Libraries

library(TSA) # time series
library(TSclust)

library(tidyr)
library(readr)
library(ggplot2) # ggplot graphs
library(knitr)
library(readxl)
library(xlsx)
library(openxlsx)
library(reactable) # reactable(df)
library(naniar) # miss_case_summary

library(dplyr)

## KNN imputation
library(caret)
library(RANN)

# CLustering 
library(factoextra)    # Clustering visualization
library(cluster)       # Clustering algorithms
library(dendextend)    # For comparing two dendrograms
library(corrplot)      # Corelation between dendrograms
library(tidyverse)     # Data manupulation
library(NbClust)       # Determine optimal no. of clusters  [not working...]
library(TSclust)
library(mclust)        # Adjusted Rand index

#RandomForest
library(randomForest) # RandomForest Discrete Classification
library(imbalance) # To create a more balanced dataset

Functions

source("../../scripts/useful-functions/get_column_position.R")
# In a normal script it will be:  source("./scripts/useful-functions/get_column_position.R")

Reading Data

Time Series Data: FC Heart Rate

FC_TS_HR_P2 = data.frame(read_xlsx("../../data/clean-data/BoxBasedImputation/FC_valid_patients_input_P2.xlsx", sheet = "FC_valid_patients_input_P2" ))

# First patients with OAF
name_patients_DETERIORO_OAF_0 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0.csv"))
name_patients_DETERIORO_OAF_0 <- name_patients_DETERIORO_OAF_0$x
name_patients_DETERIORO_OAF_0_8 <- data.frame(read_csv("../../data/clean-data/name_patients_DETERIORO_OAF_0_8.csv"))
name_patients_DETERIORO_OAF_0_8 <- name_patients_DETERIORO_OAF_0_8$x

## Deterioro and Not deterioro
file_patient_name_NO_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_NO_DETERIORO.csv"))
file_patient_name_NO_DETERIORO <- file_patient_name_NO_DETERIORO$x
file_patient_name_DETERIORO <- data.frame(read_csv("../../data/info-patients/file_patient_name_DETERIORO.csv"))
file_patient_name_DETERIORO <- file_patient_name_DETERIORO$x

Descriptive Data for Discriminant analysis

valid_patients_P2 <- data.frame(read_xlsx("../../data/clean-data/valid_patients_P2.xlsx"))
valid_patients_P2 <- valid_patients_P2$x
valid_patients_P2 <- valid_patients_P2[! valid_patients_P2 %in% union(name_patients_DETERIORO_OAF_0,name_patients_DETERIORO_OAF_0_8)]

file_patient_name <- data.frame(read_csv("../../data/clean-data/file_patient_name.csv", show_col_types = FALSE))
file_patient_name <- file_patient_name$x
  
df1 <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data.xlsx"))
rownames(df1) <- file_patient_name
df1 <- df1[valid_patients_P2,]
df_descriptive <- data.frame(read_xlsx("../../data/clean-data/descriptive-data/descriptive_data_imputed.xlsx"), row.names = TRUE)
rownames(df_descriptive) <- file_patient_name

Deleting variables that occur after the 8 first hours

df_descriptive <- df_descriptive %>% select(-c(FR_8_16h, FR_16_24h, FLUJO2_8_16h,FLUJO2_16_24h,SCORE_WOOD_DOWNES_24H,SAPI_16_24h, SAPI_8_16h))
# Class
pos_1 = get_column_position(df_descriptive,"SAPI_0_8h")
pos_2 = get_column_position(df_descriptive,"PAUSAS_APNEA")
df_descriptive[,c(pos_1:pos_2)] <- lapply(df_descriptive[,c(pos_1:pos_2)], as.factor)
#lapply(df_descriptive,class)
df_descriptive <- df_descriptive[valid_patients_P2,]

Create a dataframe with ACF [Heart Rate ]

FC_TS_HR_P2 <- FC_TS_HR_P2[,valid_patients_P2]

Restando Media

#FC_TS_HR_P2 = data.frame(scale(FC_TS_HR_P2))
dimension_col <- dim(FC_TS_HR_P2)[2]
dimension_row <- 480 #lag.max -1

# Heart Rate
FC_TS_HR_P2_ACF <- data.frame(matrix(nrow = dimension_row, ncol = dimension_col))
colnames(FC_TS_HR_P2_ACF) <- names(FC_TS_HR_P2)[1:dimension_col]
for (i in names(FC_TS_HR_P2_ACF)) {
  acf_result_FC <- forecast::Acf(FC_TS_HR_P2[[i]], lag.max = (dimension_row - 1), plot = FALSE, drop.lag.0 = FALSE)
  FC_TS_HR_P2_ACF[, i] <- acf_result_FC$acf
}

Create a dataframe with peridiogram

# Generar un dataset con varias series temporales
df <- FC_TS_HR_P2

# Crear una matriz para almacenar los periodogramas
pg_mat <- data.frame(matrix(nrow = nrow(df), ncol =  ncol(df)))
colnames(pg_mat) = colnames(FC_TS_HR_P2)

# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
library(stats)
# Calcular el periodograma de cada serie temporal y almacenarlo en la matriz
for (i in colnames(FC_TS_HR_P2)) {
  pg_mat[,i] <- stats::spec.pgram(FC_TS_HR_P2[,i], plot = FALSE)$spec
}

TsClust Comprobation

datos <- FC_TS_HR_P2

diss.ACF Computes the dissimilarity between two time series as the distance between their estimated simple (ACF) or partial (PACF) autocorrelation coefficients

DD_ACF <- diss(datos, "ACF", lag.max = 50)
DD_ACF_matrix <- as.matrix(DD_ACF)

diss.EUCL

DD_EUCL <- diss(datos, "EUCL")
DD_EUCL_matrix <- as.matrix(DD_EUCL)

diss.PER

DD_PER <- diss(datos, "PER")
DD_PER_matrix <- as.matrix(DD_PER)

Euclidean Distance first 50 ACF

datos_ACF = t(FC_TS_HR_P2_ACF[c(1:51),])
distance <- dist(t(FC_TS_HR_P2_ACF[c(1:51),]), method = "euclidean")
distance_matrix_ACF <- as.matrix(distance)

Euclidean Distance

datos_EUCL <- t(datos)
distance <- dist(datos_EUCL, method = "euclidean")
distance_matrix_EUCL <- as.matrix(distance)

Eculidean PER Distance

datos_PER <- t(pg_mat)
distance_PER <- dist(t(pg_mat), method = "euclidean")
distance_matrix_PER <- as.matrix(distance_PER)
distance_matrix_PER_NORM = distance_matrix_PER / 480

TSCLust in Action

ACF TSclust

# DD_ACF <- diss(datos, "ACF", lag.max = 50)

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_ACF, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.8704366 0.6767717 0.9196194 0.9584022

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_ACF
res<-NbClust(datos_ACF, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.4944 0.3520 0.3354 0.2960
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.4944
#res$Best.partition
hcintper_ACF <- hclust(DD_ACF, "ward.D2")
fviz_dend(hcintper_ACF, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

DDclust_ACF_FC <- cutree( hclust(DD_ACF, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_ACF_FC))

fviz_silhouette(silhouette(DDclust_ACF_FC, DD_ACF))
##   cluster size ave.sil.width
## 1       1   37          0.45
## 2       2   21          0.58

Contingency ACF lag.max = 50

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_ACF <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_ACF <- union(names(DDclust_ACF_FC[DDclust_ACF_FC == 2]),names(DDclust_ACF_FC[DDclust_ACF_FC == 1]))
fviz_dend(hcintper_ACF, k = 2,  
          k_colors = c("blue", "green"),
          label_cols =   as.vector(COLOR_ACF[,order_ACF]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLUST1" = c(n1,n3), "CLUST2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLUST1 CLUST2
DETERIORO 4 2
NO DETERIORO 33 19
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("CLUST1","CLUST2")

knitr::kable(conttingency_table_prop, align = "lccrr")
CLUST1 CLUST2
DETERIORO 0.1081081 0.0952381
NO DETERIORO 0.8918919 0.9047619

Random Forest: Discriminant TSCLust ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_FC)
data_frame2 = df_descriptive
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
data_frame_merge_ACF$CLUSTER = factor(data_frame_merge_ACF$CLUSTER)
table(data_frame_merge_ACF$CLUSTER)
## 
##  1  2 
## 37 21
data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])]<- lapply(data_frame_merge_ACF[,c(1:dim(data_frame_merge_ACF)[2])], as.numeric)
head(data_frame_merge_ACF)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       2  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_ACF$CLUSTER <- factor(data_frame_merge_ACF$CLUSTER)
newSMOTE_ACF <- data_frame_merge_ACF
table(newSMOTE_ACF$CLUSTER)
## 
##  1  2 
## 37 21
set.seed(123)
pos_1 = get_column_position(newSMOTE_ACF, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_ACF, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_ACF[pos_1:pos_2])
newSMOTE_ACF[col_names_factor] <- lapply(newSMOTE_ACF[col_names_factor] , factor)

RF_ACF <- randomForest(CLUSTER ~ ., data = newSMOTE_ACF)
print(RF_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 48.28%
## Confusion matrix:
##    1  2 class.error
## 1 26 11   0.2972973
## 2 17  4   0.8095238

Importance

kable(RF_ACF$importance[order(RF_ACF$importance, decreasing = TRUE),])
x
EDAD 2.6328715
SCORE_WOOD_DOWNES_INGRESO 2.5338316
PESO 2.3967813
SCORE_CRUCES_INGRESO 2.3630299
FR_0_8h 1.7007907
SAPI_0_8h 1.6392267
DIAS_O2_TOTAL 1.5501284
EG 1.4672375
DIAS_GN 1.3476104
FLUJO2_0_8H 1.3447355
RADIOGRAFIA 1.0722420
SEXO 0.7386009
ETIOLOGIA 0.7294733
ALIMENTACION 0.6162708
LM 0.4676251
ANALITICA 0.3376106
DIAS_OAF 0.3297077
PREMATURIDAD 0.3288944
TABACO 0.3274340
ENFERMEDAD_BASE 0.3257954
SUERO 0.3135917
ALERGIAS 0.3089164
GN_INGRESO 0.2477224
SNG 0.2476302
DERMATITIS 0.1752274
OAF 0.1405188
PALIVIZUMAB 0.1345768
OAF_TRAS_INGRESO 0.1273862
DETERIORO 0.1157549
PAUSAS_APNEA 0.0759802
UCIP 0.0517007
OAF_AL_INGRESO 0.0000000

Importance of first 50 ACF

data_frame1_ACF = data.frame("CLUSTER" = DDclust_ACF_FC)
data_frame2_ACF = data.frame(t(FC_TS_HR_P2_ACF[c(1:51),]))
data_frame_merge_ACF <-
  merge(data_frame1_ACF, data_frame2_ACF,                      by = 'row.names', all = TRUE)
data_frame_merge_ACF <- data_frame_merge_ACF[, 2:dim(data_frame_merge_ACF)[2]]
set.seed(123)
data_frame_merge_ACF$CLUSTER <- as.factor(data_frame_merge_ACF$CLUSTER)
RF_0_ACF <- randomForest(CLUSTER ~ ., data = data_frame_merge_ACF)
print(RF_0_ACF)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_ACF) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 7
## 
##         OOB estimate of  error rate: 1.72%
## Confusion matrix:
##    1  2 class.error
## 1 37  0  0.00000000
## 2  1 20  0.04761905
plot(RF_0_ACF$importance, type = "h")

### ACF by clusters

plot_data_ACF <- data.frame(datos_ACF)
cluster_data_ACF <- data.frame(DDclust_ACF_FC)
plotting_ACF <- cbind(plot_data_ACF, cluster_data_ACF)
head(plotting_ACF)
##               X1        X2        X3        X4        X5        X6        X7
## ACR_11231843   1 0.5747954 0.4244149 0.3898310 0.3054550 0.2987537 0.2466085
## ADAO_11159808  1 0.6805727 0.5935279 0.5085316 0.4365390 0.3660983 0.3061974
## AGG_11236448   1 0.7659893 0.6522822 0.5752187 0.5026580 0.4312281 0.4003839
## AHL_11239959   1 0.7330013 0.6576631 0.6158813 0.5836972 0.5097892 0.4615090
## AJGD_11119689  1 0.4856503 0.4165173 0.3766304 0.3176037 0.3071462 0.2873193
## AMP_11228639   1 0.6595950 0.6178051 0.6037129 0.5651124 0.5755787 0.5525003
##                      X8        X9       X10       X11       X12        X13
## ACR_11231843  0.1833401 0.1800060 0.1590625 0.1193108 0.1028016 0.08907378
## ADAO_11159808 0.2645815 0.2238202 0.1822452 0.1658125 0.1617351 0.14100383
## AGG_11236448  0.3616214 0.3484616 0.3680116 0.3937240 0.3530302 0.34635666
## AHL_11239959  0.4253346 0.3663603 0.3350366 0.3211704 0.3012808 0.29708129
## AJGD_11119689 0.2504552 0.2382239 0.2213956 0.1841389 0.1555994 0.19398733
## AMP_11228639  0.5484309 0.5151089 0.5260231 0.5356568 0.5412524 0.53812733
##                      X14        X15        X16          X17         X18
## ACR_11231843  0.02692387 0.02098007 0.01292424 0.0006154294 0.004233393
## ADAO_11159808 0.13026706 0.13321015 0.13066704 0.1285902414 0.110254753
## AGG_11236448  0.35754880 0.32532530 0.27518679 0.2299503431 0.206868669
## AHL_11239959  0.26719489 0.25676612 0.24100162 0.2420480921 0.198732377
## AJGD_11119689 0.15437946 0.18278084 0.17649073 0.1750699756 0.190130736
## AMP_11228639  0.53846799 0.54239706 0.55188989 0.5360942030 0.531989902
##                        X19          X20         X21         X22          X23
## ACR_11231843  -0.006757205 -0.007036055 -0.01496791 -0.02636549 -0.001402886
## ADAO_11159808  0.127414548  0.087625607  0.07760646  0.09671878  0.104156536
## AGG_11236448   0.184265903  0.151694667  0.14302509  0.12456011  0.131032068
## AHL_11239959   0.197691766  0.174912058  0.19319050  0.21205775  0.206312141
## AJGD_11119689  0.148089255  0.169290584  0.18741791  0.23496989  0.197737591
## AMP_11228639   0.471925620  0.484153622  0.49282071  0.49739289  0.498560780
##                      X24        X25        X26         X27         X28
## ACR_11231843  0.01324269 0.02086305 0.02388871 -0.01035748 -0.03510893
## ADAO_11159808 0.10125899 0.07996171 0.07672970  0.09223638  0.06817663
## AGG_11236448  0.15374218 0.13654930 0.11173266  0.10480140  0.09948863
## AHL_11239959  0.18457331 0.17656272 0.19223655  0.17530399  0.13561442
## AJGD_11119689 0.19868995 0.18905268 0.22099258  0.18826589  0.20099552
## AMP_11228639  0.47651016 0.47433498 0.49124269  0.46617148  0.47121446
##                       X29         X30          X31        X32        X33
## ACR_11231843  -0.04784269 -0.05506440 -0.008593307 0.04976843 0.09740572
## ADAO_11159808  0.09274641  0.06786673  0.071169346 0.07319753 0.07839764
## AGG_11236448   0.06725227  0.07242530  0.075139440 0.09715155 0.11831388
## AHL_11239959   0.14198217  0.15516364  0.104568650 0.08413169 0.10251633
## AJGD_11119689  0.18028969  0.14769550  0.165832019 0.11516172 0.12166889
## AMP_11228639   0.49358464  0.45935156  0.460468415 0.43672572 0.43495816
##                      X34        X35        X36        X37        X38        X39
## ACR_11231843  0.06713914 0.04049820 0.01295611 0.03353650 0.02670075 0.05435805
## ADAO_11159808 0.04368361 0.05899972 0.06957130 0.06502349 0.04428139 0.08720689
## AGG_11236448  0.15119247 0.16481099 0.17926504 0.17486282 0.17939105 0.16038387
## AHL_11239959  0.09851785 0.13082361 0.13043217 0.13487428 0.11851440 0.13412057
## AJGD_11119689 0.13947771 0.13992780 0.11603972 0.12556575 0.13822745 0.08786577
## AMP_11228639  0.42293683 0.41076414 0.39748507 0.38724889 0.38415061 0.37327204
##                      X40        X41        X42         X43         X44
## ACR_11231843  0.05163509 0.04581221 0.03625811 0.006093607 0.015911426
## ADAO_11159808 0.08245975 0.07325789 0.02199331 0.010335726 0.005374176
## AGG_11236448  0.14700455 0.14244461 0.15426774 0.162140790 0.167102275
## AHL_11239959  0.14253952 0.14241159 0.13874827 0.152605118 0.122308403
## AJGD_11119689 0.11241510 0.12355936 0.14482627 0.151343806 0.125769167
## AMP_11228639  0.38356428 0.34057877 0.35432214 0.350061870 0.362196920
##                       X45          X46        X47        X48        X49
## ACR_11231843  0.065718135 -0.044529286 0.02727482 0.03598471 0.01538854
## ADAO_11159808 0.008207619  0.005354707 0.04384913 0.07181361 0.07248583
## AGG_11236448  0.193588145  0.189538586 0.17553872 0.17449402 0.19356802
## AHL_11239959  0.116989766  0.097048192 0.09234721 0.08137636 0.05817498
## AJGD_11119689 0.114462985  0.147833838 0.11542335 0.14404906 0.07111346
## AMP_11228639  0.348115576  0.328500927 0.32673600 0.28805596 0.28570880
##                      X50        X51 DDclust_ACF_FC
## ACR_11231843  0.03556238 0.03345494              1
## ADAO_11159808 0.09748668 0.12009315              1
## AGG_11236448  0.19300176 0.17783030              1
## AHL_11239959  0.05753825 0.06746329              1
## AJGD_11119689 0.10372669 0.07286803              1
## AMP_11228639  0.27435691 0.26466781              2
## Mean by groups
rp_tbl_ACF <- aggregate(plotting_ACF, by = list(plotting_ACF$DDclust_ACF_FC), mean)
row.names(rp_tbl_ACF) <- paste0("Group",rp_tbl_ACF$DDclust_ACF_FC)
rp_tbl_ACF <- rp_tbl_ACF %>%
  select(starts_with('X'))
rp_tbl_ACF <- data.frame(t(rp_tbl_ACF))
head(rp_tbl_ACF)
##       Group1    Group2
## X1 1.0000000 1.0000000
## X2 0.7226921 0.8428105
## X3 0.6451763 0.7923087
## X4 0.5790438 0.7612588
## X5 0.5311166 0.7314445
## X6 0.4874229 0.7109206
# Create plotting data-frame
ACF_values_by_group <- data.frame("value_ACF" = c(rp_tbl_ACF$Group1,rp_tbl_ACF$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_ACF$Group1)),
                                              rep("Group2", times = length(rp_tbl_ACF$Group2))),
                                  "index" = c(c(1:length(rp_tbl_ACF$Group1)),c(1:length(rp_tbl_ACF$Group2))))

p <- ggplot(ACF_values_by_group, aes(x = index, y = value_ACF, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

EUCL TSclust

# DD_EUCL <- diss(datos, "EUCL")

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.6500602 0.5153046 0.7432321 0.9500249

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_EUCL
res<-NbClust(datos, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.2401 0.1263 0.1082 0.1131
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.2401
#res$Best.partition
hcintper_EUCL <- hclust(DD_EUCL, "ward.D2")
fviz_dend(hcintper_EUCL, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)

DDclust_EUCL_FC <- cutree( hclust(DD_EUCL, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_EUCL_FC))

fviz_silhouette(silhouette(DDclust_EUCL_FC, DD_EUCL))
##   cluster size ave.sil.width
## 1       1   31          0.25
## 2       2   27          0.22

Contingency EUCL

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_EUCL <- cbind(DETERIORO_patients,NO_DETERIORO_patients)
order_EUCL <- union(names(DDclust_EUCL_FC[DDclust_EUCL_FC == 2]),names(DDclust_EUCL_FC[DDclust_EUCL_FC == 1]))
fviz_dend(hcintper_EUCL, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_EUCL[,order_EUCL]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLUST1" = c(n1,n3), "CLUST2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLUST1 CLUST2
DETERIORO 5 1
NO DETERIORO 26 26
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("CLUST1","CLUST2")

knitr::kable(conttingency_table_prop, align = "lccrr")
CLUST1 CLUST2
DETERIORO 0.1612903 0.037037
NO DETERIORO 0.8387097 0.962963

Random Forest: Discriminant TSCLust EUCL

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_FC)
data_frame2 = df_descriptive
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
data_frame_merge_EUCL$CLUSTER = factor(data_frame_merge_EUCL$CLUSTER)
table(data_frame_merge_EUCL$CLUSTER)
## 
##  1  2 
## 31 27
data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])]<- lapply(data_frame_merge_EUCL[,c(1:dim(data_frame_merge_EUCL)[2])], as.numeric)
head(data_frame_merge_EUCL)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       2 13.0 7.78 40      56        2.00       2             2        0
## 3       2  3.1 5.66 37      44        1.00       4             4        0
## 4       2  5.3 8.44 38      65        0.40       3             3        0
## 5       2 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_EUCL$CLUSTER <- factor(data_frame_merge_EUCL$CLUSTER)
newSMOTE_EUCL <- data_frame_merge_EUCL
table(newSMOTE_EUCL$CLUSTER)
## 
##  1  2 
## 31 27
set.seed(123)
pos_1 = get_column_position(newSMOTE_EUCL, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_EUCL, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_EUCL[pos_1:pos_2])
newSMOTE_EUCL[col_names_factor] <- lapply(newSMOTE_EUCL[col_names_factor] , factor)

RF_EUCL <- randomForest(CLUSTER ~ ., data = newSMOTE_EUCL)
print(RF_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 39.66%
## Confusion matrix:
##    1  2 class.error
## 1 19 12   0.3870968
## 2 11 16   0.4074074

Importance

kable(RF_EUCL$importance[order(RF_EUCL$importance, decreasing = TRUE),])
x
PESO 3.4318174
SCORE_WOOD_DOWNES_INGRESO 3.3955906
EDAD 3.2490817
SCORE_CRUCES_INGRESO 2.5964057
FR_0_8h 1.9810445
DIAS_O2_TOTAL 1.5827384
EG 1.3904874
DIAS_GN 1.3142980
FLUJO2_0_8H 1.2558653
SAPI_0_8h 1.1587460
TABACO 0.9726009
ETIOLOGIA 0.8091265
SEXO 0.6762767
LM 0.5816534
ENFERMEDAD_BASE 0.5106344
ALIMENTACION 0.4480972
RADIOGRAFIA 0.4361207
ANALITICA 0.3000126
ALERGIAS 0.2458116
GN_INGRESO 0.2291434
SUERO 0.2111681
DERMATITIS 0.1924494
DIAS_OAF 0.1634307
PREMATURIDAD 0.1561542
PALIVIZUMAB 0.1529051
PAUSAS_APNEA 0.1406046
OAF 0.1380559
DETERIORO 0.1107912
OAF_TRAS_INGRESO 0.1019522
SNG 0.0984322
UCIP 0.0300226
OAF_AL_INGRESO 0.0000000

Importance of the TS-data

data_frame1_EUCL = data.frame("CLUSTER" = DDclust_EUCL_FC)
data_frame2_EUCL = data.frame(datos_EUCL)
data_frame_merge_EUCL <-
  merge(data_frame1_EUCL, data_frame2_EUCL,                      by = 'row.names', all = TRUE)
data_frame_merge_EUCL <- data_frame_merge_EUCL[, 2:dim(data_frame_merge_EUCL)[2]]
set.seed(123)
data_frame_merge_EUCL$CLUSTER <- as.factor(data_frame_merge_EUCL$CLUSTER)
RF_0_EUCL <- randomForest(CLUSTER ~ ., data = data_frame_merge_EUCL)
print(RF_0_EUCL)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_EUCL) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 6.9%
## Confusion matrix:
##    1  2 class.error
## 1 29  2  0.06451613
## 2  2 25  0.07407407
plot(RF_0_EUCL$importance, type = "h")

EUCL by clusters

plot_data_EUCL <- data.frame(t(datos))
cluster_data_EUCL <- data.frame(DDclust_EUCL_FC)
plotting_EUCL <- cbind(plot_data_EUCL, cluster_data_EUCL)
head(plotting_EUCL)
##                     X1       X2       X3       X4       X5       X6       X7
## ACR_11231843  145.0000 141.0000 149.0000 167.0000 179.0000 167.0000 160.0000
## ADAO_11159808 128.0000 131.0000 125.0000 131.0000 125.0000 120.0000 122.0000
## AGG_11236448  131.1166 124.4614 121.7418 128.0487 140.0153 122.1811 122.1771
## AHL_11239959  149.0000 149.0000 131.0000 153.0000 158.0000 154.0000 158.0000
## AJGD_11119689 120.4000 113.6000 120.2000 130.8000 106.6000 110.4000 130.2000
## AMP_11228639  173.0000 148.8234 147.7584 140.0000 144.0000 147.0000 135.0000
##                  X8  X9   X10   X11 X12   X13 X14 X15 X16 X17 X18 X19 X20 X21
## ACR_11231843  164.0 165 158.0 151.0 150 151.0 149 164 164 156 150 151 149 148
## ADAO_11159808 122.0 120 119.0 121.0 117 115.0 120 118 121 140 129 126 121 124
## AGG_11236448  130.0 129 125.0 138.0 135 127.0 140 147 156 156 146 143 127 122
## AHL_11239959  146.0 160 163.0 161.0 162 169.0 172 168 163 158 138 131 128 148
## AJGD_11119689 126.2 119 122.4 115.6 109 113.2 129 114  93 111 101 118  97  89
## AMP_11228639  168.0 151 163.0 151.0 155 147.0 142 148 148 152 160 155 159 160
##               X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36 X37
## ACR_11231843  151 147 151 156 149 150 146 148 150 159 161 152 150 155 151 157
## ADAO_11159808 116 125 119 124 121 117 116 117 134 128 130 125 131 131 137 135
## AGG_11236448  141 164 165 173 173 172 168 174 159 156 181 139 129 142 129 124
## AHL_11239959  128 133 130 161 145 149 167 151 167 168 169 176 167 151 159 149
## AJGD_11119689 141 111  94 111 108 105  89 141  98 131  87 114 149  87 119 159
## AMP_11228639  159 159 163 171 163 172 163 154 151 155 165 155 149 151 153 150
##               X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 X51 X52 X53
## ACR_11231843  159 147 152 149 165 160 160 167 170 173 173 178 171 169 167 166
## ADAO_11159808 139 146 139 138 145 134 134 140 131 147 132 132 125 129 139 121
## AGG_11236448  129 123 140 133 140 116 103 116 134 112 120 121 120 118 127 113
## AHL_11239959  150 164 153 155 154 152 149 144 156 141 145 148 142 144 142 142
## AJGD_11119689 164 152 159 112 107 124  95  99 111 106 128  81  88  88  98 115
## AMP_11228639  157 157 155 152 157 156 157 162 163 161 161 162 160 164 161 169
##               X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 X69
## ACR_11231843  164 163 162 159 159 159 156 157 158 159 159 158 153 156 156 161
## ADAO_11159808 132 142 132 126 127 131 133 143 149 139 132 149 134 139 135 136
## AGG_11236448  107 109 135 114 131 134 123 127 120 112 118 135 115 119 130 138
## AHL_11239959  166 135 137 137 138 141 139 137 139 140 138 137 149 156 161 154
## AJGD_11119689 100  81  96  99  98 150 161 132 169 126 171 113  90  97  95  97
## AMP_11228639  164 163 164 159 157 156 159 164 160 160 164 165 167 161 159 167
##               X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 X82 X83 X84 X85
## ACR_11231843  162 164 167 164 168 163 162 166 166 169 167 167 163 167 167 167
## ADAO_11159808 153 141 134 146 141 134 137 140 138 128 129 137 135 138 135 135
## AGG_11236448  130 139 132 122 127 153 139 136 131 136 129 132 129 133 140 145
## AHL_11239959  172 158 174 163 164 170 170 160 160 168 161 170 175 159 157 147
## AJGD_11119689  95  94  97 104  96  92 135  95 132 135 148 166 156 146 152 166
## AMP_11228639  162 161 167 159 164 162 156 157 171 165 154 156 157 154 174 161
##               X86 X87 X88 X89 X90 X91 X92 X93 X94 X95 X96 X97 X98 X99 X100 X101
## ACR_11231843  164 160 163 161 159 158 158 159 159 160 158 159 157 162  154  158
## ADAO_11159808 135 134 142 133 130 134 143 130 139 134 137 136 134 143  132  131
## AGG_11236448  122 107 107  92 123 103 104  96  99 113 104  97 100 100  102   97
## AHL_11239959  155 146 155 144 149 149 144 142 172 171 141 137 140 138  135  140
## AJGD_11119689 168 137 151 163 120 130 117 121 136 113 168 165 127  87   97  101
## AMP_11228639  171 162 179 168 175 177 157 163 167 168 163 172 161 163  161  170
##               X102 X103 X104 X105 X106 X107 X108 X109 X110 X111 X112 X113 X114
## ACR_11231843   157  156  159  157  160  154  164  162  159  164  162  161  164
## ADAO_11159808  136  134  131  128  127  125  144  131  132  132  137  133  131
## AGG_11236448    98   98   95   94   96   91  102   84   97   85   99  101   93
## AHL_11239959   137  133  159  142  136  141  136  134  161  146  133  131  131
## AJGD_11119689  118  142  133  160  120  102  102  105  138  153  118  150  122
## AMP_11228639   170  168  166  168  163  170  165  163  162  163  167  165  164
##               X115 X116 X117 X118 X119 X120 X121 X122 X123 X124 X125 X126 X127
## ACR_11231843   161  163  167  167  161  159  161  162  165  160  163  158  162
## ADAO_11159808  125  127  126  133  143  138  146  146  144  152  140  185  178
## AGG_11236448    98  145  161  156  157  155  114  104  128  110  102  109  124
## AHL_11239959   130  131  130  131  133  130  131  135  127  130  131  130  130
## AJGD_11119689  113  156  164  159  128  125  162  161  155  155  155  150  144
## AMP_11228639   156  168  159  166  170  158  156  170  176  163  162  163  169
##               X128 X129 X130 X131 X132 X133 X134 X135 X136 X137 X138 X139
## ACR_11231843   158  157  164  159  158  160  166  163  157  157  164  161
## ADAO_11159808  185  149  146  149  133  137  136  135  130  129  131  130
## AGG_11236448   114  124  131  110  109  115  111  115  113  111  111  115
## AHL_11239959   130  129  123  117  125  125  123  122  126  126  151  160
## AJGD_11119689  137  121  135  135  129  126  134  128  131  128  117  118
## AMP_11228639   156  170  164  154  165  159  173  168  171  163  172  165
##                   X140    X141     X142     X143     X144     X145 X146 X147
## ACR_11231843  156.0000 160.000 155.0000 158.0000 157.0000 160.0000  156  154
## ADAO_11159808 130.0000 125.000 123.0000 128.0000 131.0000 126.0000  118  119
## AGG_11236448  117.0000 120.000 114.0000 111.0000 115.0000 113.0000  120  110
## AHL_11239959  139.6583 137.713 140.2028 140.9207 143.7436 142.2225  160  165
## AJGD_11119689 120.0000 149.000 119.0000 123.0000 119.0000 128.0000  121  126
## AMP_11228639  142.0000 156.000 148.0000 149.0000 147.0000 142.0000  154  157
##               X148 X149 X150 X151 X152 X153 X154 X155 X156 X157 X158 X159 X160
## ACR_11231843   156  159  161  156  151  159  178  182  164  156  155  152  151
## ADAO_11159808  127  127  117  128  130  127  137  129  132  134  135  131  139
## AGG_11236448   103  109  111  123  106  113  113  109  110  104  104  100  101
## AHL_11239959   148  138  153  159  164  150  156  115  107  123  123  134  136
## AJGD_11119689  148  140  127  135  164  133  113  116  104  122  167  113  124
## AMP_11228639   150  142  164  150  154  168  148  146  146  139  134  151  149
##               X161 X162 X163 X164 X165 X166 X167 X168 X169 X170 X171 X172 X173
## ACR_11231843   150  147  150  153  150  151  149  152  155  156  154  159  159
## ADAO_11159808  130  139  122  121  125  143  121  130  129  129  125  130  135
## AGG_11236448   107   92  105  105  103  101  104  103  105  100  105  107   98
## AHL_11239959   148  137  141  146  143  132  141  158  134  132  142  148  148
## AJGD_11119689  169  136  158  161  128  110  120  154  108  144  144  140  116
## AMP_11228639   150  154  160  164  146  150  146  146  146  143  144  141  151
##               X174 X175 X176 X177 X178 X179 X180 X181 X182 X183 X184 X185 X186
## ACR_11231843   163  161  155  155  165  156  156  143  151  157  153  155  152
## ADAO_11159808  160  164  160  161  137  143  140  140  135  130  157  143  134
## AGG_11236448   106  103  103  100  101  103  106   97  104   99   96  103   98
## AHL_11239959   130  157  114  124  133  121  125  121  125  134  128  128  132
## AJGD_11119689  158  128  155  111  127  103  142  104   98  106  144  113  121
## AMP_11228639   163  160  148  157  144  145  143  158  137  143  144  151  138
##               X187 X188 X189 X190 X191 X192 X193 X194 X195 X196 X197 X198 X199
## ACR_11231843   168  163  159  152  151  153  147  150  154  154  153  163  160
## ADAO_11159808  138  147  142  130  123  120  116  127  143  123  123  129  121
## AGG_11236448   130  113  132  112  102  114  108   99   99   99  103  102  104
## AHL_11239959   131  134  127  130  130  131  130  131  127  123  134  130  130
## AJGD_11119689   99  105   93   97  122  100  103   98   98  103  157  118  135
## AMP_11228639   143  144  149  150  153  138  147  143  146  162  145  148  150
##               X200 X201 X202 X203 X204 X205 X206 X207 X208 X209 X210 X211 X212
## ACR_11231843   171  167  167  167  171  174  171  168  165  167  169  166  163
## ADAO_11159808  123  121  121  118  122  123  119  118  121  117  114  117  124
## AGG_11236448   106  106  103  101   97   98  100  104  102  103  104  102  108
## AHL_11239959   130  126  127  128  132  126  127  130  130  132  132  126  122
## AJGD_11119689  102  101   97   98  154  127   92   90   98   95  100   98  106
## AMP_11228639   138  135  148  138  139  144  145  139  137  140  133  133  137
##               X213 X214 X215 X216 X217 X218 X219 X220 X221 X222 X223 X224 X225
## ACR_11231843   159  157  155  155  153  151  154  153  153  153  150  155  150
## ADAO_11159808  121  112  115  116  120  115  117  118  115  112  136  111  117
## AGG_11236448   126  109   99  108  103   97  105  111  116  113  110  111  112
## AHL_11239959   123  124  128  128  130  131  133  132  127  127  131  127  122
## AJGD_11119689  132  130  111  116  145  125   96  103  113   97  115  110  145
## AMP_11228639   133  137  139  138  135  130  139  140  137  138  139  138  136
##               X226 X227 X228 X229 X230 X231 X232 X233 X234 X235 X236 X237 X238
## ACR_11231843   152  149  143  153  158  160  157  157  157  154  167  157  153
## ADAO_11159808  122  123  125  117  117  122  121  122  135  135  118  120  121
## AGG_11236448   106  111  122  118  106  119  122  113  120  112  110  116  118
## AHL_11239959   131  130  133  131  128  129  145  130  131  134  143  129  133
## AJGD_11119689  107  135  119  154  101  121  152  118  103  133  108   82  139
## AMP_11228639   137  138  141  134  141  136  140  137  137  141  142  154  144
##               X239 X240 X241 X242 X243 X244 X245 X246 X247 X248 X249 X250 X251
## ACR_11231843   158  151  154  160  158  154  158  161  157  159  149  160  162
## ADAO_11159808  117  123  116  121  120  118  116  114  115  115  116  113  115
## AGG_11236448   110  105  107  112  106  109  113  109  111  110  107  104  105
## AHL_11239959   131  160  121  125  128  148  126  128  130  130  129  129  149
## AJGD_11119689  145   95  158  117  108  159  105  159  101   89  105  154  101
## AMP_11228639   135  147  133  133  139  130  128  129  138  153  143  138  146
##               X252 X253 X254 X255 X256 X257 X258 X259 X260 X261 X262 X263 X264
## ACR_11231843   136  141  169  165  161  158  155  151  149  149  157  153  152
## ADAO_11159808  114  114  114  115  114  113  114  126  136  148  146  137  132
## AGG_11236448   107  101  104  101  109  108  109  111  105  105  100  105  108
## AHL_11239959   123  121  125  130  127  127  129  129  130  129  133  132  126
## AJGD_11119689   98   99   99   99  115   95   92  138  139  126  120  116  121
## AMP_11228639   144  129  132  138  136  147  136  141  136  136  153  158  153
##               X265 X266 X267 X268 X269 X270 X271 X272 X273 X274 X275 X276 X277
## ACR_11231843   150  161  160  161  162  160  153  153  153  155  153  155  157
## ADAO_11159808  141  140  125  118  118  118  119  130  132  123  132  128  120
## AGG_11236448   112  104  109  103  103  105  106  108  107  106  100  112  104
## AHL_11239959   132  134  131  133  164  169  163  147  157  164  130  125  132
## AJGD_11119689  130  123  108  104   98  102  101  104   97   93   96  105   99
## AMP_11228639   158  157  143  157  152  163  166  145  139  141  133  134  156
##               X278 X279 X280 X281 X282 X283 X284 X285 X286 X287 X288 X289 X290
## ACR_11231843   157  158  155  155  157  154  151  154  158  154  155  155  157
## ADAO_11159808  124  127  120  136  127  128  151  157  130  137  129  136  122
## AGG_11236448   105  104   95   92  130  125  157  133  118  122  113  102  126
## AHL_11239959   128  132  156  130  130  130  135  145  174  166  139  139  158
## AJGD_11119689  104  101  102   98   97   94   92   93  100   98   95   95   92
## AMP_11228639   149  144  132  138  161  143  148  151  146  168  140  138  152
##               X291 X292 X293 X294 X295 X296 X297 X298 X299 X300 X301 X302 X303
## ACR_11231843   151  149  158  154  156  156  156  163  156  155  151  155  156
## ADAO_11159808  129  122  124  123  124  141  131  127  136  141  152  141  133
## AGG_11236448   107  102  112  119  114  151  170  158  165  144  146  137  125
## AHL_11239959   160  159  153  164  175  169  151  166  142  136  129  129  129
## AJGD_11119689   94   96   93   91   92   88   88   86   86   91   89   85   91
## AMP_11228639   148  145  148  150  148  152  146  148  157  153  146  148  147
##               X304 X305 X306 X307 X308 X309 X310 X311 X312 X313 X314 X315 X316
## ACR_11231843   154  157  152  156  156  159  153  154  157  156  160  157  153
## ADAO_11159808  122  126  127  122  123  112  123  129  130  130  129  134  131
## AGG_11236448   119  112  115  102  101  135  109  107  109  131  136  114  112
## AHL_11239959   127  126  127  128  156  120  127  128  166  126  126  140  122
## AJGD_11119689   80   85   83   88   88   89   89   87   90   92   88   87   87
## AMP_11228639   143  150  147  148  140  147  148  150  150  148  147  148  152
##               X317 X318 X319 X320 X321 X322 X323 X324 X325 X326 X327 X328 X329
## ACR_11231843   154  156  152  152  156  151  154  154  152  157  154  146  155
## ADAO_11159808  135  134  136  133  132  133  142  133  134  131  129  135  133
## AGG_11236448   122  109  120  121  118  121  114  116  114  120  120  122  122
## AHL_11239959   126  127  125  127  125  131  127  147  123  125  122  132  128
## AJGD_11119689   87   87   86   83   86   86   91  106  119  133  124   96   89
## AMP_11228639   145  146  147  147  145  147  148  146  148  147  150  144  144
##               X330 X331 X332 X333 X334 X335 X336 X337 X338 X339 X340 X341 X342
## ACR_11231843   151  150  146  147  157  150  147  151  149  149  147  153  147
## ADAO_11159808  124  134  126  127  124  123  120  121  119  127  123  122  121
## AGG_11236448   114  125  105  115  128  120  116  120  113  120  120  105  113
## AHL_11239959   130  131  133  131  138  137  128  135  132  125  123  123  123
## AJGD_11119689  128  123  103   95   73  136  104  139   97  128  149   98  108
## AMP_11228639   148  146  146  143  144  141  137  154  149  151  150  153  162
##               X343 X344 X345 X346 X347 X348 X349 X350 X351 X352 X353 X354 X355
## ACR_11231843   152  148  153  152  168  165  156  153  151  150  160  150  149
## ADAO_11159808  121  120  122  122  122  122  122  124  121  121  120  120  119
## AGG_11236448   110  112  117  120  122  120  120  118  118  117  117  117  113
## AHL_11239959   122  127  127  125  132  130  132  131  130  130  131  152  121
## AJGD_11119689  106  118  135   93  115  103  103  102   86  112  134  106  125
## AMP_11228639   138  146  146  140  154  148  139  141  144  158  139  141  139
##               X356 X357 X358 X359 X360 X361 X362 X363 X364 X365 X366 X367 X368
## ACR_11231843   147  147  148  150  147  146  151  147  151  150  148  149  148
## ADAO_11159808  120  120  121  121  136  133  132  146  121  135  125  131  126
## AGG_11236448   117  117  118  111  100  114  104  108  108  114  120  107  119
## AHL_11239959   130  141  127  138  118  121  127  149  132  119  122  125  122
## AJGD_11119689  119  122  122  115  131  104  122  118  107  121  110  111  113
## AMP_11228639   154  137  146  137  141  147  158  136  141  143  140  145  146
##               X369 X370 X371 X372 X373 X374 X375 X376 X377 X378 X379 X380 X381
## ACR_11231843   149  149  151  151  154  151  151  151  151  150  153  150  154
## ADAO_11159808  137  126  127  118  120  125  122  123  120  129  123  121  126
## AGG_11236448   113  129  117  119  117  123  119  121  116  107  127  121  123
## AHL_11239959   127  125  115  125  119  149  128  124  126  127  127  123  120
## AJGD_11119689  130  127  128  108  105  116   96  109  123  115   90  106   97
## AMP_11228639   146  147  147  148  146  147  148  147  150  145  145  143  144
##               X382 X383 X384 X385 X386 X387 X388 X389 X390 X391 X392 X393 X394
## ACR_11231843   154  153  150  181  156  158  159  155  151  155  153  159  165
## ADAO_11159808  119  120  120  120  120  121  130  133  126  154  134  143  151
## AGG_11236448   116  118  117  110  115  122  120  119  118  117  116  119  118
## AHL_11239959   116  122  122  122  143  147  158  151  147  159  169  176  159
## AJGD_11119689  119  119  120  117  108  111  104  103   92   99  108   98  100
## AMP_11228639   141  139  153  154  143  138  152  145  140  154  153  153  155
##               X395 X396 X397 X398 X399 X400 X401 X402 X403 X404 X405 X406 X407
## ACR_11231843   163  166  167  167  172  170  171  173  168  165  162  159  154
## ADAO_11159808  146  135  129  133  127  123  132  130  122  126  129  131  126
## AGG_11236448   108  114  118  110  119  117  117  105  111  112  116  112  124
## AHL_11239959   182  171  176  164  149  141  137  150  151  127  143  140  127
## AJGD_11119689   97   98  141  102  129  106  134  141  132  138  139  134  129
## AMP_11228639   166  150  154  159  142  165  145  145  142  147  167  166  145
##               X408 X409 X410 X411     X412     X413     X414     X415     X416
## ACR_11231843   156  157  159  155 149.0000 153.0000 154.0000 159.0000 159.0000
## ADAO_11159808  126  127  135  123 127.0000 126.0000 127.0000 125.0000 124.0000
## AGG_11236448   107  120  130  113 126.0000 112.0000 126.0000 113.0000 130.0000
## AHL_11239959   149  138  138  111 119.0000 117.0000 111.0000 115.0000 116.0000
## AJGD_11119689  131  131  114  124 115.0000 115.0000 153.0000 100.0000  87.0000
## AMP_11228639   152  146  172  167 157.2825 159.1097 157.1008 163.4221 156.5953
##                   X417     X418     X419     X420    X421     X422     X423
## ACR_11231843  156.0000 153.0000 156.0000 157.0000 157.000 151.0000 155.0000
## ADAO_11159808 125.0000 126.0000 124.0000 126.0000 123.000 122.0000 122.0000
## AGG_11236448  153.0000 148.0000 171.0000 152.0000 145.000 133.0000 128.0000
## AHL_11239959  115.0000 123.0000 117.0000 122.0000 121.000 125.0000 126.0000
## AJGD_11119689  97.0000 102.0000 101.0000 108.0000 106.000 104.0000  92.0000
## AMP_11228639  158.7459 153.3412 154.3436 158.5246 158.935 155.9522 153.4337
##               X424 X425 X426 X427 X428 X429 X430 X431 X432 X433 X434 X435 X436
## ACR_11231843   155  155  160  153  156  170   88  143  156  148  153  147  143
## ADAO_11159808  123  122  145  135  137  131  136  140  145  153  145  124  129
## AGG_11236448   117  115  115  109  122  121  147  151  142  116  107  118  124
## AHL_11239959   127  120  114  121  123  119  117  122  121  140  124  127  127
## AJGD_11119689  101  102  104  103  104  104  104  115  100  118   98  105  111
## AMP_11228639   155  158  160  162  152  146  166  152  152  150  156  158  157
##               X437 X438 X439 X440 X441 X442 X443 X444 X445 X446 X447 X448 X449
## ACR_11231843   145  145  145  147  151  152  157  154  151  161  153  155  152
## ADAO_11159808  123  121  124  122  125  129  131  135  144  131  136  142  147
## AGG_11236448   109  101  114  122  152  117  105  106  148  131  127  127  128
## AHL_11239959   127  132  122  126  124  125  119  126  127  122  125  121  125
## AJGD_11119689  102  106   95  109  112  123  134  109  125  105  106  107  110
## AMP_11228639   163  161  161  151  164  162  174  156  142  144  151  145  159
##               X450 X451 X452 X453 X454 X455 X456 X457 X458 X459 X460 X461 X462
## ACR_11231843   154  161  152  152  156  154  165  178  178  184  180  160  157
## ADAO_11159808  156  133  138  128  135  127  133  139  135  130  133  129  129
## AGG_11236448   119  147  119  151  165  168  142  134  130  130  126  115  120
## AHL_11239959   121  119  125  127  126  125  125  129  124  125  131  114  117
## AJGD_11119689  113   98   91  118  151  135  118  115  111  122  123  138  125
## AMP_11228639   155  158  153  156  178  154  163  158  149  163  159  154  159
##               X463 X464 X465 X466 X467 X468 X469 X470 X471 X472 X473 X474 X475
## ACR_11231843   157  157  164  152  158  158  149  149  148  153  150  146  149
## ADAO_11159808  124  130  116  135  135  124  128  140  127  126  132  121  138
## AGG_11236448   142  131  134  121  131  143  126  119  128  122  123  120  122
## AHL_11239959   124  121  119  126  128  129  153  122  135  125  123  121  125
## AJGD_11119689  126  132  112  100   98  152  119  150  148  144  101  109  110
## AMP_11228639   158  157  150  164  151  149  153  150  154  152  150  153  155
##               X476 X477 X478 X479 X480 DDclust_EUCL_FC
## ACR_11231843   149  148  153  150  153               1
## ADAO_11159808  122  127  135  128  124               2
## AGG_11236448   122  117  118  114  112               2
## AHL_11239959   112  120  114  120  123               2
## AJGD_11119689   97   99   84  103  143               2
## AMP_11228639   153  153  148  152  151               1
## Mean by groups
rp_tbl_EUCL <- aggregate(plotting_EUCL, by = list(plotting_EUCL$DDclust_EUCL_FC), mean)
row.names(rp_tbl_EUCL) <- paste0("Group",rp_tbl_EUCL$DDclust_EUCL_FC)
rp_tbl_EUCL <- rp_tbl_EUCL %>%
  select(starts_with('X'))
rp_tbl_EUCL <- data.frame(t(rp_tbl_EUCL))
head(rp_tbl_EUCL)
##      Group1   Group2
## X1 167.4070 153.6074
## X2 167.6501 152.7367
## X3 166.1007 152.9036
## X4 168.8262 153.6395
## X5 167.6267 151.1619
## X6 164.4864 150.4965
# Create plotting data-frame
EUCL_values_by_group <- data.frame("value_EUCL" = c(rp_tbl_EUCL$Group1,rp_tbl_EUCL$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_EUCL$Group1)),
                                              rep("Group2", times = length(rp_tbl_EUCL$Group2))),
                                  "index" = c(c(1:length(rp_tbl_EUCL$Group1)),c(1:length(rp_tbl_EUCL$Group2))))

p <- ggplot(EUCL_values_by_group, aes(x = index, y = value_EUCL, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

PER TSclust

# DD_PER <- diss(datos, "PER")
DD_PER <- distance_PER

Agnes study

To find which hierarchical clustering methods that can identify stronger clustering structures. Here we see that Ward’s method identifies the strongest clustering structure of the four methods assessed.

#method to assess
m <- c("average", "single","complete","ward")
names(m) <- c("average", "single","complete","ward.D2")

#function to compute coefficient
ac <- function(x){agnes(datos_PER, method = x)$ac}
map_dbl(m,ac)
##   average    single  complete   ward.D2 
## 0.7642414 0.6328132 0.8636011 0.9278630

NbClust study

This package will help us identify the optimum number of clusters based our criteria in the silhouette index

diss_matrix<- DD_PER
res<-NbClust(datos_PER, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=5, method = "ward.D2", index = "silhouette")

res$All.index
##      2      3      4      5 
## 0.5349 0.2270 0.2618 0.2698
res$Best.nc
## Number_clusters     Value_Index 
##          2.0000          0.5349
#res$Best.partition
hcintper_PER <- hclust(DD_PER, "ward.D2")
fviz_dend(hcintper_PER, palette = "jco",
          rect = TRUE, show_labels = FALSE, k = 2)

DDclust_PER_FC <- cutree( hclust(DD_PER, "ward.D2"), k = 2)
fviz_cluster(list(data = t(datos), cluster = DDclust_PER_FC))

fviz_silhouette(silhouette(DDclust_PER_FC, DD_PER))
##   cluster size ave.sil.width
## 1       1   50          0.56
## 2       2    8          0.35

Contingency PER

DETERIORO_CLUST <- union(intersect(file_patient_name_DETERIORO,names_1),intersect(file_patient_name_DETERIORO,names_2))
NO_DETERIORO_CLUST <- union(intersect(file_patient_name_NO_DETERIORO,names_1),intersect(file_patient_name_NO_DETERIORO,names_2))
#DETERIORO
DETERIORO_patients = data.frame(t(rep("#4A235A", length(DETERIORO_CLUST))))
colnames(DETERIORO_patients)<- DETERIORO_CLUST


#NO DETERIORO
NO_DETERIORO_patients = data.frame(t(rep("#117864", length(NO_DETERIORO_CLUST))))
colnames(NO_DETERIORO_patients)<- NO_DETERIORO_CLUST

COLOR_PER <- cbind(NO_DETERIORO_patients,DETERIORO_patients)
order_PER <- union(names(DDclust_PER_FC[DDclust_PER_FC == 2]),names(DDclust_PER_FC[DDclust_PER_FC == 1]))
fviz_dend(hcintper_PER, k = 2,  
          k_colors = c("blue", "green3"),
          label_cols =   as.vector(COLOR_PER[,order_PER]), cex = 0.6) 

n1 = length(intersect(file_patient_name_DETERIORO,names_1))
n2 = length(intersect(file_patient_name_DETERIORO,names_2))
n3 = length(intersect(file_patient_name_NO_DETERIORO,names_1))
n4 = length(intersect(file_patient_name_NO_DETERIORO,names_2))

conttingency_table <- data.frame("CLUST1" = c(n1,n3), "CLUST2" = c(n2,n4))
rownames(conttingency_table) <- c("DETERIORO","NO DETERIORO")


knitr::kable(conttingency_table, align = "lccrr")
CLUST1 CLUST2
DETERIORO 5 1
NO DETERIORO 45 7
conttingency_table_prop <- data.frame(c(n1,n3)/(n1+n3),c(n2,n4)/(n2+n4))
rownames(conttingency_table_prop) <- c("DETERIORO","NO DETERIORO")
colnames(conttingency_table_prop) <- c("CLUST1","CLUST2")

knitr::kable(conttingency_table_prop, align = "lccrr")
CLUST1 CLUST2
DETERIORO 0.1 0.125
NO DETERIORO 0.9 0.875

Random Forest: Discriminant TSCLust PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_FC)
data_frame2_PER = df_descriptive
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
data_frame_merge_PER$CLUSTER = factor(data_frame_merge_PER$CLUSTER)
table(data_frame_merge_PER$CLUSTER)
## 
##  1  2 
## 50  8
data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])]<- lapply(data_frame_merge_PER[,c(1:dim(data_frame_merge_PER)[2])], as.numeric)
head(data_frame_merge_PER)
##   CLUSTER EDAD PESO EG FR_0_8h FLUJO2_0_8H DIAS_GN DIAS_O2_TOTAL DIAS_OAF
## 1       1 10.0 8.20 41      48        2.00       3             3        0
## 2       1 13.0 7.78 40      56        2.00       2             2        0
## 3       1  3.1 5.66 37      44        1.00       4             4        0
## 4       1  5.3 8.44 38      65        0.40       3             3        0
## 5       1 15.0 7.00 34      37        2.00       4             4        0
## 6       1  1.6 3.80 37      42        0.94       4             4        0
##   SAPI_0_8h SCORE_CRUCES_INGRESO SCORE_WOOD_DOWNES_INGRESO SEXO PALIVIZUMAB LM
## 1         3                    3                         6    1           1  2
## 2         4                    4                         8    1           1  1
## 3         3                    3                         7    1           1  2
## 4         4                    3                         6    1           1  2
## 5         1                    3                         6    1           2  1
## 6         2                    4                         7    1           1  2
##   DERMATITIS ALERGIAS TABACO ENFERMEDAD_BASE RADIOGRAFIA ANALITICA SUERO
## 1          1        2      1               1           1         1     1
## 2          1        2      2               2           1         1     2
## 3          1        1      1               1           1         1     1
## 4          1        1      1               1           1         1     1
## 5          1        1      2               2           1         1     2
## 6          1        1      2               2           1         1     1
##   ETIOLOGIA PREMATURIDAD ALIMENTACION SNG GN_INGRESO OAF OAF_AL_INGRESO
## 1         2            1            2   1          2   1              1
## 2         1            1            1   1          2   1              1
## 3         2            1            2   1          2   1              1
## 4         2            1            2   1          1   1              1
## 5         2            2            2   1          2   1              1
## 6         1            1            2   1          1   1              1
##   OAF_TRAS_INGRESO UCIP DETERIORO PAUSAS_APNEA
## 1                1    1         1            1
## 2                1    1         1            1
## 3                1    1         1            1
## 4                1    1         1            1
## 5                1    1         1            1
## 6                1    1         1            1
data_frame_merge_PER$CLUSTER <- factor(data_frame_merge_PER$CLUSTER)
newSMOTE_PER <- oversample(data_frame_merge_PER, ratio = 0.85, method = "SMOTE", classAttr = "CLUSTER")
newSMOTE_PER <- data.frame(newSMOTE_PER)
pos_1 <- get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 <- get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
columns_to_round <- c(pos_1:pos_2)
newSMOTE_PER[, columns_to_round] <- lapply(newSMOTE_PER[, columns_to_round], function(x) round(x, 1))
table(newSMOTE_PER$CLUSTER)
## 
##  1  2 
## 50 43
set.seed(123)
pos_1 = get_column_position(newSMOTE_PER, "SAPI_0_8h")
pos_2 = get_column_position(newSMOTE_PER, "PAUSAS_APNEA")
col_names_factor <- names(newSMOTE_PER[pos_1:pos_2])
newSMOTE_PER[col_names_factor] <- lapply(newSMOTE_PER[col_names_factor] , factor)

RF_PER <- randomForest(CLUSTER ~ ., data = newSMOTE_PER)
print(RF_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = newSMOTE_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 6.45%
## Confusion matrix:
##    1  2 class.error
## 1 49  1   0.0200000
## 2  5 38   0.1162791

Importance

kable(RF_PER$importance[order(RF_PER$importance, decreasing = TRUE),])
x
SCORE_CRUCES_INGRESO 8.9852612
SCORE_WOOD_DOWNES_INGRESO 5.2582849
RADIOGRAFIA 5.1448815
SAPI_0_8h 4.2663169
PESO 2.6165359
ETIOLOGIA 2.1637110
EDAD 1.9886479
LM 1.9671169
FR_0_8h 1.5698333
DIAS_O2_TOTAL 1.5663579
TABACO 1.4980119
DIAS_GN 1.3807663
PREMATURIDAD 1.2288103
FLUJO2_0_8H 1.0161275
EG 0.8699305
SEXO 0.6483764
ENFERMEDAD_BASE 0.6423322
ALIMENTACION 0.6027475
ANALITICA 0.5729907
SUERO 0.3472359
DETERIORO 0.1834765
OAF_TRAS_INGRESO 0.1731880
DIAS_OAF 0.1689132
OAF 0.1644906
PALIVIZUMAB 0.1419329
ALERGIAS 0.1404927
GN_INGRESO 0.0912084
SNG 0.0738434
UCIP 0.0392519
DERMATITIS 0.0361894
PAUSAS_APNEA 0.0097405
OAF_AL_INGRESO 0.0000000

Importance of the PER

data_frame1_PER = data.frame("CLUSTER" = DDclust_PER_FC)
data_frame2_PER = data.frame(datos_PER)
data_frame_merge_PER <-
  merge(data_frame1_PER, data_frame2_PER,                      by = 'row.names', all = TRUE)
data_frame_merge_PER <- data_frame_merge_PER[, 2:dim(data_frame_merge_PER)[2]]
set.seed(123)
data_frame_merge_PER$CLUSTER <- as.factor(data_frame_merge_PER$CLUSTER)
RF_0_PER <- randomForest(CLUSTER ~ ., data = data_frame_merge_PER)
print(RF_0_PER)
## 
## Call:
##  randomForest(formula = CLUSTER ~ ., data = data_frame_merge_PER) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 21
## 
##         OOB estimate of  error rate: 13.79%
## Confusion matrix:
##    1 2 class.error
## 1 50 0           0
## 2  8 0           1
plot(RF_0_PER$importance, type = "h")

### PER by clusters

plot_data_PER <- data.frame(datos_PER)
cluster_data_PER <- data.frame(DDclust_PER_FC)
plotting_PER <- cbind(plot_data_PER, cluster_data_PER)
head(plotting_PER)
##                       X1         X2        X3         X4        X5        X6
## ACR_11231843    348.3863   22.29866  409.3245   72.24925  321.9848  424.0674
## ADAO_11159808  2044.5415 1265.47449 1351.9694 1210.22532  264.4413  140.8006
## AGG_11236448  11268.6872 2030.76692  151.7232 1046.26609 1854.7914  991.9672
## AHL_11239959   2249.7759 2031.91033  811.1544 3220.16092 1938.9812 1994.9735
## AJGD_11119689  7094.5509 9873.09102 1052.2402 6077.83782 1206.4612 1990.7986
## AMP_11228639   7892.0056 2259.48911 3012.6365  508.49958   33.9347  288.1758
##                      X7         X8         X9        X10        X11        X12
## ACR_11231843  910.26473  131.74415  239.92825  252.02903   11.21741  264.25020
## ADAO_11159808 831.15521  467.38213 1167.68952  826.15021  644.38731  270.67798
## AGG_11236448  771.80575  950.16815 3312.61080 1473.54570 2661.50832  222.57669
## AHL_11239959  516.10161 2656.34800 2446.43229  449.74646  324.75012 1989.55872
## AJGD_11119689  13.33513 1318.46805  744.23940 1610.32601  233.77550 2882.88625
## AMP_11228639  114.02795   11.89135   31.15406   16.77033   86.46627   41.75092
##                      X13       X14        X15        X16         X17        X18
## ACR_11231843   293.95507  262.6576  401.07634  117.71846   55.742958  358.00352
## ADAO_11159808   33.56197  479.9267  541.05419  505.06088  687.619889 1011.34009
## AGG_11236448  1080.22766  263.2256  192.20104 1205.69580   92.992757  130.49854
## AHL_11239959   938.55828  237.5895 2160.15214  111.39618   81.379991   59.10440
## AJGD_11119689  764.40399 1459.6717  283.15964  497.35252 1873.122731 1893.23851
## AMP_11228639   114.75954  329.9692   28.11677   52.24031    7.547195   76.49546
##                     X19       X20        X21       X22        X23         X24
## ACR_11231843  182.10648  91.87253   22.88719  154.8910  65.780868    1.392005
## ADAO_11159808  30.92282  35.95631   96.13376  715.9380 235.995670   76.638298
## AGG_11236448  289.75392  16.92866 1037.73923  154.4910  37.582031  299.865090
## AHL_11239959  878.51500 678.09376  199.54941  264.0684 663.414926 1222.355550
## AJGD_11119689 713.25739 103.53796 3136.60321 1180.6349 472.554167 2468.332790
## AMP_11228639   43.59810 115.46191   30.76334  291.0160   5.110457   29.276310
##                     X25       X26       X27       X28       X29       X30
## ACR_11231843  139.23794  29.93685 300.09123  34.73585  58.27851 121.99195
## ADAO_11159808 256.39953 242.84672 403.21566 354.81157 117.40582 365.15476
## AGG_11236448   35.42327 912.72521 972.98997 243.81064 855.80175  85.08751
## AHL_11239959   83.65540 246.20807  61.77270 200.20723  66.16912  65.75803
## AJGD_11119689 549.96549 240.86774  71.69257 281.69095 660.69968 600.30732
## AMP_11228639   21.23936 118.88873  71.04967  41.36850  19.34578 199.24587
##                     X31        X32        X33        X34         X35        X36
## ACR_11231843   55.03412   45.01887  17.322892  53.609133  25.8584217  10.547630
## ADAO_11159808 183.38619   33.25127 297.206476  10.987478   0.5893427 367.872991
## AGG_11236448   47.04513 1065.92072 145.952794 475.608572 353.1913409 385.175211
## AHL_11239959  100.63393  226.66159   7.226275 242.673177 234.0012916 620.656751
## AJGD_11119689 732.01483  237.03530 324.118121 656.379251 464.4854942  54.184125
## AMP_11228639   76.55375  100.20715 368.261970   9.144192 130.1483208   5.504135
##                       X37       X38        X39        X40        X41       X42
## ACR_11231843   66.3661560  48.73835   7.406187   24.98301 141.908019 103.44403
## ADAO_11159808 126.3487258 214.57486 334.953092   77.57094   1.206459  55.61927
## AGG_11236448  814.8109073 108.27561 223.124670 1595.16871 176.687613 217.54232
## AHL_11239959    0.6775345 254.95084 304.048318  126.36189 161.317064 127.92756
## AJGD_11119689 183.8970065 926.80438 326.484165  366.73191  19.894166 334.65882
## AMP_11228639   17.9157013 180.80658 133.113999   52.81269  33.336818  16.36910
##                      X43       X44        X45        X46        X47       X48
## ACR_11231843   107.09436  30.18085  29.956095  43.623334   5.294672 134.86186
## ADAO_11159808  110.84276 101.29729  66.900785   8.721455  15.386726  33.79442
## AGG_11236448   849.35169 228.76225   4.944967 596.828911  10.508435 338.28683
## AHL_11239959   374.98924  95.78602  70.158977  76.632370  79.045753  13.85959
## AJGD_11119689 1056.17735 899.47948 123.079813  97.678292 182.962674 152.11053
## AMP_11228639    75.59077  42.01278  50.651694  49.651401  52.198570  10.27032
##                      X49        X50        X51       X52        X53        X54
## ACR_11231843   20.576737  11.091409   6.799941  18.56097   5.541049   3.523825
## ADAO_11159808 264.224969 213.497924  66.440252  63.61097   3.736728   1.310419
## AGG_11236448  110.025742   3.770932 111.458221  71.38763 180.316146  62.557459
## AHL_11239959  188.979711   6.748206   4.650608  12.32290  47.488803  89.957310
## AJGD_11119689   7.949797 347.317863 201.999642 458.85538 408.574619 206.410862
## AMP_11228639    2.359794  31.600895  11.512225  37.65142  23.078457  17.967709
##                      X55        X56       X57       X58        X59       X60
## ACR_11231843   15.428820  28.423519  62.58629  55.52865  38.627533  60.41682
## ADAO_11159808  25.504181  12.329279  10.31265 202.36457  63.931030  37.66273
## AGG_11236448  217.735580 344.587158 172.43477 207.71999   2.512771  20.91686
## AHL_11239959  110.727335   8.553674 183.86477  60.16570  55.081875  77.44528
## AJGD_11119689  39.029241 443.559422 123.61696 531.79592 558.466318 352.54997
## AMP_11228639    1.869597  26.363299  33.22283  53.74638  14.006948  12.35452
##                     X61         X62       X63        X64        X65        X66
## ACR_11231843   43.57834 162.5350377  4.260936   9.763429   2.884342   4.190182
## ADAO_11159808 226.70469   0.4796529 48.541290 100.452810  12.011168  18.078309
## AGG_11236448  184.92266  30.1281999 29.557721  82.162732 170.161284  54.051784
## AHL_11239959   53.79810  63.0062963 13.620459  43.802454  68.817901 187.043727
## AJGD_11119689 371.78956  46.4856410 54.587319 123.442734 874.985366 272.193179
## AMP_11228639   61.64142   7.9180100  5.658281 133.367049  94.294497  20.336480
##                      X67        X68        X69        X70         X71       X72
## ACR_11231843    24.18499   4.473226   2.649457  27.801453   4.2577475  13.11485
## ADAO_11159808  110.77871  24.824655  40.491695  26.450267  28.8174499 117.66970
## AGG_11236448   100.44518  47.006286 139.818855 127.433481   0.3425516  68.59093
## AHL_11239959   144.61331 274.585219 213.665734   7.945876  17.7810437  81.82055
## AJGD_11119689 1107.80888 243.429501 123.239037 276.139301 808.6988609 740.86028
## AMP_11228639    97.12129  66.474995  46.722698  72.819738  59.8111572  45.83738
##                      X73         X74       X75       X76       X77        X78
## ACR_11231843   80.340543  30.9414819  23.32626  71.70075  47.57655  90.945173
## ADAO_11159808  39.729756  14.7744220  84.15867  10.08191  27.55966   9.833679
## AGG_11236448   22.449675 102.0842652 275.07424  78.53754  37.65235  48.110982
## AHL_11239959  186.459352   5.6321980 100.18736  42.57903   1.94692  43.275164
## AJGD_11119689  89.824216 297.7107049 204.90412 351.52788 152.03528 178.623753
## AMP_11228639    3.731377   0.3142418  95.66031  26.04847  13.48961  65.946607
##                      X79       X80        X81        X82       X83        X84
## ACR_11231843   56.205045  14.07852  59.996110   5.234073  14.58238  23.804173
## ADAO_11159808  69.787965  78.58678  33.916417   4.374651  45.80617  11.389666
## AGG_11236448  220.862364 176.82135  24.815956  25.165631 139.19039   2.202261
## AHL_11239959   54.528927  26.54190  37.707648 277.502678  40.18441  69.493727
## AJGD_11119689   3.730390  68.51892 330.765304 499.236006 485.44468 338.021945
## AMP_11228639    8.157112  10.64790   8.876751  24.767964  19.87097 104.040998
##                     X85       X86        X87       X88         X89        X90
## ACR_11231843   67.37103  19.76578  10.108986  44.80942   0.4314662  87.882562
## ADAO_11159808 137.47895 135.60058  64.826560  32.44564  20.8145411   6.439392
## AGG_11236448   55.20123 170.47665  20.455483 178.58071 159.2572140  55.610500
## AHL_11239959  208.67442 141.40959 152.585528  19.73715   4.5394263  79.177857
## AJGD_11119689  62.29809 339.71690   2.727953 481.45007  97.3236436 375.512934
## AMP_11228639  112.38317  25.45809  43.797483  17.98346  63.7051146 138.293797
##                     X91       X92        X93       X94       X95        X96
## ACR_11231843   16.18456  11.76147  22.427247  43.67267  48.39041  33.036283
## ADAO_11159808  47.18262  85.92498  13.648709  96.17456  32.88860   8.504681
## AGG_11236448   78.39920  26.68607   2.392703  76.18619 245.14011  58.998472
## AHL_11239959  108.99752  57.88870 174.788483 145.52832  37.69597 125.125240
## AJGD_11119689 283.42605 398.29423 358.027899 656.51214 117.22896   7.411211
## AMP_11228639   88.24497  85.74665  19.915753  37.40505  18.55393  27.084072
##                      X97        X98       X99     X100       X101      X102
## ACR_11231843   21.888520  18.316180  12.71874 83.05418   3.663976 110.40502
## ADAO_11159808   9.335965   6.623210  25.48751 96.25737  69.779461   8.80107
## AGG_11236448  142.155138   8.761375  79.86648 98.99652 328.377704 101.01476
## AHL_11239959   31.860271 228.695673  45.84267 41.28917   3.617375 107.36383
## AJGD_11119689 342.796759  51.722356 219.81387 37.52951 168.992870 488.87355
## AMP_11228639  130.119225  42.936500  27.04814 98.96809  18.160248  23.60377
##                     X103     X104      X105        X106       X107       X108
## ACR_11231843   16.295266 32.72415  17.13538  9.19236758  48.088190  83.458860
## ADAO_11159808   2.260767 10.18050  23.39041 36.71574871 105.205348  18.074168
## AGG_11236448   29.243827 89.11253  13.59382 68.54142938  87.994157 125.289677
## AHL_11239959    2.821220 43.86895  38.60649  0.07107527   8.740787  97.574032
## AJGD_11119689 289.537274 91.99522 419.42506 52.01094497  17.069693 488.817218
## AMP_11228639    5.902560 34.66156  41.70199 20.35818452   7.135223   5.080574
##                     X109      X110      X111      X112       X113       X114
## ACR_11231843    3.954442  13.32374 35.683155 19.314187  32.106229  50.732030
## ADAO_11159808  51.568126 154.49904  1.201206  1.037543  20.856590   5.612337
## AGG_11236448  150.820895  72.53790 66.829812 14.957264   5.539851 104.319852
## AHL_11239959   25.338729  35.78403  5.447354 85.197355 252.798229 314.904281
## AJGD_11119689 186.138506 293.40227 96.733057 23.704723 648.571418   5.075168
## AMP_11228639   40.644134  27.92608  9.675836  2.386868 116.830721  44.099029
##                     X115      X116       X117        X118       X119       X120
## ACR_11231843   17.892616  41.28745   7.190733   5.8304104  41.478701  22.913039
## ADAO_11159808  25.139582  15.08121   6.315504   0.3793686  67.800729   1.642036
## AGG_11236448   40.076611  24.12978  14.640944  29.1616442 100.143411  31.107951
## AHL_11239959  104.820918  34.38167  10.476464  52.2497851 135.810815 117.801275
## AJGD_11119689 587.259468 473.45879 567.828200 154.4196451  46.270791 463.647626
## AMP_11228639    6.883874  29.07419 125.420924   0.9831770   7.714643  52.370693
##                     X121      X122       X123      X124       X125       X126
## ACR_11231843   95.685037 55.164721   2.253739 57.609520  13.632755   1.457037
## ADAO_11159808   8.385626 19.518276  46.366626 62.786694 148.567132  51.578888
## AGG_11236448   29.621578  0.366469  40.439735 35.122426   8.885634  14.310926
## AHL_11239959   19.089222 81.433967   9.801134 41.734388  61.152809  67.267496
## AJGD_11119689 412.657057 53.604567  33.056229  6.821248 103.978128 116.484169
## AMP_11228639    2.229305 12.658934 112.011633 18.779024   8.087187  18.272481
##                    X127      X128       X129       X130       X131      X132
## ACR_11231843  40.739244  17.96603  24.548548  13.463209   6.443771  52.93993
## ADAO_11159808 22.563617  15.07311   9.448053  29.363498   9.081545  23.66586
## AGG_11236448  27.790489   4.70232 176.780377 115.812240  37.916712  16.81850
## AHL_11239959  91.652274  56.31386  67.965190  48.584645  22.535853  60.84074
## AJGD_11119689  7.737438 279.41383 233.624164   7.219063 267.589323 132.96953
## AMP_11228639  22.472939  11.36108   3.557244  36.921134  39.827388  54.13716
##                     X133       X134      X135      X136      X137       X138
## ACR_11231843   49.676277   5.641364  46.11750  9.153074  10.49148  21.856224
## ADAO_11159808  34.462758 181.632461  80.21512 57.532356  43.14911   4.493098
## AGG_11236448    9.118927  10.440550  39.79872  6.111265 135.59287  65.210129
## AHL_11239959  334.385808 222.688753  39.28932 10.192787 197.00301  24.440151
## AJGD_11119689  19.737670 121.741480 211.80330 89.732031 292.11711 415.326869
## AMP_11228639    3.211792  54.266953  88.02787  4.271698  31.32815  98.605797
##                      X139      X140      X141       X142      X143       X144
## ACR_11231843    0.4032183 32.366806  4.537283  32.501481  15.25671  34.347901
## ADAO_11159808  17.8035188 29.661011 10.772769   2.536657  23.16254  53.783266
## AGG_11236448  171.5105109  3.143752 70.907509 227.299673 132.95188  38.082128
## AHL_11239959   98.4440230 23.826309 49.229495  62.303999  10.43516  47.539190
## AJGD_11119689 137.3527313 57.163021 48.727410 715.352654 277.44958 232.809748
## AMP_11228639   91.3998161  8.655655 28.503759  14.966507  23.16132   8.718949
##                    X145       X146       X147      X148      X149      X150
## ACR_11231843  38.736026   3.039466  15.829168  12.04144  11.25694   2.49266
## ADAO_11159808  8.566305  26.694952   2.788876  22.52548  39.91460  19.05122
## AGG_11236448  40.513373  51.430609 136.823679  73.10300 359.23883  43.09692
## AHL_11239959  60.008177  16.024650  49.176827 133.04377  50.62884 318.84514
## AJGD_11119689 79.012414 350.071917 222.105037 181.73419  16.83085 303.02044
## AMP_11228639  20.990693  25.795104 132.746096  25.33968  15.37677  22.50900
##                    X151      X152      X153      X154      X155        X156
## ACR_11231843   47.30072 44.742466  12.29814 75.785426  15.96699  27.1083640
## ADAO_11159808  49.46168  7.997823  60.55102 41.161244  30.13339   0.2616995
## AGG_11236448   17.81332 61.163396  22.00824 16.030331  90.02268  85.2159661
## AHL_11239959   36.33479 37.717913 108.72114 31.216102  99.32177  84.2191571
## AJGD_11119689 316.98400 61.223728  40.63928  4.103047 535.83938 436.6038876
## AMP_11228639   28.39629 42.714160  10.09216 90.568972  85.35638  11.9370369
##                    X157        X158      X159       X160       X161       X162
## ACR_11231843   45.95646   0.1210798 40.776904  22.383541   2.766273  43.239353
## ADAO_11159808  22.03423  17.9781397  5.267311   1.781083  30.538443  42.411914
## AGG_11236448   44.33659  41.2570209 40.349971  11.659568  52.620328  54.495582
## AHL_11239959   44.76072  33.3372597 26.706942  30.653957   2.112994  42.865180
## AJGD_11119689 336.68747 544.1652639 14.026822 347.342580 162.041963 538.640098
## AMP_11228639   27.89045  41.0011328 44.213850  12.061124  69.523363   8.805054
##                     X163      X164       X165       X166      X167      X168
## ACR_11231843   13.741907 84.529370 117.250227  13.375122  42.56509  34.28050
## ADAO_11159808   9.076199 40.126273  29.157689  97.221461  21.91342  34.18008
## AGG_11236448   44.830644 61.830382 100.366014   8.326845  86.93767  59.60235
## AHL_11239959   91.793861 66.893313  23.298347   4.215710  40.84039  27.42377
## AJGD_11119689 457.466282 22.333463   4.725218 256.760241 283.43004 119.09126
## AMP_11228639   20.486618  4.577062  44.024013  23.415008  58.19166  51.67915
##                     X169      X170       X171       X172       X173      X174
## ACR_11231843    3.639098 21.704368   0.192723  64.316913  40.330819  23.68798
## ADAO_11159808   8.405364  5.502808  11.255454  21.466028  15.964233  28.37875
## AGG_11236448   15.444968  7.849136  27.965611   5.293785  76.802196  12.51821
## AHL_11239959  119.537582 16.328687  48.784038  15.199396   3.107826  24.73594
## AJGD_11119689 709.467437 22.684400 184.051175 313.218699 207.957911 548.57790
## AMP_11228639   11.790435 63.440258  70.809161   8.405446  24.443895 129.71361
##                    X175        X176      X177      X178       X179       X180
## ACR_11231843   40.82167  23.7900347  45.11949  43.50358  22.723639   9.313692
## ADAO_11159808  50.24005   0.8022005  38.26750   8.10573   1.043840   9.889475
## AGG_11236448   48.48196   9.8416125  63.80561  30.89745   2.358648  23.467832
## AHL_11239959   30.18812   2.8722651  10.76408  22.97082  51.281025   2.852812
## AJGD_11119689 343.39759 242.4180358 310.77116 115.87615 140.270056 351.047693
## AMP_11228639  103.70657  27.9670488  14.14361  20.41486  48.662240  17.969358
##                    X181        X182      X183      X184       X185      X186
## ACR_11231843   1.261902   0.2159353  50.72558  11.13419  16.524788  19.21838
## ADAO_11159808 82.896544  73.8020506  35.26160  39.24148  25.660765  18.83864
## AGG_11236448  32.083150  92.0116763  93.78611   8.51574  16.965149 160.07034
## AHL_11239959  49.575698  47.2374400 122.62801  19.53437  10.900321  80.35366
## AJGD_11119689 56.982064 125.1029347 116.17819 280.47515 500.866847  69.95154
## AMP_11228639  17.465273  11.1884816  36.33052  29.72711   9.163052  22.25266
##                    X187     X188      X189       X190      X191      X192
## ACR_11231843   46.67731 16.65716 42.450086  15.496901  17.29504 11.312551
## ADAO_11159808  11.04706 76.41117 78.737583  56.400966  12.47871  7.081923
## AGG_11236448   16.66365 77.90671 28.822138   6.382938  85.66442 37.560970
## AHL_11239959  104.13201 28.04031  7.124077  99.566978  26.11656 12.453738
## AJGD_11119689 177.28188 92.95068  9.012681 185.005304 390.75076 30.257458
## AMP_11228639   22.56451 59.58724 21.441088   8.855096 108.24073 24.596916
##                     X193       X194       X195       X196      X197       X198
## ACR_11231843    6.423861   5.103376   76.85062  33.791074  47.24277  11.550629
## ADAO_11159808  16.240655  32.553304   13.09777   1.082000  66.07276   9.416056
## AGG_11236448  169.461545   1.593565   11.13518  62.070057 108.68741  15.528712
## AHL_11239959    1.954401  27.508108   29.90202 191.247570  50.96500  40.047723
## AJGD_11119689 466.351893 128.532334 1033.09546  70.705233  40.93867 212.422835
## AMP_11228639   32.705333  28.530489   37.58171   7.525454  51.46679  82.671648
##                    X199      X200      X201      X202       X203      X204
## ACR_11231843   20.45810  2.044473  38.11751  24.17440   2.754627  14.83970
## ADAO_11159808  15.54622 17.713935  14.34175  14.94304  63.483565  34.69222
## AGG_11236448   16.25954 24.129652  71.18947  61.40976   1.233862  16.70792
## AHL_11239959   19.19769 19.630410  50.63597  45.89591  56.783553  41.78972
## AJGD_11119689 180.31412 68.118085 454.83126 158.04834 269.832741 247.36795
## AMP_11228639   12.62736 21.278924  16.14847   3.61352  69.298266  16.83437
##                      X205      X206     X207     X208       X209      X210
## ACR_11231843   11.7386256  20.06877 30.63068 48.34034  23.095155  34.76825
## ADAO_11159808   1.8427945  77.84928 19.00848 17.77677  60.824843  21.68477
## AGG_11236448   12.2833741  42.79839 37.38761 56.59146  61.740393  17.08210
## AHL_11239959   13.1560874 118.70570 52.25965 10.92810  91.639242 150.01977
## AJGD_11119689 140.5103623 380.77492 36.76533 73.45558 847.077743 192.62255
## AMP_11228639    0.9535721  32.15501 15.35024 88.76655   6.892712  63.45883
##                    X211      X212       X213        X214       X215      X216
## ACR_11231843   3.765127 21.344978   4.382055   3.2698891   3.518082 27.367185
## ADAO_11159808 19.360370 23.004067  47.709387  34.6111094  72.841930 18.029128
## AGG_11236448  10.535383  5.502814 115.456440   0.5054104  21.200621 72.049143
## AHL_11239959  22.209518 72.000782  59.353560 151.5447884  44.098118 60.903592
## AJGD_11119689 56.414859 95.926016 185.776814 134.6671586 333.583200  7.460378
## AMP_11228639  77.712952 12.077628   2.629013  16.8087723  11.356860  6.894547
##                    X217      X218      X219      X220       X221       X222
## ACR_11231843  13.038922 32.785810  5.580766 24.089625 11.3470921  12.209197
## ADAO_11159808 14.561528 32.577316 13.149922 19.286577 25.3912123  65.508151
## AGG_11236448  73.363762 99.824142 56.525109 17.274241  6.7123029  10.930148
## AHL_11239959   6.395764 60.947743 65.357533 13.389794 18.3347190   9.866878
## AJGD_11119689 19.070149 15.364078 68.087119 59.023463 29.7326854  57.498607
## AMP_11228639   5.599156  7.966483 88.547157  9.948009  0.2207513 107.832025
##                     X223       X224       X225       X226      X227       X228
## ACR_11231843    4.124942   6.827982   5.361808  12.814461  25.56484  38.318821
## ADAO_11159808  27.275495   1.664038   6.619855  26.082063  85.50181   4.853115
## AGG_11236448   95.120345  24.029547  37.855375  23.374974  44.25705  26.732488
## AHL_11239959   29.876886   6.153856  32.738844  70.750631  62.59665   6.557981
## AJGD_11119689 470.777734 143.579219 133.435738 648.487750 246.67728 391.322987
## AMP_11228639   22.569353  20.324252  40.527527   8.577763  12.56300  69.127249
##                     X229      X230      X231       X232       X233        X234
## ACR_11231843   16.532789  32.45485 10.666852   8.063589  12.089071   0.2940308
## ADAO_11159808  28.342357  17.69800  9.368646   8.319161   9.376816  36.5407158
## AGG_11236448    8.557814 132.34965 53.546957 150.030046   6.847152  67.1188863
## AHL_11239959  105.841453  34.36436 11.436903  25.907073  15.661661  91.9498010
## AJGD_11119689  74.135001  85.20711 30.730083 449.690930 150.600359 110.6486653
## AMP_11228639    3.021287  28.40044 33.414244   2.055479  63.697277   5.7611365
##                     X235       X236      X237       X238       X239        X240
## ACR_11231843    7.829537   3.590331  1.761903  28.144237  52.684300  22.4052473
## ADAO_11159808   9.074494   1.693016 47.775288  63.874484  95.862826   0.1187122
## AGG_11236448   14.751612  62.377294 22.337921  95.888412   9.063011   5.3631811
## AHL_11239959   38.359346  32.298068 25.367348 132.067756  19.903425 288.6416172
## AJGD_11119689 727.449872 458.129634  2.086416   4.638376 242.900491  34.7156950
## AMP_11228639    4.687741  24.896320 27.021008  12.723358  19.118679   7.5705866
##                     X241       X242      X243       X244      X245      X246
## ACR_11231843    348.3863   22.29866  409.3245   72.24925  321.9848  424.0674
## ADAO_11159808  2044.5415 1265.47449 1351.9694 1210.22532  264.4413  140.8006
## AGG_11236448  11268.6872 2030.76692  151.7232 1046.26609 1854.7914  991.9672
## AHL_11239959   2249.7759 2031.91033  811.1544 3220.16092 1938.9812 1994.9735
## AJGD_11119689  7094.5509 9873.09102 1052.2402 6077.83782 1206.4612 1990.7986
## AMP_11228639   7892.0056 2259.48911 3012.6365  508.49958   33.9347  288.1758
##                    X247       X248       X249       X250       X251       X252
## ACR_11231843  910.26473  131.74415  239.92825  252.02903   11.21741  264.25020
## ADAO_11159808 831.15521  467.38213 1167.68952  826.15021  644.38731  270.67798
## AGG_11236448  771.80575  950.16815 3312.61080 1473.54570 2661.50832  222.57669
## AHL_11239959  516.10161 2656.34800 2446.43229  449.74646  324.75012 1989.55872
## AJGD_11119689  13.33513 1318.46805  744.23940 1610.32601  233.77550 2882.88625
## AMP_11228639  114.02795   11.89135   31.15406   16.77033   86.46627   41.75092
##                     X253      X254       X255       X256        X257       X258
## ACR_11231843   293.95507  262.6576  401.07634  117.71846   55.742958  358.00352
## ADAO_11159808   33.56197  479.9267  541.05419  505.06088  687.619889 1011.34009
## AGG_11236448  1080.22766  263.2256  192.20104 1205.69580   92.992757  130.49854
## AHL_11239959   938.55828  237.5895 2160.15214  111.39618   81.379991   59.10440
## AJGD_11119689  764.40399 1459.6717  283.15964  497.35252 1873.122731 1893.23851
## AMP_11228639   114.75954  329.9692   28.11677   52.24031    7.547195   76.49546
##                    X259      X260       X261      X262       X263        X264
## ACR_11231843  182.10648  91.87253   22.88719  154.8910  65.780868    1.392005
## ADAO_11159808  30.92282  35.95631   96.13376  715.9380 235.995670   76.638298
## AGG_11236448  289.75392  16.92866 1037.73923  154.4910  37.582031  299.865090
## AHL_11239959  878.51500 678.09376  199.54941  264.0684 663.414926 1222.355550
## AJGD_11119689 713.25739 103.53796 3136.60321 1180.6349 472.554167 2468.332790
## AMP_11228639   43.59810 115.46191   30.76334  291.0160   5.110457   29.276310
##                    X265      X266      X267      X268      X269      X270
## ACR_11231843  139.23794  29.93685 300.09123  34.73585  58.27851 121.99195
## ADAO_11159808 256.39953 242.84672 403.21566 354.81157 117.40582 365.15476
## AGG_11236448   35.42327 912.72521 972.98997 243.81064 855.80175  85.08751
## AHL_11239959   83.65540 246.20807  61.77270 200.20723  66.16912  65.75803
## AJGD_11119689 549.96549 240.86774  71.69257 281.69095 660.69968 600.30732
## AMP_11228639   21.23936 118.88873  71.04967  41.36850  19.34578 199.24587
##                    X271       X272       X273       X274        X275       X276
## ACR_11231843   55.03412   45.01887  17.322892  53.609133  25.8584217  10.547630
## ADAO_11159808 183.38619   33.25127 297.206476  10.987478   0.5893427 367.872991
## AGG_11236448   47.04513 1065.92072 145.952794 475.608572 353.1913409 385.175211
## AHL_11239959  100.63393  226.66159   7.226275 242.673177 234.0012916 620.656751
## AJGD_11119689 732.01483  237.03530 324.118121 656.379251 464.4854942  54.184125
## AMP_11228639   76.55375  100.20715 368.261970   9.144192 130.1483208   5.504135
##                      X277      X278       X279       X280       X281      X282
## ACR_11231843   66.3661560  48.73835   7.406187   24.98301 141.908019 103.44403
## ADAO_11159808 126.3487258 214.57486 334.953092   77.57094   1.206459  55.61927
## AGG_11236448  814.8109073 108.27561 223.124670 1595.16871 176.687613 217.54232
## AHL_11239959    0.6775345 254.95084 304.048318  126.36189 161.317064 127.92756
## AJGD_11119689 183.8970065 926.80438 326.484165  366.73191  19.894166 334.65882
## AMP_11228639   17.9157013 180.80658 133.113999   52.81269  33.336818  16.36910
##                     X283      X284       X285       X286       X287      X288
## ACR_11231843   107.09436  30.18085  29.956095  43.623334   5.294672 134.86186
## ADAO_11159808  110.84276 101.29729  66.900785   8.721455  15.386726  33.79442
## AGG_11236448   849.35169 228.76225   4.944967 596.828911  10.508435 338.28683
## AHL_11239959   374.98924  95.78602  70.158977  76.632370  79.045753  13.85959
## AJGD_11119689 1056.17735 899.47948 123.079813  97.678292 182.962674 152.11053
## AMP_11228639    75.59077  42.01278  50.651694  49.651401  52.198570  10.27032
##                     X289       X290       X291      X292       X293       X294
## ACR_11231843   20.576737  11.091409   6.799941  18.56097   5.541049   3.523825
## ADAO_11159808 264.224969 213.497924  66.440252  63.61097   3.736728   1.310419
## AGG_11236448  110.025742   3.770932 111.458221  71.38763 180.316146  62.557459
## AHL_11239959  188.979711   6.748206   4.650608  12.32290  47.488803  89.957310
## AJGD_11119689   7.949797 347.317863 201.999642 458.85538 408.574619 206.410862
## AMP_11228639    2.359794  31.600895  11.512225  37.65142  23.078457  17.967709
##                     X295       X296      X297      X298       X299      X300
## ACR_11231843   15.428820  28.423519  62.58629  55.52865  38.627533  60.41682
## ADAO_11159808  25.504181  12.329279  10.31265 202.36457  63.931030  37.66273
## AGG_11236448  217.735580 344.587158 172.43477 207.71999   2.512771  20.91686
## AHL_11239959  110.727335   8.553674 183.86477  60.16570  55.081875  77.44528
## AJGD_11119689  39.029241 443.559422 123.61696 531.79592 558.466318 352.54997
## AMP_11228639    1.869597  26.363299  33.22283  53.74638  14.006948  12.35452
##                    X301        X302      X303       X304       X305       X306
## ACR_11231843   43.57834 162.5350377  4.260936   9.763429   2.884342   4.190182
## ADAO_11159808 226.70469   0.4796529 48.541290 100.452810  12.011168  18.078309
## AGG_11236448  184.92266  30.1281999 29.557721  82.162732 170.161284  54.051784
## AHL_11239959   53.79810  63.0062963 13.620459  43.802454  68.817901 187.043727
## AJGD_11119689 371.78956  46.4856410 54.587319 123.442734 874.985366 272.193179
## AMP_11228639   61.64142   7.9180100  5.658281 133.367049  94.294497  20.336480
##                     X307       X308       X309       X310        X311      X312
## ACR_11231843    24.18499   4.473226   2.649457  27.801453   4.2577475  13.11485
## ADAO_11159808  110.77871  24.824655  40.491695  26.450267  28.8174499 117.66970
## AGG_11236448   100.44518  47.006286 139.818855 127.433481   0.3425516  68.59093
## AHL_11239959   144.61331 274.585219 213.665734   7.945876  17.7810437  81.82055
## AJGD_11119689 1107.80888 243.429501 123.239037 276.139301 808.6988609 740.86028
## AMP_11228639    97.12129  66.474995  46.722698  72.819738  59.8111572  45.83738
##                     X313        X314      X315      X316      X317       X318
## ACR_11231843   80.340543  30.9414819  23.32626  71.70075  47.57655  90.945173
## ADAO_11159808  39.729756  14.7744220  84.15867  10.08191  27.55966   9.833679
## AGG_11236448   22.449675 102.0842652 275.07424  78.53754  37.65235  48.110982
## AHL_11239959  186.459352   5.6321980 100.18736  42.57903   1.94692  43.275164
## AJGD_11119689  89.824216 297.7107049 204.90412 351.52788 152.03528 178.623753
## AMP_11228639    3.731377   0.3142418  95.66031  26.04847  13.48961  65.946607
##                     X319      X320       X321       X322      X323       X324
## ACR_11231843   56.205045  14.07852  59.996110   5.234073  14.58238  23.804173
## ADAO_11159808  69.787965  78.58678  33.916417   4.374651  45.80617  11.389666
## AGG_11236448  220.862364 176.82135  24.815956  25.165631 139.19039   2.202261
## AHL_11239959   54.528927  26.54190  37.707648 277.502678  40.18441  69.493727
## AJGD_11119689   3.730390  68.51892 330.765304 499.236006 485.44468 338.021945
## AMP_11228639    8.157112  10.64790   8.876751  24.767964  19.87097 104.040998
##                    X325      X326       X327      X328        X329       X330
## ACR_11231843   67.37103  19.76578  10.108986  44.80942   0.4314662  87.882562
## ADAO_11159808 137.47895 135.60058  64.826560  32.44564  20.8145411   6.439392
## AGG_11236448   55.20123 170.47665  20.455483 178.58071 159.2572140  55.610500
## AHL_11239959  208.67442 141.40959 152.585528  19.73715   4.5394263  79.177857
## AJGD_11119689  62.29809 339.71690   2.727953 481.45007  97.3236436 375.512934
## AMP_11228639  112.38317  25.45809  43.797483  17.98346  63.7051146 138.293797
##                    X331      X332       X333      X334      X335       X336
## ACR_11231843   16.18456  11.76147  22.427247  43.67267  48.39041  33.036283
## ADAO_11159808  47.18262  85.92498  13.648709  96.17456  32.88860   8.504681
## AGG_11236448   78.39920  26.68607   2.392703  76.18619 245.14011  58.998472
## AHL_11239959  108.99752  57.88870 174.788483 145.52832  37.69597 125.125240
## AJGD_11119689 283.42605 398.29423 358.027899 656.51214 117.22896   7.411211
## AMP_11228639   88.24497  85.74665  19.915753  37.40505  18.55393  27.084072
##                     X337       X338      X339     X340       X341      X342
## ACR_11231843   21.888520  18.316180  12.71874 83.05418   3.663976 110.40502
## ADAO_11159808   9.335965   6.623210  25.48751 96.25737  69.779461   8.80107
## AGG_11236448  142.155138   8.761375  79.86648 98.99652 328.377704 101.01476
## AHL_11239959   31.860271 228.695673  45.84267 41.28917   3.617375 107.36383
## AJGD_11119689 342.796759  51.722356 219.81387 37.52951 168.992870 488.87355
## AMP_11228639  130.119225  42.936500  27.04814 98.96809  18.160248  23.60377
##                     X343     X344      X345        X346       X347       X348
## ACR_11231843   16.295266 32.72415  17.13538  9.19236758  48.088190  83.458860
## ADAO_11159808   2.260767 10.18050  23.39041 36.71574871 105.205348  18.074168
## AGG_11236448   29.243827 89.11253  13.59382 68.54142938  87.994157 125.289677
## AHL_11239959    2.821220 43.86895  38.60649  0.07107527   8.740787  97.574032
## AJGD_11119689 289.537274 91.99522 419.42506 52.01094497  17.069693 488.817218
## AMP_11228639    5.902560 34.66156  41.70199 20.35818452   7.135223   5.080574
##                     X349      X350      X351      X352       X353       X354
## ACR_11231843    3.954442  13.32374 35.683155 19.314187  32.106229  50.732030
## ADAO_11159808  51.568126 154.49904  1.201206  1.037543  20.856590   5.612337
## AGG_11236448  150.820895  72.53790 66.829812 14.957264   5.539851 104.319852
## AHL_11239959   25.338729  35.78403  5.447354 85.197355 252.798229 314.904281
## AJGD_11119689 186.138506 293.40227 96.733057 23.704723 648.571418   5.075168
## AMP_11228639   40.644134  27.92608  9.675836  2.386868 116.830721  44.099029
##                     X355      X356       X357        X358       X359       X360
## ACR_11231843   17.892616  41.28745   7.190733   5.8304104  41.478701  22.913039
## ADAO_11159808  25.139582  15.08121   6.315504   0.3793686  67.800729   1.642036
## AGG_11236448   40.076611  24.12978  14.640944  29.1616442 100.143411  31.107951
## AHL_11239959  104.820918  34.38167  10.476464  52.2497851 135.810815 117.801275
## AJGD_11119689 587.259468 473.45879 567.828200 154.4196451  46.270791 463.647626
## AMP_11228639    6.883874  29.07419 125.420924   0.9831770   7.714643  52.370693
##                     X361      X362       X363      X364       X365       X366
## ACR_11231843   95.685037 55.164721   2.253739 57.609520  13.632755   1.457037
## ADAO_11159808   8.385626 19.518276  46.366626 62.786694 148.567132  51.578888
## AGG_11236448   29.621578  0.366469  40.439735 35.122426   8.885634  14.310926
## AHL_11239959   19.089222 81.433967   9.801134 41.734388  61.152809  67.267496
## AJGD_11119689 412.657057 53.604567  33.056229  6.821248 103.978128 116.484169
## AMP_11228639    2.229305 12.658934 112.011633 18.779024   8.087187  18.272481
##                    X367      X368       X369       X370       X371      X372
## ACR_11231843  40.739244  17.96603  24.548548  13.463209   6.443771  52.93993
## ADAO_11159808 22.563617  15.07311   9.448053  29.363498   9.081545  23.66586
## AGG_11236448  27.790489   4.70232 176.780377 115.812240  37.916712  16.81850
## AHL_11239959  91.652274  56.31386  67.965190  48.584645  22.535853  60.84074
## AJGD_11119689  7.737438 279.41383 233.624164   7.219063 267.589323 132.96953
## AMP_11228639  22.472939  11.36108   3.557244  36.921134  39.827388  54.13716
##                     X373       X374      X375      X376      X377       X378
## ACR_11231843   49.676277   5.641364  46.11750  9.153074  10.49148  21.856224
## ADAO_11159808  34.462758 181.632461  80.21512 57.532356  43.14911   4.493098
## AGG_11236448    9.118927  10.440550  39.79872  6.111265 135.59287  65.210129
## AHL_11239959  334.385808 222.688753  39.28932 10.192787 197.00301  24.440151
## AJGD_11119689  19.737670 121.741480 211.80330 89.732031 292.11711 415.326869
## AMP_11228639    3.211792  54.266953  88.02787  4.271698  31.32815  98.605797
##                      X379      X380      X381       X382      X383       X384
## ACR_11231843    0.4032183 32.366806  4.537283  32.501481  15.25671  34.347901
## ADAO_11159808  17.8035188 29.661011 10.772769   2.536657  23.16254  53.783266
## AGG_11236448  171.5105109  3.143752 70.907509 227.299673 132.95188  38.082128
## AHL_11239959   98.4440230 23.826309 49.229495  62.303999  10.43516  47.539190
## AJGD_11119689 137.3527313 57.163021 48.727410 715.352654 277.44958 232.809748
## AMP_11228639   91.3998161  8.655655 28.503759  14.966507  23.16132   8.718949
##                    X385       X386       X387      X388      X389      X390
## ACR_11231843  38.736026   3.039466  15.829168  12.04144  11.25694   2.49266
## ADAO_11159808  8.566305  26.694952   2.788876  22.52548  39.91460  19.05122
## AGG_11236448  40.513373  51.430609 136.823679  73.10300 359.23883  43.09692
## AHL_11239959  60.008177  16.024650  49.176827 133.04377  50.62884 318.84514
## AJGD_11119689 79.012414 350.071917 222.105037 181.73419  16.83085 303.02044
## AMP_11228639  20.990693  25.795104 132.746096  25.33968  15.37677  22.50900
##                    X391      X392      X393      X394      X395        X396
## ACR_11231843   47.30072 44.742466  12.29814 75.785426  15.96699  27.1083640
## ADAO_11159808  49.46168  7.997823  60.55102 41.161244  30.13339   0.2616995
## AGG_11236448   17.81332 61.163396  22.00824 16.030331  90.02268  85.2159661
## AHL_11239959   36.33479 37.717913 108.72114 31.216102  99.32177  84.2191571
## AJGD_11119689 316.98400 61.223728  40.63928  4.103047 535.83938 436.6038876
## AMP_11228639   28.39629 42.714160  10.09216 90.568972  85.35638  11.9370369
##                    X397        X398      X399       X400       X401       X402
## ACR_11231843   45.95646   0.1210798 40.776904  22.383541   2.766273  43.239353
## ADAO_11159808  22.03423  17.9781397  5.267311   1.781083  30.538443  42.411914
## AGG_11236448   44.33659  41.2570209 40.349971  11.659568  52.620328  54.495582
## AHL_11239959   44.76072  33.3372597 26.706942  30.653957   2.112994  42.865180
## AJGD_11119689 336.68747 544.1652639 14.026822 347.342580 162.041963 538.640098
## AMP_11228639   27.89045  41.0011328 44.213850  12.061124  69.523363   8.805054
##                     X403      X404       X405       X406      X407      X408
## ACR_11231843   13.741907 84.529370 117.250227  13.375122  42.56509  34.28050
## ADAO_11159808   9.076199 40.126273  29.157689  97.221461  21.91342  34.18008
## AGG_11236448   44.830644 61.830382 100.366014   8.326845  86.93767  59.60235
## AHL_11239959   91.793861 66.893313  23.298347   4.215710  40.84039  27.42377
## AJGD_11119689 457.466282 22.333463   4.725218 256.760241 283.43004 119.09126
## AMP_11228639   20.486618  4.577062  44.024013  23.415008  58.19166  51.67915
##                     X409      X410       X411       X412       X413      X414
## ACR_11231843    3.639098 21.704368   0.192723  64.316913  40.330819  23.68798
## ADAO_11159808   8.405364  5.502808  11.255454  21.466028  15.964233  28.37875
## AGG_11236448   15.444968  7.849136  27.965611   5.293785  76.802196  12.51821
## AHL_11239959  119.537582 16.328687  48.784038  15.199396   3.107826  24.73594
## AJGD_11119689 709.467437 22.684400 184.051175 313.218699 207.957911 548.57790
## AMP_11228639   11.790435 63.440258  70.809161   8.405446  24.443895 129.71361
##                    X415        X416      X417      X418       X419       X420
## ACR_11231843   40.82167  23.7900347  45.11949  43.50358  22.723639   9.313692
## ADAO_11159808  50.24005   0.8022005  38.26750   8.10573   1.043840   9.889475
## AGG_11236448   48.48196   9.8416125  63.80561  30.89745   2.358648  23.467832
## AHL_11239959   30.18812   2.8722651  10.76408  22.97082  51.281025   2.852812
## AJGD_11119689 343.39759 242.4180358 310.77116 115.87615 140.270056 351.047693
## AMP_11228639  103.70657  27.9670488  14.14361  20.41486  48.662240  17.969358
##                    X421        X422      X423      X424       X425      X426
## ACR_11231843   1.261902   0.2159353  50.72558  11.13419  16.524788  19.21838
## ADAO_11159808 82.896544  73.8020506  35.26160  39.24148  25.660765  18.83864
## AGG_11236448  32.083150  92.0116763  93.78611   8.51574  16.965149 160.07034
## AHL_11239959  49.575698  47.2374400 122.62801  19.53437  10.900321  80.35366
## AJGD_11119689 56.982064 125.1029347 116.17819 280.47515 500.866847  69.95154
## AMP_11228639  17.465273  11.1884816  36.33052  29.72711   9.163052  22.25266
##                    X427     X428      X429       X430      X431      X432
## ACR_11231843   46.67731 16.65716 42.450086  15.496901  17.29504 11.312551
## ADAO_11159808  11.04706 76.41117 78.737583  56.400966  12.47871  7.081923
## AGG_11236448   16.66365 77.90671 28.822138   6.382938  85.66442 37.560970
## AHL_11239959  104.13201 28.04031  7.124077  99.566978  26.11656 12.453738
## AJGD_11119689 177.28188 92.95068  9.012681 185.005304 390.75076 30.257458
## AMP_11228639   22.56451 59.58724 21.441088   8.855096 108.24073 24.596916
##                     X433       X434       X435       X436      X437       X438
## ACR_11231843    6.423861   5.103376   76.85062  33.791074  47.24277  11.550629
## ADAO_11159808  16.240655  32.553304   13.09777   1.082000  66.07276   9.416056
## AGG_11236448  169.461545   1.593565   11.13518  62.070057 108.68741  15.528712
## AHL_11239959    1.954401  27.508108   29.90202 191.247570  50.96500  40.047723
## AJGD_11119689 466.351893 128.532334 1033.09546  70.705233  40.93867 212.422835
## AMP_11228639   32.705333  28.530489   37.58171   7.525454  51.46679  82.671648
##                    X439      X440      X441      X442       X443      X444
## ACR_11231843   20.45810  2.044473  38.11751  24.17440   2.754627  14.83970
## ADAO_11159808  15.54622 17.713935  14.34175  14.94304  63.483565  34.69222
## AGG_11236448   16.25954 24.129652  71.18947  61.40976   1.233862  16.70792
## AHL_11239959   19.19769 19.630410  50.63597  45.89591  56.783553  41.78972
## AJGD_11119689 180.31412 68.118085 454.83126 158.04834 269.832741 247.36795
## AMP_11228639   12.62736 21.278924  16.14847   3.61352  69.298266  16.83437
##                      X445      X446     X447     X448       X449      X450
## ACR_11231843   11.7386256  20.06877 30.63068 48.34034  23.095155  34.76825
## ADAO_11159808   1.8427945  77.84928 19.00848 17.77677  60.824843  21.68477
## AGG_11236448   12.2833741  42.79839 37.38761 56.59146  61.740393  17.08210
## AHL_11239959   13.1560874 118.70570 52.25965 10.92810  91.639242 150.01977
## AJGD_11119689 140.5103623 380.77492 36.76533 73.45558 847.077743 192.62255
## AMP_11228639    0.9535721  32.15501 15.35024 88.76655   6.892712  63.45883
##                    X451      X452       X453        X454       X455      X456
## ACR_11231843   3.765127 21.344978   4.382055   3.2698891   3.518082 27.367185
## ADAO_11159808 19.360370 23.004067  47.709387  34.6111094  72.841930 18.029128
## AGG_11236448  10.535383  5.502814 115.456440   0.5054104  21.200621 72.049143
## AHL_11239959  22.209518 72.000782  59.353560 151.5447884  44.098118 60.903592
## AJGD_11119689 56.414859 95.926016 185.776814 134.6671586 333.583200  7.460378
## AMP_11228639  77.712952 12.077628   2.629013  16.8087723  11.356860  6.894547
##                    X457      X458      X459      X460       X461       X462
## ACR_11231843  13.038922 32.785810  5.580766 24.089625 11.3470921  12.209197
## ADAO_11159808 14.561528 32.577316 13.149922 19.286577 25.3912123  65.508151
## AGG_11236448  73.363762 99.824142 56.525109 17.274241  6.7123029  10.930148
## AHL_11239959   6.395764 60.947743 65.357533 13.389794 18.3347190   9.866878
## AJGD_11119689 19.070149 15.364078 68.087119 59.023463 29.7326854  57.498607
## AMP_11228639   5.599156  7.966483 88.547157  9.948009  0.2207513 107.832025
##                     X463       X464       X465       X466      X467       X468
## ACR_11231843    4.124942   6.827982   5.361808  12.814461  25.56484  38.318821
## ADAO_11159808  27.275495   1.664038   6.619855  26.082063  85.50181   4.853115
## AGG_11236448   95.120345  24.029547  37.855375  23.374974  44.25705  26.732488
## AHL_11239959   29.876886   6.153856  32.738844  70.750631  62.59665   6.557981
## AJGD_11119689 470.777734 143.579219 133.435738 648.487750 246.67728 391.322987
## AMP_11228639   22.569353  20.324252  40.527527   8.577763  12.56300  69.127249
##                     X469      X470      X471       X472       X473        X474
## ACR_11231843   16.532789  32.45485 10.666852   8.063589  12.089071   0.2940308
## ADAO_11159808  28.342357  17.69800  9.368646   8.319161   9.376816  36.5407158
## AGG_11236448    8.557814 132.34965 53.546957 150.030046   6.847152  67.1188863
## AHL_11239959  105.841453  34.36436 11.436903  25.907073  15.661661  91.9498010
## AJGD_11119689  74.135001  85.20711 30.730083 449.690930 150.600359 110.6486653
## AMP_11228639    3.021287  28.40044 33.414244   2.055479  63.697277   5.7611365
##                     X475       X476      X477       X478       X479        X480
## ACR_11231843    7.829537   3.590331  1.761903  28.144237  52.684300  22.4052473
## ADAO_11159808   9.074494   1.693016 47.775288  63.874484  95.862826   0.1187122
## AGG_11236448   14.751612  62.377294 22.337921  95.888412   9.063011   5.3631811
## AHL_11239959   38.359346  32.298068 25.367348 132.067756  19.903425 288.6416172
## AJGD_11119689 727.449872 458.129634  2.086416   4.638376 242.900491  34.7156950
## AMP_11228639    4.687741  24.896320 27.021008  12.723358  19.118679   7.5705866
##               DDclust_PER_FC
## ACR_11231843               1
## ADAO_11159808              1
## AGG_11236448               1
## AHL_11239959               1
## AJGD_11119689              1
## AMP_11228639               1
## Mean by groups
rp_tbl_PER <- aggregate(plotting_PER, by = list(plotting_PER$DDclust_PER_FC), mean)
row.names(rp_tbl_PER) <- paste0("Group",rp_tbl_PER$DDclust_PER_FC)
rp_tbl_PER <- rp_tbl_PER %>%
  select(starts_with('X'))
rp_tbl_PER <- data.frame(t(rp_tbl_PER))
head(rp_tbl_PER)
##      Group1    Group2
## X1 4779.459 27881.160
## X2 4698.322 15936.959
## X3 2683.336  3897.343
## X4 2617.546  2794.041
## X5 1807.812  1869.057
## X6 1216.101  2047.405
# Create plotting data-frame
PER_values_by_group <- data.frame("value_PER" = c(rp_tbl_PER$Group1,rp_tbl_PER$Group2), 
                                  "cluster" = c(rep("Group1", times = length(rp_tbl_PER$Group1)),
                                              rep("Group2", times = length(rp_tbl_PER$Group2))),
                                  "index" = c(c(1:length(rp_tbl_PER$Group1)),c(1:length(rp_tbl_PER$Group2))))

p <- ggplot(PER_values_by_group, aes(x = index, y = value_PER, group = cluster)) +
  geom_line(aes(color=cluster)) +
  scale_color_brewer(palette="Paired") + theme_minimal()

p

Adjusted Rand Index

rand_index_table_FC = data.frame(matrix(ncol = 3 , nrow = 3))
colnames(rand_index_table_FC) <- c("DDclust_ACF_FC", "DDclust_EUCL_FC", "DDclust_PER_FC")
rownames(rand_index_table_FC) <- c("DDclust_ACF_FC", "DDclust_EUCL_FC", "DDclust_PER_FC")
cluster_study_FC <- list(DDclust_ACF_FC, DDclust_EUCL_FC, DDclust_PER_FC)
for (i in c(1:length(cluster_study_FC))) {
  for (j in c(1:length(cluster_study_FC))){
  rand_index_table_FC[i,j] <- adjustedRandIndex(cluster_study_FC[[i]], cluster_study_FC[[j]])
}}
head(rand_index_table_FC)
##                 DDclust_ACF_FC DDclust_EUCL_FC DDclust_PER_FC
## DDclust_ACF_FC     1.000000000    -0.005889219    0.269623205
## DDclust_EUCL_FC   -0.005889219     1.000000000   -0.006108376
## DDclust_PER_FC     0.269623205    -0.006108376    1.000000000
write.csv(cluster_study_FC, "../../data/clusters/cluster_study_FC.csv")