164828  1.28776877
## AGG_11236448   0.04014069 -0.02078276 -0.08170622 -0.1426297  0.04014069
## AHL_11239959   0.92789042  0.66390001  1.45587124  2.1158473  2.57783048
## AJGD_11119689 -0.60290546 -1.11896111 -0.79056206 -0.3683347 -0.83747621
## AMP_11228639  -0.65694516 -1.14201887  0.21618753  0.1191728  0.11917279
##                      X394       X395       X396        X397       X398
## ACR_11231843   1.08350455  0.8243704  1.2130716  1.34263867  1.3426387
## ADAO_11159808  2.06224521  1.5781974  0.5132923 -0.06756500  0.3196732
## AGG_11236448  -0.02078276 -0.6300173 -0.2644766 -0.02078276 -0.5081704
## AHL_11239959   1.45587124  2.9738161  2.2478425  2.57783048  1.7858593
## AJGD_11119689 -0.74364791 -0.8843904 -0.8374762  1.17983221 -0.6498196
## AMP_11228639   0.31320227  1.3803644 -0.1718714  0.21618753  0.7012612
##                      X399        X400         X401        X402       X403
## ACR_11231843   1.99047398  1.73133986  1.860906921  2.12004104  1.4722057
## ADAO_11159808 -0.26118411 -0.64842233  0.222863663  0.02924455 -0.7452319
## AGG_11236448   0.04014069 -0.08170622 -0.081706215 -0.81278766 -0.4472469
## AHL_11239959   0.79589522  0.26791440  0.003923986  0.86189282  0.9278904
## AJGD_11119689  0.61686242 -0.46216301  0.851433169  1.17983221  0.7576049
## AMP_11228639  -0.94798938  1.28334970 -0.656945156 -0.65694516 -0.9479894
##                     X404       X405       X406       X407        X408
## ACR_11231843   1.0835046  0.6948034  0.3061022 -0.3417331 -0.08259900
## ADAO_11159808 -0.3579937 -0.0675650  0.1260541 -0.3579937 -0.35799367
## AGG_11236448  -0.3863235 -0.1426297 -0.3863235  0.3447580 -0.69094075
## AHL_11239959  -0.6560520  0.3999096  0.2019168 -0.6560520  0.79589522
## AJGD_11119689  1.0390898  1.0860039  0.8514332  0.6168624  0.71069072
## AMP_11228639  -0.4629157  1.4773792  1.3803644 -0.6569452  0.02215804
##                      X409        X410       X411        X412        X413
## ACR_11231843   0.04696806  0.30610218 -0.2121661 -0.98956843 -0.47130019
## ADAO_11159808 -0.26118411  0.51329233 -0.6484223 -0.26118411 -0.35799367
## AGG_11236448   0.10106415  0.71029868 -0.3254000  0.46660487 -0.38632348
## AHL_11239959   0.06992159  0.06992159 -1.7120137 -1.18403286 -1.31602806
## AJGD_11119689  0.71069072 -0.08684982  0.3822917 -0.03993567 -0.03993567
## AMP_11228639  -0.55993041  1.96245290  1.4773792  0.53463942  0.71190224
##                     X414       X415       X416       X417       X418       X419
## ACR_11231843  -0.3417331  0.3061022  0.3061022 -0.0825990 -0.4713002 -0.0825990
## ADAO_11159808 -0.2611841 -0.4548032 -0.5516128 -0.4548032 -0.3579937 -0.5516128
## AGG_11236448   0.4666049 -0.3254000  0.7102987  2.1115381  1.8069209  3.2081603
## AHL_11239959  -1.7120137 -1.4480233 -1.3820257 -1.4480233 -0.9200424 -1.3160281
## AJGD_11119689  1.7428020 -0.7436479 -1.3535319 -0.8843904 -0.6498196 -0.6967338
## AMP_11228639   0.5170155  1.1302690  0.4679746  0.6766096  0.1522742  0.2495247
##                      X420        X421       X422       X423        X424
## ACR_11231843   0.04696806  0.04696806 -0.7304343 -0.2121661 -0.21216606
## ADAO_11159808 -0.35799367 -0.64842233 -0.7452319 -0.7452319 -0.64842233
## AGG_11236448   2.05061467  1.62415049  0.8930690  0.5884518 -0.08170622
## AHL_11239959  -0.98604005 -1.05203765 -0.7880472 -0.7220496 -0.65605204
## AJGD_11119689 -0.36833472 -0.46216301 -0.5559913 -1.1189611 -0.69673376
## AMP_11228639   0.65513880  0.69495541  0.4055839  0.1612500  0.31320227
##                     X425       X426       X427        X428       X429
## ACR_11231843  -0.2121661  0.4356692 -0.4713002 -0.08259900  1.7313399
## ADAO_11159808 -0.7452319  1.4813879  0.5132923  0.70691144  0.1260541
## AGG_11236448  -0.2035531 -0.2035531 -0.5690938  0.22291105  0.1619876
## AHL_11239959  -1.1180353 -1.5140209 -1.0520377 -0.92004245 -1.1840329
## AJGD_11119689 -0.6498196 -0.5559913 -0.6029055 -0.55599131 -0.5559913
## AMP_11228639   0.6042465  0.7982760  0.9923055  0.02215804 -0.5599304
##                     X430        X431        X432       X433       X434
## ACR_11231843  -8.8931592 -1.76697080 -0.08259900 -1.1191355 -0.4713002
## ADAO_11159808  0.6101019  0.99734010  1.48138788  2.2558643  1.4813879
## AGG_11236448   1.7459974  1.98969121  1.44138013 -0.1426297 -0.6909408
## AHL_11239959  -1.3160281 -0.98604005 -1.05203765  0.2019168 -0.8540448
## AJGD_11119689 -0.5559913 -0.03993567 -0.74364791  0.1008068 -0.8374762
## AMP_11228639   1.3803644  0.02215804  0.02215804 -0.1718714  0.4102170
##                      X435       X436       X437       X438       X439
## ACR_11231843  -1.24870256 -1.7669708 -1.5078367 -1.5078367 -1.5078367
## ADAO_11159808 -0.55161278 -0.0675650 -0.6484223 -0.8420414 -0.5516128
## AGG_11236448  -0.02078276  0.3447580 -0.5690938 -1.0564815 -0.2644766
## AHL_11239959  -0.65605204 -0.6560520 -0.6560520 -0.3260640 -0.9860400
## AJGD_11119689 -0.50907716 -0.2275923 -0.6498196 -0.4621630 -0.9782187
## AMP_11228639   0.60424650  0.5072318  1.0893202  0.8952907  0.8952907
##                     X440       X441        X442        X443       X444
## ACR_11231843  -1.2487026 -0.7304343 -0.60086725  0.04696806 -0.3417331
## ADAO_11159808 -0.7452319 -0.4548032 -0.06756500  0.12605411  0.5132923
## AGG_11236448   0.2229111  2.0506147 -0.08170622 -0.81278766 -0.7518642
## AHL_11239959  -0.7220496 -0.8540448 -0.78804724 -1.18403286 -0.7220496
## AJGD_11119689 -0.3214206 -0.1806781  0.33537753  0.85143317 -0.3214206
## AMP_11228639  -0.0748567  1.1863350  0.99230547  2.15648238  0.4102170
##                     X445       X446       X447       X448       X449
## ACR_11231843  -0.7304343  0.5652363 -0.4713002 -0.2121661 -0.6008672
## ADAO_11159808  1.3845783  0.1260541  0.6101019  1.1909592  1.6750070
## AGG_11236448   1.8069209  0.7712221  0.5275283  0.5275283  0.5884518
## AHL_11239959  -0.6560520 -0.9860400 -0.7880472 -1.0520377 -0.7880472
## AJGD_11119689  0.4292058 -0.5090772 -0.4621630 -0.4152489 -0.2745064
## AMP_11228639  -0.9479894 -0.7539599 -0.0748567 -0.6569452  0.7012612
##                      X450       X451        X452       X453       X454
## ACR_11231843  -0.34173312  0.5652363 -0.60086725 -0.6008672 -0.0825990
## ADAO_11159808  2.54629298  0.3196732  0.80372099 -0.1643746  0.5132923
## AGG_11236448   0.04014069  1.7459974  0.04014069  1.9896912  2.8426196
## AHL_11239959  -1.05203765 -1.1840329 -0.78804724 -0.6560520 -0.7220496
## AJGD_11119689 -0.13376397 -0.8374762 -1.16587526  0.1008068  1.6489737
## AMP_11228639   0.31320227  0.6042465  0.11917279  0.4102170  2.5445414
##                     X455       X456        X457       X458        X459
## ACR_11231843  -0.3417331  1.0835046  2.76787635  2.7678764  3.54527872
## ADAO_11159808 -0.2611841  0.3196732  0.90053055  0.5132923  0.02924455
## AGG_11236448   3.0253899  1.4413801  0.95399250  0.7102987  0.71029868
## AHL_11239959  -0.7880472 -0.7880472 -0.52405683 -0.8540448 -0.78804724
## AJGD_11119689  0.8983473  0.1008068 -0.03993567 -0.2275923  0.28846338
## AMP_11228639   0.2161875  1.0893202  0.60424650 -0.2688862  1.08932021
##                     X460       X461        X462        X463        X464
## ACR_11231843   3.0270105  0.4356692  0.04696806  0.04696806  0.04696806
## ADAO_11159808  0.3196732 -0.0675650 -0.06756500 -0.55161278  0.02924455
## AGG_11236448   0.4666049 -0.2035531  0.10106415  1.44138013  0.77122214
## AHL_11239959  -0.3920616 -1.5140209 -1.31602806 -0.85404485 -1.05203765
## AJGD_11119689  0.3353775  1.0390898  0.42920582  0.47611997  0.75760487
## AMP_11228639   0.7012612  0.2161875  0.70126124  0.60424650  0.50723176
##                     X465       X466       X467       X468       X469
## ACR_11231843   0.9539375 -0.6008672  0.1765351  0.1765351 -0.9895684
## ADAO_11159808 -1.3260892  0.5132923  0.5132923 -0.5516128 -0.1643746
## AGG_11236448   0.9539925  0.1619876  0.7712221  1.5023036  0.4666049
## AHL_11239959  -1.1840329 -0.7220496 -0.5900544 -0.5240568  1.0598856
## AJGD_11119689 -0.1806781 -0.7436479 -0.8374762  1.6958879  0.1477209
## AMP_11228639  -0.1718714  1.1863350 -0.0748567 -0.2688862  0.1191728
##                      X470       X471        X472       X473       X474
## ACR_11231843  -0.98956843 -1.1191355 -0.47130019 -0.8600014 -1.3782696
## ADAO_11159808  0.99734010 -0.2611841 -0.35799367  0.2228637 -0.8420414
## AGG_11236448   0.04014069  0.5884518  0.22291105  0.2838345  0.1010641
## AHL_11239959  -0.98604005 -0.1280712 -0.78804724 -0.9200424 -1.0520377
## AJGD_11119689  1.60205956  1.5082313  1.32057466 -0.6967338 -0.3214206
## AMP_11228639  -0.17187144  0.2161875  0.02215804 -0.1718714  0.1191728
##                     X475       X476        X477        X478        X479
## ACR_11231843  -0.9895684 -0.9895684 -1.11913549 -0.47130019 -0.86000137
## ADAO_11159808  0.8037210 -0.7452319 -0.26118411  0.51329233 -0.16437456
## AGG_11236448   0.2229111  0.2229111 -0.08170622 -0.02078276 -0.26447658
## AHL_11239959  -0.7880472 -1.6460161 -1.11803525 -1.51402087 -1.11803525
## AJGD_11119689 -0.2745064 -0.8843904 -0.79056206 -1.49427430 -0.60290546
## AMP_11228639   0.3132023  0.1191728  0.11917279 -0.36590093  0.02215804
##                     X480 DDclust_EUCL_FC_scaled
## ACR_11231843  -0.4713002                      1
## ADAO_11159808 -0.5516128                      1
## AGG_11236448  -0.3863235                      2
## AHL_11239959  -0.9200424                      1
## AJGD_11119689  1.2736605                      2
## AMP_11228639  -0.0748567                      1
## Mean by groups
rp_tbl_EUCL <- aggregate(plotting_EUCL, by = list(plotting_EUCL$DDclust_EUCL_FC_scaled), mean)
row.names(rp_tbl_EUCL) <- paste0("Group",rp_tbl_EUCL$DDclust_EUCL_FC_scaled)
rp_tbl_EUCL <- rp_tbl_EUCL %>%
  select(starts_with('X'))
rp_tbl_EUCL <- data.frame(t(rp_tbl_EUCL))
head(rp_tbl_EUCL)
##       Group1    Group2
## X1 0.7730007 0.9892621
## X2 0.5968431 1.0466806
## X3 0.5931450 1.0043540
## X4 0.8236536 1.0393478
## X5 0.8212286 0.8774817
## X6 0.7224673 0.6958067
# Create plotting data-frame
EUCL_values_by_group <- data.frame("value_EUCL" = c(rp_tbl_EUCL$Group1,rp_tbl_EUCL$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_EUCL$Group1)),
                                              rep("Group2", times = length(rp_tbl_EUCL$Group2))),
                                  "index" = c(c(1:length(rp_tbl_EUCL$Group1)),c(1:length(rp_tbl_EUCL$Group2))))

p <- ggplot(EUCL_values_by_group, aes(x = index, y = value_EUCL, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

PER TSclust

# DD_PER <- diss(datos, "PER")
DD_PER <- distance_PER

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_PER, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.7026757 0.5218905 0.7879160 0.9027988

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_PER
res<-NbClust(datos_PER, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.3480 0.2958 0.3049 0.2227
res$Best.nc
## Number_clusters     Value_Index 
##           2.000           0.348
#res$Best.partition
hcintper_PER <- hclust(DD_PER, "ward.D2")
fviz_dend(hcintper_PER, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)

DDclust_PER_FC_scaled <- cutree( hclust(DD_PER, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_PER_FC_scaled))

fviz_silhouette(silhouette(DDclust_PER_FC_scaled, DD_PER))
##   cluster size ave.sil.width
## 1       1   36          0.39
## 2       2   22          0.27

Contingency PER

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_PER <- cbind(NO_DETERIORO_patients,DETERIORO_patients)
order_PER <- union(names(DDclust_PER_FC_scaled[DDclust_PER_FC_scaled == 2]),names(DDclust_PER_FC_scaled[DDclust_PER_FC_scaled == 1]))
fviz_dend(hcintper_PER, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_PER[,order_PER]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLust1" = c(n1,n3), "Clust2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLust1 Clust2
DETERIORO 3 3
NO DETERIORO 33 19
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("Clust1","Clust2")

knitr::kable(conttingency_table_prop, align = "lccrr")
Clust1 Clust2
DETERIORO 0.0833333 0.1363636
NO DETERIORO 0.9166667 0.8636364

Random Forest: Discriminant TSCLust PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_FC_scaled)
data_frame2_PER = df_descriptive
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
data_frame_merge_PER$CLUSTER = factor(data_frame_merge_PER$CLUSTER)
table(data_frame_merge_PER$CLUSTER)
## 
##  1  2 
## 36 22
data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])]<- lapply(data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])], as.numeric)
head(data_frame_merge_PER)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       2  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       2  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_PER$CLUSTER <- factor(data_frame_merge_PER$CLUSTER)
newSMOTE_PER <- data_frame_merge_PER
set.seed(123)
pos_1 = get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_PER[pos_1:pos_2])
newSMOTE_PER[col_names_factor] <- lapply(newSMOTE_PER[col_names_factor] , factor)

RF_PER <- randomForest(CLUSTER ~ ., data = newSMOTE_PER)
print(RF_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 37.93%
## Confusion matrix:
##    1 2 class.error
## 1 28 8   0.2222222
## 2 14 8   0.6363636

Importance

kable(RF_PER$importance[order(RF_PER$importance, decreasing = TRUE),])
x
PESO 2.8009743
RADIOGRAFIA 2.6058470
EDAD 2.4925543
FR_0_8h 2.4681832
SCORE_WOOD_DOWNES_INGRESO 2.0989243
SCORE_CRUCES_INGRESO 2.0854249
FLUJO2_0_8H 1.7598084
DIAS_O2_TOTAL 1.4238796
DIAS_GN 1.3531194
SAPI_0_8h 1.1630736
EG 1.1371458
ALIMENTACION 0.6379475
TABACO 0.6009182
SEXO 0.4571970
ETIOLOGIA 0.4570916
ALERGIAS 0.3514291
ENFERMEDAD_BASE 0.2993693
LM 0.2986870
ANALITICA 0.2643668
DIAS_OAF 0.2631015
GN_INGRESO 0.1941786
PREMATURIDAD 0.1858932
SUERO 0.1725155
DERMATITIS 0.1503197
SNG 0.1355917
DETERIORO 0.1343044
OAF 0.1279795
UCIP 0.1225009
PALIVIZUMAB 0.1056559
OAF_TRAS_INGRESO 0.0950935
PAUSAS_APNEA 0.0658861
OAF_AL_INGRESO 0.0000000

Importance of the PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_FC_scaled)
data_frame2_PER = data.frame(datos_PER)
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
set.seed(123)
data_frame_merge_PER$CLUSTER <- as.factor(data_frame_merge_PER$CLUSTER)
RF_0_PER <- randomForest(CLUSTER ~ ., data = data_frame_merge_PER)
print(RF_0_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 13.79%
## Confusion matrix:
##    1  2 class.error
## 1 35  1  0.02777778
## 2  7 15  0.31818182
plot(RF_0_PER$importance, type = "h")

### PER by clusters

plot_data_PER <- data.frame(datos_PER)
cluster_data_PER <- data.frame(DDclust_PER_FC_scaled)
plotting_PER <- cbind(plot_data_PER, cluster_data_PER)
head(plotting_PER)
##                      X1         X2         X3        X4        X5       X6
## ACR_11231843   5.848578  0.3743415  6.8715853  1.212893 5.4053599 7.119084
## ADAO_11159808 19.161627 11.8601407 12.6707788 11.342341 2.4783679 1.319596
## AGG_11236448  41.825617  7.5375310  0.5631459  3.883392 6.8843685 3.681852
## AHL_11239959   9.799312  8.8503584  3.5331319 14.026002 8.4455885 8.689473
## AJGD_11119689 15.614663 21.7300554  2.3159148 13.376941 2.6553456 4.381623
## AMP_11228639  74.278454 21.2659958 28.3545140  4.785927 0.3193887 2.712271
##                        X7         X8         X9      X10       X11       X12
## ACR_11231843  15.28118156  2.2116713  4.0278251 4.230968 0.1883137 4.4361328
## ADAO_11159808  7.78966139  4.3803474 10.9436912 7.742754 6.0392558 2.5368184
## AGG_11236448   2.86468612  3.5267080 12.2953089 5.469311 9.8786332 0.8261306
## AHL_11239959   2.24797526 11.5702112 10.6558848 1.958953 1.4145088 8.6658881
## AJGD_11119689  0.02934979  2.9018657  1.6380244 3.544227 0.5145252 6.3450522
## AMP_11228639   1.07321517  0.1119197  0.2932176 0.157840 0.8138084 0.3929538
##                     X13       X14       X15       X16        X17       X18
## ACR_11231843  4.9348069 4.4093973 6.7331185 1.9762133 0.93579178 6.0100283
## ADAO_11159808 0.3145458 4.4979165 5.0708085 4.7334760 6.44443545 9.4783702
## AGG_11236448  4.0094456 0.9770059 0.7133863 4.4751416 0.34515817 0.4843672
## AHL_11239959  4.0880628 1.0348649 9.4089391 0.4852065 0.35446548 0.2574401
## AJGD_11119689 1.6824053 3.2126460 0.6232166 1.0946418 4.12262590 4.1668995
## AMP_11228639  1.0801008 3.1056244 0.2646312 0.4916785 0.07103315 0.7199646
##                     X19        X20       X21       X22        X23        X24
## ACR_11231843  3.0571351 1.54232147 0.3842215 2.6002511 1.10430444 0.02336846
## ADAO_11159808 0.2898114 0.33698581 0.9009742 6.7098349 2.21177265 0.71826102
## AGG_11236448  1.0754701 0.06283354 3.8517427 0.5734194 0.13949199 1.11299942
## AHL_11239959  3.8265333 2.95356184 0.8691741 1.1501982 2.88962546 5.32419393
## AJGD_11119689 1.5698349 0.22788057 6.9034674 2.5985036 1.04006215 5.43264599
## AMP_11228639  0.4103392 1.08671137 0.2895402 2.7390024 0.04809891 0.27554454
##                     X25       X26       X27       X28       X29       X30
## ACR_11231843  2.3374742 0.5025686 5.0378185 0.5831323 0.9783577 2.0479549
## ADAO_11159808 2.4029995 2.2759813 3.7789734 3.3253260 1.1003379 3.4222632
## AGG_11236448  0.1314794 3.3877322 3.6114150 0.9049440 3.1764513 0.3158165
## AHL_11239959  0.3643765 1.0724044 0.2690623 0.8720393 0.2882118 0.2864212
## AJGD_11119689 1.2104396 0.5301348 0.1577908 0.6199841 1.4541586 1.3212389
## AMP_11228639  0.1999019 1.1189641 0.6687096 0.3893545 0.1820798 1.8752743
##                     X31       X32        X33        X34         X35        X36
## ACR_11231843  0.9238922 0.7557598 0.29081018 0.89996994 0.434101445 0.17706965
## ADAO_11159808 1.7187118 0.3116339 2.78544583 0.10297563 0.005523373 3.44773877
## AGG_11236448  0.1746159 3.9563430 0.54172820 1.76530074 1.310928721 1.42964220
## AHL_11239959  0.4383296 0.9872661 0.03147537 1.05700756 1.019235571 2.70338438
## AJGD_11119689 1.6111188 0.5216999 0.71336370 1.44464965 1.022303502 0.11925587
## AMP_11228639  0.7205132 0.9431357 3.46603021 0.08606386 1.224937812 0.05180415
##                       X37      X38       X39       X40        X41       X42
## ACR_11231843  1.114130034 0.818201 0.1243323 0.4194054 2.38229839 1.7365795
## ADAO_11159808 1.184151623 2.011015 3.1392105 0.7270018 0.01130704 0.5212688
## AGG_11236448  3.024306932 0.401883 0.8281645 5.9207354 0.65580562 0.8074447
## AHL_11239959  0.002951126 1.110485 1.3243382 0.5503924 0.70264608 0.5572120
## AJGD_11119689 0.404745802 2.039838 0.7185712 0.8071540 0.04378581 0.7365631
## AMP_11228639  0.168620077 1.701726 1.2528504 0.4970656 0.31376147 0.1540637
##                     X43       X44        X45        X46        X47        X48
## ACR_11231843  1.7978597 0.5066648 0.50289164 0.73233210 0.08888497 2.26401020
## ADAO_11159808 1.0388283 0.9493673 0.62700018 0.08173826 0.14420578 0.31672438
## AGG_11236448  3.1525108 0.8490893 0.01835407 2.21523030 0.03900382 1.25560813
## AHL_11239959  1.6333344 0.4172136 0.30559030 0.33378635 0.34429828 0.06036797
## AJGD_11119689 2.3245802 1.9796980 0.27089096 0.21498381 0.40268939 0.33478576
## AMP_11228639  0.7114498 0.3954184 0.47672667 0.46731205 0.49128565 0.09666285
##                      X49        X50        X51        X52        X53        X54
## ACR_11231843  0.34543451 0.18619840 0.11415485 0.31159461 0.09302105 0.05915665
## ADAO_11159808 2.47634017 2.00092175 0.62268402 0.59616769 0.03502095 0.01228136
## AGG_11236448  0.40837894 0.01399644 0.41369583 0.26496712 0.66927353 0.23219247
## AHL_11239959  0.82313582 0.02939305 0.02025657 0.05367467 0.20684620 0.39182557
## AJGD_11119689 0.01749701 0.76442488 0.44458857 1.00991198 0.89924717 0.45429739
## AMP_11228639  0.02221005 0.29742321 0.10835145 0.35436989 0.21721122 0.16910957
##                      X55       X56        X57       X58         X59        X60
## ACR_11231843  0.25901322 0.4771633 1.05067514 0.9321941 0.648464481 1.01425475
## ADAO_11159808 0.23902748 0.1155511 0.09665106 1.8965789 0.599167360 0.35297847
## AGG_11236448  0.80816201 1.2789929 0.64002047 0.7709875 0.009326569 0.07763641
## AHL_11239959  0.48229323 0.0372571 0.80085676 0.2620627 0.239919218 0.33732714
## AJGD_11119689 0.08590092 0.9762465 0.27207320 1.1704495 1.229149415 0.77594042
## AMP_11228639  0.01759638 0.2481277 0.31268859 0.5058534 0.131831439 0.11627900
##                     X61        X62        X63       X64        X65       X66
## ACR_11231843  0.7315768 2.72857701 0.07153099 0.1639048 0.04842124 0.0703432
## ADAO_11159808 2.1246968 0.00449535 0.45493334 0.9414528 0.11256975 0.1694315
## AGG_11236448  0.6863714 0.11182585 0.10970842 0.3049607 0.63158206 0.2006222
## AHL_11239959  0.2343275 0.27443549 0.05932641 0.1907896 0.29974900 0.8147033
## AJGD_11119689 0.8182855 0.10231199 0.12014327 0.2716897 1.92578803 0.5990802
## AMP_11228639  0.5801604 0.07452320 0.05325495 1.2552320 0.88748663 0.1914041
##                     X67        X68        X69        X70         X71       X72
## ACR_11231843  0.4060085 0.07509483 0.04447808 0.46672033 0.071477462 0.2201671
## ADAO_11159808 1.0382281 0.23265890 0.37949181 0.24789428 0.270079732 1.1028110
## AGG_11236448  0.3728191 0.17447169 0.51896106 0.47299067 0.001271438 0.2545867
## AHL_11239959  0.6298898 1.19600632 0.93066032 0.03460972 0.077448599 0.3563844
## AJGD_11119689 2.4382180 0.53577310 0.27124141 0.60776532 1.779895580 1.6305871
## AMP_11228639  0.9140920 0.62565336 0.43974751 0.68536920 0.562934256 0.4314150
##                      X73        X74       X75        X76         X77        X78
## ACR_11231843  1.34872679 0.51943395 0.3915925 1.20368518 0.798697223 1.52675332
## ADAO_11159808 0.37235084 0.13846721 0.7887426 0.09448861 0.258291569 0.09216212
## AGG_11236448  0.08332572 0.37890282 1.0209840 0.29150520 0.139753006 0.17857195
## AHL_11239959  0.81215793 0.02453207 0.4363844 0.18546077 0.008480168 0.18849292
## AJGD_11119689 0.19769748 0.65524263 0.4509812 0.77369087 0.334620132 0.39313970
## AMP_11228639  0.03511920 0.00295760 0.9003414 0.24516452 0.126962347 0.62068025
##                       X79       X80        X81        X82       X83         X84
## ACR_11231843  0.943549135 0.2363449 1.00719211 0.08786765 0.2448035 0.399615495
## ADAO_11159808 0.654059083 0.7365223 0.31786771 0.04099962 0.4292995 0.106744978
## AGG_11236448  0.819767597 0.6563020 0.09210857 0.09340645 0.5166284 0.008174061
## AHL_11239959  0.237510748 0.1156081 0.16424258 1.20871384 0.1750306 0.302692682
## AJGD_11119689 0.008210355 0.1508059 0.72799373 1.09878721 1.0684334 0.743965146
## AMP_11228639  0.076773597 0.1002166 0.08354674 0.23311262 0.1870228 0.979219341
##                     X85       X86         X87        X88         X89        X90
## ACR_11231843  1.1309995 0.3318204 0.169705850 0.75224359 0.007243292 1.47533935
## ADAO_11159808 1.2884651 1.2708608 0.607560355 0.30408343 0.195075751 0.06035056
## AGG_11236448  0.2048886 0.6327526 0.075923947 0.66283217 0.591109780 0.20640767
## AHL_11239959  0.9089198 0.6159354 0.664614272 0.08596877 0.019772305 0.34487369
## AJGD_11119689 0.1371142 0.7476956 0.006004055 1.05964147 0.214203248 0.82648047
## AMP_11228639  1.0577347 0.2396080 0.412215794 0.16925785 0.599583639 1.30160190
##                     X91        X92         X93       X94       X95        X96
## ACR_11231843  0.2717003 0.19744715 0.376500184 0.7331604 0.8123600 0.55460067
## ADAO_11159808 0.4421998 0.80529665 0.127916924 0.9013566 0.3082349 0.07970664
## AGG_11236448  0.2909917 0.09904979 0.008880916 0.2827778 0.9098785 0.21898269
## AHL_11239959  0.4747587 0.25214486 0.761323317 0.6338753 0.1641917 0.54500595
## AJGD_11119689 0.6238030 0.87662068 0.787996998 1.4449421 0.2580136 0.01631161
## AMP_11228639  0.8305493 0.80703554 0.187444280 0.3520511 0.1746270 0.25491150
##                     X97        X98       X99       X100       X101       X102
## ACR_11231843  0.3674562 0.30748514 0.2135174 1.39428230 0.06150944 1.85343796
## ADAO_11159808 0.0874975 0.06207332 0.2388713 0.90213270 0.65397939 0.08248442
## AGG_11236448  0.5276326 0.03251931 0.2964378 0.36744212 1.21882876 0.37493316
## AHL_11239959  0.1387733 0.99612598 0.1996762 0.17984257 0.01575614 0.46764285
## AJGD_11119689 0.7544742 0.11383767 0.4837966 0.08260011 0.37194273 1.07598009
## AMP_11228639  1.2246640 0.40411234 0.2545733 0.93147385 0.17092171 0.22215541
##                     X103       X104       X105         X106       X107
## ACR_11231843  0.27355879 0.54936063 0.28766223 0.1543180054 0.80728643
## ADAO_11159808 0.02118811 0.09541252 0.21921704 0.3441032993 0.98599398
## AGG_11236448  0.10854335 0.33075607 0.05045575 0.2544029764 0.32660503
## AHL_11239959  0.01228834 0.19107927 0.16815766 0.0003095814 0.03807210
## AJGD_11119689 0.63725342 0.20247572 0.92312830 0.1144728347 0.03756933
## AMP_11228639  0.05555407 0.32622975 0.39249326 0.1916083885 0.06715572
##                     X108       X109      X110       X111        X112       X113
## ACR_11231843  1.40107592 0.06638568 0.2236739 0.59903537 0.324239294 0.53898729
## ADAO_11159808 0.16939273 0.48330111 1.4479789 0.01125781 0.009723951 0.19546984
## AGG_11236448  0.46503359 0.55979697 0.2692365 0.24805002 0.055516388 0.02056208
## AHL_11239959  0.42500160 0.11036749 0.1558639 0.02372695 0.371092714 1.10110908
## AJGD_11119689 1.07585610 0.40967920 0.6457600 0.21290341 0.052172611 1.42746510
## AMP_11228639  0.04781766 0.38253691 0.2628364 0.09106762 0.022464864 1.09959443
##                     X114       X115       X116       X117        X118
## ACR_11231843  0.85167021 0.30037450 0.69311810 0.12071532 0.097878733
## ADAO_11159808 0.05259933 0.23561042 0.14134243 0.05918947 0.003555476
## AGG_11236448  0.38720057 0.14875104 0.08956171 0.05434231 0.108238319
## AHL_11239959  1.37162339 0.45656675 0.14975569 0.04563216 0.227583528
## AJGD_11119689 0.01117013 1.29252134 1.04205316 1.24975433 0.339867974
## AMP_11228639  0.41505390 0.06479006 0.27364225 1.18044421 0.009253524
##                     X119       X120       X121        X122       X123
## ACR_11231843  0.69632880 0.38465546 1.60632437 0.926084558 0.03783492
## ADAO_11159808 0.63543453 0.01538931 0.07859084 0.182927040 0.43455218
## AGG_11236448  0.37169902 0.11546236 0.10994544 0.001360211 0.15009884
## AHL_11239959  0.59154893 0.51310507 0.08314661 0.354700588 0.04269064
## AJGD_11119689 0.10183911 1.02045941 0.90823236 0.117980298 0.07275469
## AMP_11228639  0.07260914 0.49290565 0.02098191 0.119144119 1.05423784
##                     X124       X125       X126       X127       X128       X129
## ACR_11231843  0.96712693 0.22886155 0.02446018 0.68391509 0.30160702 0.41211177
## ADAO_11159808 0.58844254 1.39238452 0.48340198 0.21146825 0.14126654 0.08854800
## AGG_11236448  0.13036276 0.03298052 0.05311740 0.10314905 0.01745345 0.65614993
## AHL_11239959  0.18178179 0.26636228 0.29299592 0.39920830 0.24528535 0.29603486
## AJGD_11119689 0.01501314 0.22884935 0.25637437 0.01702962 0.61497235 0.51419216
## AMP_11228639  0.17674555 0.07611547 0.17197804 0.21151216 0.10692892 0.03348028
##                     X130       X131       X132       X133       X134      X135
## ACR_11231843  0.22601528 0.10817561 0.88873564 0.83394664 0.09470509 0.7742032
## ADAO_11159808 0.27519734 0.08511306 0.22179853 0.32298807 1.70227576 0.7517833
## AGG_11236448  0.42985650 0.14073422 0.06242467 0.03384642 0.03875185 0.1477196
## AHL_11239959  0.21161934 0.09815904 0.26500300 1.45647875 0.96996173 0.1711319
## AJGD_11119689 0.01588871 0.58894735 0.29265761 0.04344138 0.26794538 0.4661658
## AMP_11228639  0.34749656 0.37484982 0.50953142 0.03022894 0.51075298 0.8285060
##                     X136      X137       X138        X139       X140      X141
## ACR_11231843  0.15365836 0.1761271 0.36691405 0.006769078 0.54336175 0.0761702
## ADAO_11159808 0.53919842 0.4043973 0.04210971 0.166856180 0.27798566 0.1009634
## AGG_11236448  0.02268298 0.5032756 0.24203830 0.636589940 0.01166856 0.2631851
## AHL_11239959  0.04439656 0.8580828 0.10645356 0.428791009 0.10377986 0.2144281
## AJGD_11119689 0.19749458 0.6429315 0.91410845 0.302304765 0.12581223 0.1072460
## AMP_11228639  0.04020463 0.2948562 0.92806399 0.860242300 0.08146581 0.2682734
##                     X142       X143       X144       X145       X146      X147
## ACR_11231843  0.54562262 0.25612383 0.57661963 0.65028582 0.05102542 0.2657341
## ADAO_11159808 0.02377378 0.21708138 0.50406161 0.08028418 0.25018749 0.0261376
## AGG_11236448  0.84366075 0.49347313 0.14134819 0.15037216 0.19089331 0.5078440
## AHL_11239959  0.27137650 0.04545224 0.20706567 0.26137663 0.06979830 0.2141987
## AJGD_11119689 1.57444642 0.61064916 0.51239968 0.17390138 0.77048638 0.4888393
## AMP_11228639  0.14086267 0.21799109 0.08206153 0.19756147 0.24277992 1.2493877
##                    X148       X149       X150       X151       X152       X153
## ACR_11231843  0.2021471 0.18897725 0.04184583 0.79406666 0.75111967 0.20645655
## ADAO_11159808 0.2111108 0.37408325 0.17854977 0.46355929 0.07495632 0.56748964
## AGG_11236448  0.2713340 1.33337500 0.15996143 0.06611713 0.22701817 0.08168726
## AHL_11239959  0.5794966 0.22052322 1.38878852 0.15826284 0.16428729 0.47355487
## AJGD_11119689 0.3999856 0.03704364 0.66692902 0.69766195 0.13474959 0.08944450
## AMP_11228639  0.2384935 0.14472405 0.21185153 0.26726193 0.40201971 0.09498602
##                      X154      X155        X156      X157        X158
## ACR_11231843  1.272257189 0.2680478 0.455085006 0.7714997 0.002032642
## ADAO_11159808 0.385766878 0.2824129 0.002452671 0.2065068 0.168492742
## AGG_11236448  0.059499256 0.3341342 0.316293308 0.1645627 0.153132332
## AHL_11239959  0.135967462 0.4326142 0.366831995 0.1949635 0.145206553
## AJGD_11119689 0.009030549 1.1793489 0.960937831 0.7410281 1.197673689
## AMP_11228639  0.852422507 0.8033623 0.112349724 0.2625010 0.385896934
##                     X159       X160        X161       X162       X163
## ACR_11231843  0.68454730 0.37576645 0.046439150 0.72588598 0.23069396
## ADAO_11159808 0.04936571 0.01669247 0.286209038 0.39748827 0.08506296
## AGG_11236448  0.14976566 0.04327644 0.195309145 0.20226946 0.16639643
## AHL_11239959  0.11632699 0.13351894 0.009203534 0.18670716 0.39982501
## AJGD_11119689 0.03087216 0.76447928 0.356644220 1.18551315 1.00685466
## AMP_11228639  0.41613458 0.11351762 0.654344178 0.08287193 0.19281719
##                     X164       X165       X166      X167      X168       X169
## ACR_11231843  1.41904723 1.96835265 0.22453651 0.7145666 0.5754881 0.06109180
## ADAO_11159808 0.37606704 0.27326848 0.91116828 0.2053745 0.3203388 0.07877583
## AGG_11236448  0.22949380 0.37252524 0.03090648 0.3226837 0.2212241 0.05732658
## AHL_11239959  0.29136610 0.10148023 0.01836230 0.1778878 0.1194493 0.52066788
## AJGD_11119689 0.04915455 0.01039991 0.56511322 0.6238118 0.2621124 1.56149343
## AMP_11228639  0.04307867 0.41434786 0.22037879 0.5476918 0.4863969 0.11096992
##                     X170        X171       X172      X173       X174      X175
## ACR_11231843  0.36436476 0.003235361 1.07972811 0.6770586 0.39766494 0.6852988
## ADAO_11159808 0.05157281 0.105487130 0.20118155 0.1496182 0.26596822 0.4708543
## AGG_11236448  0.02913338 0.103799040 0.01964877 0.2850642 0.04646342 0.1799489
## AHL_11239959  0.07112259 0.212487829 0.06620376 0.0135367 0.10774194 0.1314899
## AJGD_11119689 0.04992694 0.405085116 0.68937475 0.4577023 1.20738563 0.7557966
## AMP_11228639  0.59709084 0.666445928 0.07911088 0.2300625 1.22084641 0.9760717
##                      X176       X177       X178        X179       X180
## ACR_11231843  0.399378144 0.75744904 0.73032169 0.381475886 0.15635475
## ADAO_11159808 0.007518295 0.35864649 0.07596763 0.009782962 0.09268504
## AGG_11236448  0.036528790 0.23682518 0.11468107 0.008754517 0.08710478
## AHL_11239959  0.012510678 0.04688495 0.10005363 0.223363918 0.01242595
## AJGD_11119689 0.533546925 0.68398788 0.25503616 0.308725614 0.77263400
## AMP_11228639  0.263221956 0.13311770 0.19214180 0.458002208 0.16912509
##                     X181       X182      X183       X184       X185      X186
## ACR_11231843  0.02118434 0.00362504 0.8515620 0.18691666 0.27741193 0.3226309
## ADAO_11159808 0.77691386 0.69167946 0.3304749 0.36777465 0.24049500 0.1765575
## AGG_11236448  0.11908198 0.34151672 0.3481028 0.03160759 0.06296899 0.5941278
## AHL_11239959  0.21593605 0.20575134 0.5341288 0.08508552 0.04747835 0.3499951
## AJGD_11119689 0.12541396 0.27534373 0.2557009 0.61730824 1.10237658 0.1539590
## AMP_11228639  0.16438071 0.10530443 0.3419378 0.27978744 0.08624137 0.2094389
##                     X187      X188       X189       X190      X191       X192
## ACR_11231843  0.78360118 0.2796341 0.71263606 0.26015615 0.2903425 0.18991084
## ADAO_11159808 0.10353408 0.7161323 0.73793571 0.52859492 0.1169515 0.06637242
## AGG_11236448  0.06184992 0.2891638 0.10697819 0.02369134 0.3179578 0.13941382
## AHL_11239959  0.45356610 0.1221347 0.03103022 0.43368225 0.1137555 0.05424454
## AJGD_11119689 0.39018633 0.2045786 0.01983635 0.40718510 0.8600180 0.06659477
## AMP_11228639  0.21237401 0.5608268 0.20180052 0.08334293 1.0187466 0.23150274
##                      X193        X194       X195       X196       X197
## ACR_11231843  0.107841357 0.085673550 1.29013925 0.56727183 0.79309383
## ADAO_11159808 0.152208878 0.305092497 0.12275352 0.01014060 0.61923987
## AGG_11236448  0.628984861 0.005914783 0.04133008 0.23038340 0.40341151
## AHL_11239959  0.008512754 0.119816612 0.13024374 0.83301389 0.22198743
## AJGD_11119689 1.026411329 0.282891623 2.27377845 0.15561779 0.09010344
## AMP_11228639  0.307818025 0.268524973 0.35371383 0.07082852 0.48439822
##                     X198       X199       X200      X201       X202        X203
## ACR_11231843  0.19390761 0.34344281 0.03432184 0.6399025 0.40583066 0.046243640
## ADAO_11159808 0.08824812 0.14570060 0.16601659 0.1344122 0.14004753 0.594973677
## AGG_11236448  0.05763741 0.06035002 0.08956124 0.2642316 0.22793260 0.004579684
## AHL_11239959  0.17443521 0.08361908 0.08550385 0.2205543 0.19990807 0.247331184
## AJGD_11119689 0.46752936 0.39686010 0.14992364 1.0010551 0.34785450 0.593884976
## AMP_11228639  0.77809400 0.11884690 0.20027426 0.1519871 0.03400995 0.652225594
##                     X204        X205      X206      X207       X208       X209
## ACR_11231843  0.24912337 0.197063626 0.3369069 0.5142163 0.81151948 0.38771277
## ADAO_11159808 0.32513856 0.017270835 0.7296104 0.1781492 0.16660550 0.57005590
## AGG_11236448  0.06201424 0.045591797 0.1588534 0.1387704 0.21004865 0.22915979
## AHL_11239959  0.18202277 0.057303753 0.5170445 0.2276265 0.04759935 0.39915154
## AJGD_11119689 0.54444138 0.309254513 0.8380618 0.0809182 0.16167112 1.86436510
## AMP_11228639  0.15844271 0.008974888 0.3026384 0.1444743 0.83545839 0.06487324
##                     X210       X211       X212       X213        X214
## ACR_11231843  0.58367634 0.06320753 0.35833146 0.07356429 0.054893668
## ADAO_11159808 0.20323158 0.18144713 0.21559618 0.44713667 0.324378430
## AGG_11236448  0.06340307 0.03910384 0.02042461 0.42853588 0.001875915
## AHL_11239959  0.65343862 0.09673763 0.31361262 0.25852532 0.660081138
## AJGD_11119689 0.42395017 0.12416557 0.21112716 0.40888314 0.296393988
## AMP_11228639  0.59726561 0.73142344 0.11367295 0.02474390 0.158201817
##                     X215       X216       X217       X218       X219       X220
## ACR_11231843  0.05906023 0.45943000 0.21889251 0.55039583 0.09368779 0.40440755
## ADAO_11159808 0.68268112 0.16897061 0.13647195 0.30531753 0.12324225 0.18075554
## AGG_11236448  0.07868965 0.26742244 0.27230187 0.37051399 0.20980239 0.06411624
## AHL_11239959  0.19207745 0.26527677 0.02785792 0.26546908 0.28467673 0.05832171
## AJGD_11119689 0.73419574 0.01641983 0.04197220 0.03381538 0.14985549 0.12990695
## AMP_11228639  0.10688918 0.06489051 0.05269847 0.07497943 0.83339347 0.09362927
##                     X221       X222       X223       X224       X225       X226
## ACR_11231843  0.19049071 0.20496341 0.06924797 0.11462558 0.09001202 0.21512435
## ADAO_11159808 0.23796873 0.61394828 0.25562839 0.01559552 0.06204188 0.24444344
## AGG_11236448  0.02491383 0.04056907 0.35305507 0.08918968 0.14050656 0.08676012
## AHL_11239959  0.07986023 0.04297700 0.13013426 0.02680425 0.14260004 0.30816736
## AJGD_11119689 0.06543978 0.12655083 1.03615233 0.31600887 0.29368371 1.42728095
## AMP_11228639  0.00207768 1.01489996 0.21241960 0.19128902 0.38143942 0.08073271
##                    X227       X228       X229      X230       X231       X232
## ACR_11231843  0.4291729 0.64328194 0.27754624 0.5448398 0.17907109 0.13536850
## ADAO_11159808 0.8013306 0.04548383 0.26562712 0.1658672 0.08780379 0.07796793
## AGG_11236448  0.1642674 0.09922210 0.03176376 0.4912379 0.19874848 0.55686160
## AHL_11239959  0.2726512 0.02856449 0.46101187 0.1496803 0.04981553 0.11284301
## AJGD_11119689 0.5429213 0.86127740 0.16316650 0.1875355 0.06763499 0.98974159
## AMP_11228639  0.1182412 0.65061601 0.02843593 0.2673009 0.31449020 0.01934588
##                     X233        X234       X235       X236        X237
## ACR_11231843  0.20294677 0.004936078 0.13143932 0.06027313 0.029578168
## ADAO_11159808 0.08788036 0.342462875 0.08504698 0.01586710 0.447754293
## AGG_11236448  0.02541435 0.249122970 0.05475308 0.23152376 0.082910928
## AHL_11239959  0.06821724 0.400504233 0.16708117 0.14068016 0.110492139
## AJGD_11119689 0.33146197 0.243530787 1.60107164 1.00831465 0.004592071
## AMP_11228639  0.59950987 0.054223012 0.04412037 0.23432068 0.254317956
##                     X238       X239        X240      X241       X242       X243
## ACR_11231843  0.47247486 0.88444419 0.376130855  5.848578  0.3743415  6.8715853
## ADAO_11159808 0.59863741 0.89843503 0.001112582 19.161627 11.8601407 12.6707788
## AGG_11236448  0.35590587 0.03363888 0.019906344 41.825617  7.5375310  0.5631459
## AHL_11239959  0.57524535 0.08669302 1.257231537  9.799312  8.8503584  3.5331319
## AJGD_11119689 0.01020877 0.53460878 0.076407072 15.614663 21.7300554  2.3159148
## AMP_11228639  0.11975047 0.17994234 0.071253304 74.278454 21.2659958 28.3545140
##                    X244      X245     X246        X247       X248       X249
## ACR_11231843   1.212893 5.4053599 7.119084 15.28118156  2.2116713  4.0278251
## ADAO_11159808 11.342341 2.4783679 1.319596  7.78966139  4.3803474 10.9436912
## AGG_11236448   3.883392 6.8843685 3.681852  2.86468612  3.5267080 12.2953089
## AHL_11239959  14.026002 8.4455885 8.689473  2.24797526 11.5702112 10.6558848
## AJGD_11119689 13.376941 2.6553456 4.381623  0.02934979  2.9018657  1.6380244
## AMP_11228639   4.785927 0.3193887 2.712271  1.07321517  0.1119197  0.2932176
##                   X250      X251      X252      X253      X254      X255
## ACR_11231843  4.230968 0.1883137 4.4361328 4.9348069 4.4093973 6.7331185
## ADAO_11159808 7.742754 6.0392558 2.5368184 0.3145458 4.4979165 5.0708085
## AGG_11236448  5.469311 9.8786332 0.8261306 4.0094456 0.9770059 0.7133863
## AHL_11239959  1.958953 1.4145088 8.6658881 4.0880628 1.0348649 9.4089391
## AJGD_11119689 3.544227 0.5145252 6.3450522 1.6824053 3.2126460 0.6232166
## AMP_11228639  0.157840 0.8138084 0.3929538 1.0801008 3.1056244 0.2646312
##                    X256       X257      X258      X259       X260      X261
## ACR_11231843  1.9762133 0.93579178 6.0100283 3.0571351 1.54232147 0.3842215
## ADAO_11159808 4.7334760 6.44443545 9.4783702 0.2898114 0.33698581 0.9009742
## AGG_11236448  4.4751416 0.34515817 0.4843672 1.0754701 0.06283354 3.8517427
## AHL_11239959  0.4852065 0.35446548 0.2574401 3.8265333 2.95356184 0.8691741
## AJGD_11119689 1.0946418 4.12262590 4.1668995 1.5698349 0.22788057 6.9034674
## AMP_11228639  0.4916785 0.07103315 0.7199646 0.4103392 1.08671137 0.2895402
##                    X262       X263       X264      X265      X266      X267
## ACR_11231843  2.6002511 1.10430444 0.02336846 2.3374742 0.5025686 5.0378185
## ADAO_11159808 6.7098349 2.21177265 0.71826102 2.4029995 2.2759813 3.7789734
## AGG_11236448  0.5734194 0.13949199 1.11299942 0.1314794 3.3877322 3.6114150
## AHL_11239959  1.1501982 2.88962546 5.32419393 0.3643765 1.0724044 0.2690623
## AJGD_11119689 2.5985036 1.04006215 5.43264599 1.2104396 0.5301348 0.1577908
## AMP_11228639  2.7390024 0.04809891 0.27554454 0.1999019 1.1189641 0.6687096
##                    X268      X269      X270      X271      X272       X273
## ACR_11231843  0.5831323 0.9783577 2.0479549 0.9238922 0.7557598 0.29081018
## ADAO_11159808 3.3253260 1.1003379 3.4222632 1.7187118 0.3116339 2.78544583
## AGG_11236448  0.9049440 3.1764513 0.3158165 0.1746159 3.9563430 0.54172820
## AHL_11239959  0.8720393 0.2882118 0.2864212 0.4383296 0.9872661 0.03147537
## AJGD_11119689 0.6199841 1.4541586 1.3212389 1.6111188 0.5216999 0.71336370
## AMP_11228639  0.3893545 0.1820798 1.8752743 0.7205132 0.9431357 3.46603021
##                     X274        X275       X276        X277     X278      X279
## ACR_11231843  0.89996994 0.434101445 0.17706965 1.114130034 0.818201 0.1243323
## ADAO_11159808 0.10297563 0.005523373 3.44773877 1.184151623 2.011015 3.1392105
## AGG_11236448  1.76530074 1.310928721 1.42964220 3.024306932 0.401883 0.8281645
## AHL_11239959  1.05700756 1.019235571 2.70338438 0.002951126 1.110485 1.3243382
## AJGD_11119689 1.44464965 1.022303502 0.11925587 0.404745802 2.039838 0.7185712
## AMP_11228639  0.08606386 1.224937812 0.05180415 0.168620077 1.701726 1.2528504
##                    X280       X281      X282      X283      X284       X285
## ACR_11231843  0.4194054 2.38229839 1.7365795 1.7978597 0.5066648 0.50289164
## ADAO_11159808 0.7270018 0.01130704 0.5212688 1.0388283 0.9493673 0.62700018
## AGG_11236448  5.9207354 0.65580562 0.8074447 3.1525108 0.8490893 0.01835407
## AHL_11239959  0.5503924 0.70264608 0.5572120 1.6333344 0.4172136 0.30559030
## AJGD_11119689 0.8071540 0.04378581 0.7365631 2.3245802 1.9796980 0.27089096
## AMP_11228639  0.4970656 0.31376147 0.1540637 0.7114498 0.3954184 0.47672667
##                     X286       X287       X288       X289       X290       X291
## ACR_11231843  0.73233210 0.08888497 2.26401020 0.34543451 0.18619840 0.11415485
## ADAO_11159808 0.08173826 0.14420578 0.31672438 2.47634017 2.00092175 0.62268402
## AGG_11236448  2.21523030 0.03900382 1.25560813 0.40837894 0.01399644 0.41369583
## AHL_11239959  0.33378635 0.34429828 0.06036797 0.82313582 0.02939305 0.02025657
## AJGD_11119689 0.21498381 0.40268939 0.33478576 0.01749701 0.76442488 0.44458857
## AMP_11228639  0.46731205 0.49128565 0.09666285 0.02221005 0.29742321 0.10835145
##                     X292       X293       X294       X295      X296       X297
## ACR_11231843  0.31159461 0.09302105 0.05915665 0.25901322 0.4771633 1.05067514
## ADAO_11159808 0.59616769 0.03502095 0.01228136 0.23902748 0.1155511 0.09665106
## AGG_11236448  0.26496712 0.66927353 0.23219247 0.80816201 1.2789929 0.64002047
## AHL_11239959  0.05367467 0.20684620 0.39182557 0.48229323 0.0372571 0.80085676
## AJGD_11119689 1.00991198 0.89924717 0.45429739 0.08590092 0.9762465 0.27207320
## AMP_11228639  0.35436989 0.21721122 0.16910957 0.01759638 0.2481277 0.31268859
##                    X298        X299       X300      X301       X302       X303
## ACR_11231843  0.9321941 0.648464481 1.01425475 0.7315768 2.72857701 0.07153099
## ADAO_11159808 1.8965789 0.599167360 0.35297847 2.1246968 0.00449535 0.45493334
## AGG_11236448  0.7709875 0.009326569 0.07763641 0.6863714 0.11182585 0.10970842
## AHL_11239959  0.2620627 0.239919218 0.33732714 0.2343275 0.27443549 0.05932641
## AJGD_11119689 1.1704495 1.229149415 0.77594042 0.8182855 0.10231199 0.12014327
## AMP_11228639  0.5058534 0.131831439 0.11627900 0.5801604 0.07452320 0.05325495
##                    X304       X305      X306      X307       X308       X309
## ACR_11231843  0.1639048 0.04842124 0.0703432 0.4060085 0.07509483 0.04447808
## ADAO_11159808 0.9414528 0.11256975 0.1694315 1.0382281 0.23265890 0.37949181
## AGG_11236448  0.3049607 0.63158206 0.2006222 0.3728191 0.17447169 0.51896106
## AHL_11239959  0.1907896 0.29974900 0.8147033 0.6298898 1.19600632 0.93066032
## AJGD_11119689 0.2716897 1.92578803 0.5990802 2.4382180 0.53577310 0.27124141
## AMP_11228639  1.2552320 0.88748663 0.1914041 0.9140920 0.62565336 0.43974751
##                     X310        X311      X312       X313       X314      X315
## ACR_11231843  0.46672033 0.071477462 0.2201671 1.34872679 0.51943395 0.3915925
## ADAO_11159808 0.24789428 0.270079732 1.1028110 0.37235084 0.13846721 0.7887426
## AGG_11236448  0.47299067 0.001271438 0.2545867 0.08332572 0.37890282 1.0209840
## AHL_11239959  0.03460972 0.077448599 0.3563844 0.81215793 0.02453207 0.4363844
## AJGD_11119689 0.60776532 1.779895580 1.6305871 0.19769748 0.65524263 0.4509812
## AMP_11228639  0.68536920 0.562934256 0.4314150 0.03511920 0.00295760 0.9003414
##                     X316        X317       X318        X319      X320
## ACR_11231843  1.20368518 0.798697223 1.52675332 0.943549135 0.2363449
## ADAO_11159808 0.09448861 0.258291569 0.09216212 0.654059083 0.7365223
## AGG_11236448  0.29150520 0.139753006 0.17857195 0.819767597 0.6563020
## AHL_11239959  0.18546077 0.008480168 0.18849292 0.237510748 0.1156081
## AJGD_11119689 0.77369087 0.334620132 0.39313970 0.008210355 0.1508059
## AMP_11228639  0.24516452 0.126962347 0.62068025 0.076773597 0.1002166
##                     X321       X322      X323        X324      X325      X326
## ACR_11231843  1.00719211 0.08786765 0.2448035 0.399615495 1.1309995 0.3318204
## ADAO_11159808 0.31786771 0.04099962 0.4292995 0.106744978 1.2884651 1.2708608
## AGG_11236448  0.09210857 0.09340645 0.5166284 0.008174061 0.2048886 0.6327526
## AHL_11239959  0.16424258 1.20871384 0.1750306 0.302692682 0.9089198 0.6159354
## AJGD_11119689 0.72799373 1.09878721 1.0684334 0.743965146 0.1371142 0.7476956
## AMP_11228639  0.08354674 0.23311262 0.1870228 0.979219341 1.0577347 0.2396080
##                      X327       X328        X329       X330      X331
## ACR_11231843  0.169705850 0.75224359 0.007243292 1.47533935 0.2717003
## ADAO_11159808 0.607560355 0.30408343 0.195075751 0.06035056 0.4421998
## AGG_11236448  0.075923947 0.66283217 0.591109780 0.20640767 0.2909917
## AHL_11239959  0.664614272 0.08596877 0.019772305 0.34487369 0.4747587
## AJGD_11119689 0.006004055 1.05964147 0.214203248 0.82648047 0.6238030
## AMP_11228639  0.412215794 0.16925785 0.599583639 1.30160190 0.8305493
##                     X332        X333      X334      X335       X336      X337
## ACR_11231843  0.19744715 0.376500184 0.7331604 0.8123600 0.55460067 0.3674562
## ADAO_11159808 0.80529665 0.127916924 0.9013566 0.3082349 0.07970664 0.0874975
## AGG_11236448  0.09904979 0.008880916 0.2827778 0.9098785 0.21898269 0.5276326
## AHL_11239959  0.25214486 0.761323317 0.6338753 0.1641917 0.54500595 0.1387733
## AJGD_11119689 0.87662068 0.787996998 1.4449421 0.2580136 0.01631161 0.7544742
## AMP_11228639  0.80703554 0.187444280 0.3520511 0.1746270 0.25491150 1.2246640
##                     X338      X339       X340       X341       X342       X343
## ACR_11231843  0.30748514 0.2135174 1.39428230 0.06150944 1.85343796 0.27355879
## ADAO_11159808 0.06207332 0.2388713 0.90213270 0.65397939 0.08248442 0.02118811
## AGG_11236448  0.03251931 0.2964378 0.36744212 1.21882876 0.37493316 0.10854335
## AHL_11239959  0.99612598 0.1996762 0.17984257 0.01575614 0.46764285 0.01228834
## AJGD_11119689 0.11383767 0.4837966 0.08260011 0.37194273 1.07598009 0.63725342
## AMP_11228639  0.40411234 0.2545733 0.93147385 0.17092171 0.22215541 0.05555407
##                     X344       X345         X346       X347       X348
## ACR_11231843  0.54936063 0.28766223 0.1543180054 0.80728643 1.40107592
## ADAO_11159808 0.09541252 0.21921704 0.3441032993 0.98599398 0.16939273
## AGG_11236448  0.33075607 0.05045575 0.2544029764 0.32660503 0.46503359
## AHL_11239959  0.19107927 0.16815766 0.0003095814 0.03807210 0.42500160
## AJGD_11119689 0.20247572 0.92312830 0.1144728347 0.03756933 1.07585610
## AMP_11228639  0.32622975 0.39249326 0.1916083885 0.06715572 0.04781766
##                     X349      X350       X351        X352       X353       X354
## ACR_11231843  0.06638568 0.2236739 0.59903537 0.324239294 0.53898729 0.85167021
## ADAO_11159808 0.48330111 1.4479789 0.01125781 0.009723951 0.19546984 0.05259933
## AGG_11236448  0.55979697 0.2692365 0.24805002 0.055516388 0.02056208 0.38720057
## AHL_11239959  0.11036749 0.1558639 0.02372695 0.371092714 1.10110908 1.37162339
## AJGD_11119689 0.40967920 0.6457600 0.21290341 0.052172611 1.42746510 0.01117013
## AMP_11228639  0.38253691 0.2628364 0.09106762 0.022464864 1.09959443 0.41505390
##                     X355       X356       X357        X358       X359
## ACR_11231843  0.30037450 0.69311810 0.12071532 0.097878733 0.69632880
## ADAO_11159808 0.23561042 0.14134243 0.05918947 0.003555476 0.63543453
## AGG_11236448  0.14875104 0.08956171 0.05434231 0.108238319 0.37169902
## AHL_11239959  0.45656675 0.14975569 0.04563216 0.227583528 0.59154893
## AJGD_11119689 1.29252134 1.04205316 1.24975433 0.339867974 0.10183911
## AMP_11228639  0.06479006 0.27364225 1.18044421 0.009253524 0.07260914
##                     X360       X361        X362       X363       X364
## ACR_11231843  0.38465546 1.60632437 0.926084558 0.03783492 0.96712693
## ADAO_11159808 0.01538931 0.07859084 0.182927040 0.43455218 0.58844254
## AGG_11236448  0.11546236 0.10994544 0.001360211 0.15009884 0.13036276
## AHL_11239959  0.51310507 0.08314661 0.354700588 0.04269064 0.18178179
## AJGD_11119689 1.02045941 0.90823236 0.117980298 0.07275469 0.01501314
## AMP_11228639  0.49290565 0.02098191 0.119144119 1.05423784 0.17674555
##                     X365       X366       X367       X368       X369       X370
## ACR_11231843  0.22886155 0.02446018 0.68391509 0.30160702 0.41211177 0.22601528
## ADAO_11159808 1.39238452 0.48340198 0.21146825 0.14126654 0.08854800 0.27519734
## AGG_11236448  0.03298052 0.05311740 0.10314905 0.01745345 0.65614993 0.42985650
## AHL_11239959  0.26636228 0.29299592 0.39920830 0.24528535 0.29603486 0.21161934
## AJGD_11119689 0.22884935 0.25637437 0.01702962 0.61497235 0.51419216 0.01588871
## AMP_11228639  0.07611547 0.17197804 0.21151216 0.10692892 0.03348028 0.34749656
##                     X371       X372       X373       X374      X375       X376
## ACR_11231843  0.10817561 0.88873564 0.83394664 0.09470509 0.7742032 0.15365836
## ADAO_11159808 0.08511306 0.22179853 0.32298807 1.70227576 0.7517833 0.53919842
## AGG_11236448  0.14073422 0.06242467 0.03384642 0.03875185 0.1477196 0.02268298
## AHL_11239959  0.09815904 0.26500300 1.45647875 0.96996173 0.1711319 0.04439656
## AJGD_11119689 0.58894735 0.29265761 0.04344138 0.26794538 0.4661658 0.19749458
## AMP_11228639  0.37484982 0.50953142 0.03022894 0.51075298 0.8285060 0.04020463
##                    X377       X378        X379       X380      X381       X382
## ACR_11231843  0.1761271 0.36691405 0.006769078 0.54336175 0.0761702 0.54562262
## ADAO_11159808 0.4043973 0.04210971 0.166856180 0.27798566 0.1009634 0.02377378
## AGG_11236448  0.5032756 0.24203830 0.636589940 0.01166856 0.2631851 0.84366075
## AHL_11239959  0.8580828 0.10645356 0.428791009 0.10377986 0.2144281 0.27137650
## AJGD_11119689 0.6429315 0.91410845 0.302304765 0.12581223 0.1072460 1.57444642
## AMP_11228639  0.2948562 0.92806399 0.860242300 0.08146581 0.2682734 0.14086267
##                     X383       X384       X385       X386      X387      X388
## ACR_11231843  0.25612383 0.57661963 0.65028582 0.05102542 0.2657341 0.2021471
## ADAO_11159808 0.21708138 0.50406161 0.08028418 0.25018749 0.0261376 0.2111108
## AGG_11236448  0.49347313 0.14134819 0.15037216 0.19089331 0.5078440 0.2713340
## AHL_11239959  0.04545224 0.20706567 0.26137663 0.06979830 0.2141987 0.5794966
## AJGD_11119689 0.61064916 0.51239968 0.17390138 0.77048638 0.4888393 0.3999856
## AMP_11228639  0.21799109 0.08206153 0.19756147 0.24277992 1.2493877 0.2384935
##                     X389       X390       X391       X392       X393
## ACR_11231843  0.18897725 0.04184583 0.79406666 0.75111967 0.20645655
## ADAO_11159808 0.37408325 0.17854977 0.46355929 0.07495632 0.56748964
## AGG_11236448  1.33337500 0.15996143 0.06611713 0.22701817 0.08168726
## AHL_11239959  0.22052322 1.38878852 0.15826284 0.16428729 0.47355487
## AJGD_11119689 0.03704364 0.66692902 0.69766195 0.13474959 0.08944450
## AMP_11228639  0.14472405 0.21185153 0.26726193 0.40201971 0.09498602
##                      X394      X395        X396      X397        X398
## ACR_11231843  1.272257189 0.2680478 0.455085006 0.7714997 0.002032642
## ADAO_11159808 0.385766878 0.2824129 0.002452671 0.2065068 0.168492742
## AGG_11236448  0.059499256 0.3341342 0.316293308 0.1645627 0.153132332
## AHL_11239959  0.135967462 0.4326142 0.366831995 0.1949635 0.145206553
## AJGD_11119689 0.009030549 1.1793489 0.960937831 0.7410281 1.197673689
## AMP_11228639  0.852422507 0.8033623 0.112349724 0.2625010 0.385896934
##                     X399       X400        X401       X402       X403
## ACR_11231843  0.68454730 0.37576645 0.046439150 0.72588598 0.23069396
## ADAO_11159808 0.04936571 0.01669247 0.286209038 0.39748827 0.08506296
## AGG_11236448  0.14976566 0.04327644 0.195309145 0.20226946 0.16639643
## AHL_11239959  0.11632699 0.13351894 0.009203534 0.18670716 0.39982501
## AJGD_11119689 0.03087216 0.76447928 0.356644220 1.18551315 1.00685466
## AMP_11228639  0.41613458 0.11351762 0.654344178 0.08287193 0.19281719
##                     X404       X405       X406      X407      X408       X409
## ACR_11231843  1.41904723 1.96835265 0.22453651 0.7145666 0.5754881 0.06109180
## ADAO_11159808 0.37606704 0.27326848 0.91116828 0.2053745 0.3203388 0.07877583
## AGG_11236448  0.22949380 0.37252524 0.03090648 0.3226837 0.2212241 0.05732658
## AHL_11239959  0.29136610 0.10148023 0.01836230 0.1778878 0.1194493 0.52066788
## AJGD_11119689 0.04915455 0.01039991 0.56511322 0.6238118 0.2621124 1.56149343
## AMP_11228639  0.04307867 0.41434786 0.22037879 0.5476918 0.4863969 0.11096992
##                     X410        X411       X412      X413       X414      X415
## ACR_11231843  0.36436476 0.003235361 1.07972811 0.6770586 0.39766494 0.6852988
## ADAO_11159808 0.05157281 0.105487130 0.20118155 0.1496182 0.26596822 0.4708543
## AGG_11236448  0.02913338 0.103799040 0.01964877 0.2850642 0.04646342 0.1799489
## AHL_11239959  0.07112259 0.212487829 0.06620376 0.0135367 0.10774194 0.1314899
## AJGD_11119689 0.04992694 0.405085116 0.68937475 0.4577023 1.20738563 0.7557966
## AMP_11228639  0.59709084 0.666445928 0.07911088 0.2300625 1.22084641 0.9760717
##                      X416       X417       X418        X419       X420
## ACR_11231843  0.399378144 0.75744904 0.73032169 0.381475886 0.15635475
## ADAO_11159808 0.007518295 0.35864649 0.07596763 0.009782962 0.09268504
## AGG_11236448  0.036528790 0.23682518 0.11468107 0.008754517 0.08710478
## AHL_11239959  0.012510678 0.04688495 0.10005363 0.223363918 0.01242595
## AJGD_11119689 0.533546925 0.68398788 0.25503616 0.308725614 0.77263400
## AMP_11228639  0.263221956 0.13311770 0.19214180 0.458002208 0.16912509
##                     X421       X422      X423       X424       X425      X426
## ACR_11231843  0.02118434 0.00362504 0.8515620 0.18691666 0.27741193 0.3226309
## ADAO_11159808 0.77691386 0.69167946 0.3304749 0.36777465 0.24049500 0.1765575
## AGG_11236448  0.11908198 0.34151672 0.3481028 0.03160759 0.06296899 0.5941278
## AHL_11239959  0.21593605 0.20575134 0.5341288 0.08508552 0.04747835 0.3499951
## AJGD_11119689 0.12541396 0.27534373 0.2557009 0.61730824 1.10237658 0.1539590
## AMP_11228639  0.16438071 0.10530443 0.3419378 0.27978744 0.08624137 0.2094389
##                     X427      X428       X429       X430      X431       X432
## ACR_11231843  0.78360118 0.2796341 0.71263606 0.26015615 0.2903425 0.18991084
## ADAO_11159808 0.10353408 0.7161323 0.73793571 0.52859492 0.1169515 0.06637242
## AGG_11236448  0.06184992 0.2891638 0.10697819 0.02369134 0.3179578 0.13941382
## AHL_11239959  0.45356610 0.1221347 0.03103022 0.43368225 0.1137555 0.05424454
## AJGD_11119689 0.39018633 0.2045786 0.01983635 0.40718510 0.8600180 0.06659477
## AMP_11228639  0.21237401 0.5608268 0.20180052 0.08334293 1.0187466 0.23150274
##                      X433        X434       X435       X436       X437
## ACR_11231843  0.107841357 0.085673550 1.29013925 0.56727183 0.79309383
## ADAO_11159808 0.152208878 0.305092497 0.12275352 0.01014060 0.61923987
## AGG_11236448  0.628984861 0.005914783 0.04133008 0.23038340 0.40341151
## AHL_11239959  0.008512754 0.119816612 0.13024374 0.83301389 0.22198743
## AJGD_11119689 1.026411329 0.282891623 2.27377845 0.15561779 0.09010344
## AMP_11228639  0.307818025 0.268524973 0.35371383 0.07082852 0.48439822
##                     X438       X439       X440      X441       X442        X443
## ACR_11231843  0.19390761 0.34344281 0.03432184 0.6399025 0.40583066 0.046243640
## ADAO_11159808 0.08824812 0.14570060 0.16601659 0.1344122 0.14004753 0.594973677
## AGG_11236448  0.05763741 0.06035002 0.08956124 0.2642316 0.22793260 0.004579684
## AHL_11239959  0.17443521 0.08361908 0.08550385 0.2205543 0.19990807 0.247331184
## AJGD_11119689 0.46752936 0.39686010 0.14992364 1.0010551 0.34785450 0.593884976
## AMP_11228639  0.77809400 0.11884690 0.20027426 0.1519871 0.03400995 0.652225594
##                     X444        X445      X446      X447       X448       X449
## ACR_11231843  0.24912337 0.197063626 0.3369069 0.5142163 0.81151948 0.38771277
## ADAO_11159808 0.32513856 0.017270835 0.7296104 0.1781492 0.16660550 0.57005590
## AGG_11236448  0.06201424 0.045591797 0.1588534 0.1387704 0.21004865 0.22915979
## AHL_11239959  0.18202277 0.057303753 0.5170445 0.2276265 0.04759935 0.39915154
## AJGD_11119689 0.54444138 0.309254513 0.8380618 0.0809182 0.16167112 1.86436510
## AMP_11228639  0.15844271 0.008974888 0.3026384 0.1444743 0.83545839 0.06487324
##                     X450       X451       X452       X453        X454
## ACR_11231843  0.58367634 0.06320753 0.35833146 0.07356429 0.054893668
## ADAO_11159808 0.20323158 0.18144713 0.21559618 0.44713667 0.324378430
## AGG_11236448  0.06340307 0.03910384 0.02042461 0.42853588 0.001875915
## AHL_11239959  0.65343862 0.09673763 0.31361262 0.25852532 0.660081138
## AJGD_11119689 0.42395017 0.12416557 0.21112716 0.40888314 0.296393988
## AMP_11228639  0.59726561 0.73142344 0.11367295 0.02474390 0.158201817
##                     X455       X456       X457       X458       X459       X460
## ACR_11231843  0.05906023 0.45943000 0.21889251 0.55039583 0.09368779 0.40440755
## ADAO_11159808 0.68268112 0.16897061 0.13647195 0.30531753 0.12324225 0.18075554
## AGG_11236448  0.07868965 0.26742244 0.27230187 0.37051399 0.20980239 0.06411624
## AHL_11239959  0.19207745 0.26527677 0.02785792 0.26546908 0.28467673 0.05832171
## AJGD_11119689 0.73419574 0.01641983 0.04197220 0.03381538 0.14985549 0.12990695
## AMP_11228639  0.10688918 0.06489051 0.05269847 0.07497943 0.83339347 0.09362927
##                     X461       X462       X463       X464       X465       X466
## ACR_11231843  0.19049071 0.20496341 0.06924797 0.11462558 0.09001202 0.21512435
## ADAO_11159808 0.23796873 0.61394828 0.25562839 0.01559552 0.06204188 0.24444344
## AGG_11236448  0.02491383 0.04056907 0.35305507 0.08918968 0.14050656 0.08676012
## AHL_11239959  0.07986023 0.04297700 0.13013426 0.02680425 0.14260004 0.30816736
## AJGD_11119689 0.06543978 0.12655083 1.03615233 0.31600887 0.29368371 1.42728095
## AMP_11228639  0.00207768 1.01489996 0.21241960 0.19128902 0.38143942 0.08073271
##                    X467       X468       X469      X470       X471       X472
## ACR_11231843  0.4291729 0.64328194 0.27754624 0.5448398 0.17907109 0.13536850
## ADAO_11159808 0.8013306 0.04548383 0.26562712 0.1658672 0.08780379 0.07796793
## AGG_11236448  0.1642674 0.09922210 0.03176376 0.4912379 0.19874848 0.55686160
## AHL_11239959  0.2726512 0.02856449 0.46101187 0.1496803 0.04981553 0.11284301
## AJGD_11119689 0.5429213 0.86127740 0.16316650 0.1875355 0.06763499 0.98974159
## AMP_11228639  0.1182412 0.65061601 0.02843593 0.2673009 0.31449020 0.01934588
##                     X473        X474       X475       X476        X477
## ACR_11231843  0.20294677 0.004936078 0.13143932 0.06027313 0.029578168
## ADAO_11159808 0.08788036 0.342462875 0.08504698 0.01586710 0.447754293
## AGG_11236448  0.02541435 0.249122970 0.05475308 0.23152376 0.082910928
## AHL_11239959  0.06821724 0.400504233 0.16708117 0.14068016 0.110492139
## AJGD_11119689 0.33146197 0.243530787 1.60107164 1.00831465 0.004592071
## AMP_11228639  0.59950987 0.054223012 0.04412037 0.23432068 0.254317956
##                     X478       X479        X480 DDclust_PER_FC_scaled
## ACR_11231843  0.47247486 0.88444419 0.376130855                     1
## ADAO_11159808 0.59863741 0.89843503 0.001112582                     1
## AGG_11236448  0.35590587 0.03363888 0.019906344                     2
## AHL_11239959  0.57524535 0.08669302 1.257231537                     1
## AJGD_11119689 0.01020877 0.53460878 0.076407072                     1
## AMP_11228639  0.11975047 0.17994234 0.071253304                     2
## Mean by groups
rp_tbl_PER <- aggregate(plotting_PER, by = list(plotting_PER$DDclust_PER_FC_scaled), mean)
row.names(rp_tbl_PER) <- paste0("Group",rp_tbl_PER$DDclust_PER_FC_scaled)
rp_tbl_PER <- rp_tbl_PER %>%
  select(starts_with('X'))
rp_tbl_PER <- data.frame(t(rp_tbl_PER))
head(rp_tbl_PER)
##       Group1    Group2
## X1  9.988256 60.812753
## X2 18.272359 30.535605
## X3 12.719218 11.138120
## X4 10.436361  9.645320
## X5  8.276730  6.683309
## X6  4.737287  5.369705
# Create plotting data-frame
PER_values_by_group <- data.frame("value_PER" = c(rp_tbl_PER$Group1,rp_tbl_PER$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_PER$Group1)),
                                              rep("Group2", times = length(rp_tbl_PER$Group2))),
                                  "index" = c(c(1:length(rp_tbl_PER$Group1)),c(1:length(rp_tbl_PER$Group2))))

p <- ggplot(PER_values_by_group, aes(x = index, y = value_PER, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

Adjusted Rand Index

rand_index_table_FC_scaled = data.frame(matrix(ncol = 3 , nrow = 3))
colnames(rand_index_table_FC_scaled) <- c("DDclust_ACF_FC_scaled", "DDclust_EUCL_FC_scaled", "DDclust_PER_FC_scaled")
rownames(rand_index_table_FC_scaled) <- c("DDclust_ACF_FC_scaled", "DDclust_EUCL_FC_scaled", "DDclust_PER_FC_scaled")
cluster_study_FC_scaled <- list(DDclust_ACF_FC_scaled, DDclust_EUCL_FC_scaled, DDclust_PER_FC_scaled)
for (i in c(1:length(cluster_study_FC_scaled))) {
  for (j in c(1:length(cluster_study_FC_scaled))){
  rand_index_table_FC_scaled[i,j] <- adjustedRandIndex(cluster_study_FC_scaled[[i]], cluster_study_FC_scaled[[j]])
}}
head(rand_index_table_FC_scaled)
##                        DDclust_ACF_FC_scaled DDclust_EUCL_FC_scaled
## DDclust_ACF_FC_scaled           1.0000000000          -0.0006868268
## DDclust_EUCL_FC_scaled         -0.0006868268           1.0000000000
## DDclust_PER_FC_scaled           0.2176448445           0.0109808890
##                        DDclust_PER_FC_scaled
## DDclust_ACF_FC_scaled             0.21764484
## DDclust_EUCL_FC_scaled            0.01098089
## DDclust_PER_FC_scaled             1.00000000
write.csv(cluster_study_FC_scaled, "../../data/clusters/cluster_study_FC_scaled.csv")