ggplot(Ppm, aes(Cu_ppm,Ag_ppm)) +geom_point(color="black") + geom_smooth(color="yellow2") + labs(title="Concentraciones de Cu y Ag", x="Cobre", y="Plata") + theme(plot.title = element_text(hjust=0.5)) + theme(panel.background = element_rect(fill = "whitesmoke")) + theme(plot.title = element_text(size = 14, face = 'bold', color = 'black'))
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
modelo <- lm(Ppm$Cu_ppm ~ Ppm$Ag_ppm)
pendiente <- coef(modelo)[2]
intercepto <- coef(modelo)[1]
cat("Ecuación de correlación:", "y =", round(pendiente, 2), "x +", round(intercepto, 2), "\n")
## Ecuación de correlación: y = 999.28 x + 149.94
correlacion <- cor(Ppm$Cu_ppm, Ppm$Ag_ppm)
cat("El factor de correlación (r) es:", round(correlacion, 3), "\n")
## El factor de correlación (r) es: 0.923
ggplot(Ppm, aes(x=Ni_ppm))+geom_histogram(fill="darkslategray3", color="darkslategray4", size=0.6)+labs(title="Histograma de las concentraciones de Niquel", x="Niquel en ppm", y="Frecuencia")+theme_minimal()+theme(plot.title = element_text(hjust=0.5, face = "bold"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
summary(Ppm$Ni_ppm)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.30 22.50 24.60 27.52 27.20 79.70
Ag <- data.frame(Ppm$Ag_ppm)
boxplot(Ag, horizontal= TRUE, main= "Diagrama de caja y extensión concentración de Ag", col="blue")
summary(Ag)
## Ppm.Ag_ppm
## Min. : 0.050
## 1st Qu.: 0.100
## Median : 0.100
## Mean : 1.127
## 3rd Qu.: 0.200
## Max. :73.900
boxplot(Ag, horizontal= TRUE, ylim = c(0.03, 0.4), col = "lightblue", main= "Diagrama de caja y extensión concentración de Ag")
IQR(Ppm$Ag_ppm)
## [1] 0.1
MediasPpm=data.frame(lapply(Ppm, mean, na.rm= TRUE))
MediasPpm
## Mo_ppm Cu_ppm Pb_ppm Zn_ppm Ag_ppm Ni_ppm Co_ppm Mn_ppm
## 1 0.9477064 1275.725 18.76487 100.3589 1.126606 27.51867 16.63152 852.1716
## Fe_ppm As_ppm U_ppm Th_ppm Sr_ppm Cd_ppm Sb_ppm Bi_ppm
## 1 42117.32 2.185105 1.575121 6.768268 296.6541 4.803562 0.1256341 0.09481921
## V_ppm CA_ppm P_ppm La_ppm Cr_ppm Mg_ppm Ba_ppm Ti_ppm
## 1 106.9514 15640.31 1742.477 38.24517 36.90988 14326.98 701.4798 5209.779
## Al_ppm Na_ppm K_ppm W_ppm Zr_ppm Ce_ppm Sn_ppm Y_ppm
## 1 82460.98 32421.6 21885.91 0.8814895 248.7444 69.46627 1.782515 16.45666
## Nb_ppm Ta_ppm Be_ppm Sc_ppm Li_ppm S_ppm Rb_ppm Hf_ppm
## 1 19.92218 1.340799 1.814355 10.50351 35.62024 1179.169 72.36962 5.736481
## In_ppm Ge_ppm Re_ppm Se_ppm Te_ppm Tl_ppm
## 1 0.05215326 0.1147113 0.01409941 1.007016 0.5003778 0.6090664
Nombres=names(MediasPpm)
MediasPpm= rbind(Nombres,MediasPpm)
MediasPpm= t(MediasPpm)
nombrestitulos <- c("Elementos", "Concentración")
colnames(MediasPpm) <- nombrestitulos
MediasPpm <- as.data.frame(MediasPpm)
MediasPpm$Concentración <- as.numeric(MediasPpm$Concentración)
MediasPpm <- MediasPpm[order(MediasPpm$Concentración),]
MediasPpm$Elementos <- factor(MediasPpm$Elementos, levels = MediasPpm$Elementos)
ggplot(MediasPpm, aes(x = Elementos, y = Concentración)) +
geom_bar(stat = "identity", fill = "darkslategray3", alpha = 0.8, color = "darkslategray", size = 0.2) +
labs(title = "Concentración vs. Elementos", x = "Elementos", y = "Concentración en ppm") + theme(axis.text.x = element_text(angle = 90, hjust = 1), plot.title = element_text(size = 14, face = 'bold', color = 'black'))+theme(plot.title = element_text(hjust=0.5))