#1. 
setwd("C:/Users/James/OneDrive/Desktop/R")
getwd()
## [1] "C:/Users/James/OneDrive/Desktop/R"
#2.

James = read.csv("data_inclass_activity1.csv")
#3.
write.csv(James,file = "New File")
#4.
View(James)
#5.
str(James)
## 'data.frame':    168 obs. of  15 variables:
##  $ Grade           : chr  "3" "4" "5" "6" ...
##  $ Year            : int  2006 2006 2006 2006 2006 2006 2006 2007 2007 2007 ...
##  $ Category        : chr  "Asian" "Asian" "Asian" "Asian" ...
##  $ Number.Tested   : int  9768 9973 9852 9606 9433 9593 58225 9750 9881 10111 ...
##  $ Mean.Scale.Score: int  700 699 691 682 671 675 687 706 704 700 ...
##  $ Level.1..       : int  243 294 369 452 521 671 2550 156 209 211 ...
##  $ Level.1...1     : num  2.5 2.9 3.7 4.7 5.5 7 4.4 1.6 2.1 2.1 ...
##  $ Level.2..       : int  543 600 907 1176 1698 1847 6771 402 564 626 ...
##  $ Level.2...1     : num  5.6 6 9.2 12.2 18 19.3 11.6 4.1 5.7 6.2 ...
##  $ Level.3..       : int  4128 4245 4379 4646 4690 4403 26491 3886 3968 4257 ...
##  $ Level.3...1     : num  42.3 42.6 44.4 48.4 49.7 45.9 45.5 39.9 40.2 42.1 ...
##  $ Level.4..       : int  4854 4834 4197 3332 2524 2672 22413 5306 5140 5017 ...
##  $ Level.4...1     : num  49.7 48.5 42.6 34.7 26.8 27.9 38.5 54.4 52 49.6 ...
##  $ Level.3.4..     : int  8982 9079 8576 7978 7214 7075 48904 9192 9108 9274 ...
##  $ Level.3.4...1   : num  92 91 87 83.1 76.5 73.8 84 94.3 92.2 91.7 ...
#6.
#a.
ncol(James)
## [1] 15
#b.
nrow(James)
## [1] 168
#c.
colnames(James)
##  [1] "Grade"            "Year"             "Category"         "Number.Tested"   
##  [5] "Mean.Scale.Score" "Level.1.."        "Level.1...1"      "Level.2.."       
##  [9] "Level.2...1"      "Level.3.."        "Level.3...1"      "Level.4.."       
## [13] "Level.4...1"      "Level.3.4.."      "Level.3.4...1"
rownames(James)
##   [1] "1"   "2"   "3"   "4"   "5"   "6"   "7"   "8"   "9"   "10"  "11"  "12" 
##  [13] "13"  "14"  "15"  "16"  "17"  "18"  "19"  "20"  "21"  "22"  "23"  "24" 
##  [25] "25"  "26"  "27"  "28"  "29"  "30"  "31"  "32"  "33"  "34"  "35"  "36" 
##  [37] "37"  "38"  "39"  "40"  "41"  "42"  "43"  "44"  "45"  "46"  "47"  "48" 
##  [49] "49"  "50"  "51"  "52"  "53"  "54"  "55"  "56"  "57"  "58"  "59"  "60" 
##  [61] "61"  "62"  "63"  "64"  "65"  "66"  "67"  "68"  "69"  "70"  "71"  "72" 
##  [73] "73"  "74"  "75"  "76"  "77"  "78"  "79"  "80"  "81"  "82"  "83"  "84" 
##  [85] "85"  "86"  "87"  "88"  "89"  "90"  "91"  "92"  "93"  "94"  "95"  "96" 
##  [97] "97"  "98"  "99"  "100" "101" "102" "103" "104" "105" "106" "107" "108"
## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
## [121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"
## [133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"
## [145] "145" "146" "147" "148" "149" "150" "151" "152" "153" "154" "155" "156"
## [157] "157" "158" "159" "160" "161" "162" "163" "164" "165" "166" "167" "168"
#d.
class(James)
## [1] "data.frame"
#e.
anyNA(James)
## [1] FALSE
#f.
str(James$Grade)
##  chr [1:168] "3" "4" "5" "6" "7" "8" "All Grades" "3" "4" "5" "6" "7" "8" ...
str(James$Year)
##  int [1:168] 2006 2006 2006 2006 2006 2006 2006 2007 2007 2007 ...
str(James$Category)
##  chr [1:168] "Asian" "Asian" "Asian" "Asian" "Asian" "Asian" "Asian" ...
str(James$Number.Tested)
##  int [1:168] 9768 9973 9852 9606 9433 9593 58225 9750 9881 10111 ...
str(James$Mean.Scale.Score)
##  int [1:168] 700 699 691 682 671 675 687 706 704 700 ...
#7.
#a.
colnames(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
#b.
rownames(iris)
##   [1] "1"   "2"   "3"   "4"   "5"   "6"   "7"   "8"   "9"   "10"  "11"  "12" 
##  [13] "13"  "14"  "15"  "16"  "17"  "18"  "19"  "20"  "21"  "22"  "23"  "24" 
##  [25] "25"  "26"  "27"  "28"  "29"  "30"  "31"  "32"  "33"  "34"  "35"  "36" 
##  [37] "37"  "38"  "39"  "40"  "41"  "42"  "43"  "44"  "45"  "46"  "47"  "48" 
##  [49] "49"  "50"  "51"  "52"  "53"  "54"  "55"  "56"  "57"  "58"  "59"  "60" 
##  [61] "61"  "62"  "63"  "64"  "65"  "66"  "67"  "68"  "69"  "70"  "71"  "72" 
##  [73] "73"  "74"  "75"  "76"  "77"  "78"  "79"  "80"  "81"  "82"  "83"  "84" 
##  [85] "85"  "86"  "87"  "88"  "89"  "90"  "91"  "92"  "93"  "94"  "95"  "96" 
##  [97] "97"  "98"  "99"  "100" "101" "102" "103" "104" "105" "106" "107" "108"
## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
## [121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"
## [133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"
## [145] "145" "146" "147" "148" "149" "150"
#c.
class(iris)
## [1] "data.frame"
#8.
View(iris)
s <- iris
colMeans(subset(s, Species=="virginica", select=-Species), na.rm=TRUE)
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##        6.588        2.974        5.552        2.026
colMeans(subset(s, Species=="versicolor", select=-Species), na.rm=TRUE)
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##        5.936        2.770        4.260        1.326
colMeans(subset(s, Species=="setosa", select=-Species), na.rm=TRUE)
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##        5.006        3.428        1.462        0.246
#9.
f <- function(a,b,c) {q <- a+b; c*q}

f(3,5,23)
## [1] 184
#10.
#a.
area <- function(b,h) {.5*b*h}
#b.
area(5,60)
## [1] 150
#c.
area(2,10)
## [1] 10