##############################################################################################################
##############################################################################################################
######################### Vocabulary Wave II ####################
######################### ####################
######################### Created by: Shally Novita ####################
######################### on 21.08.2023 ####################
######################### #####################
##############################################################################################################
##############################################################################################################
###Load data
setwd('C:/Users/shall/OneDrive/Dokumente/Project/vocabulary')
file <- 'Data Nasa Batch II.2.csv'
df1 <- read.csv(file, header=TRUE, sep = ";", stringsAsFactors=FALSE)
##Delete No Participation Wave 2
df2=df1[df1$Wave2!= 0, ]
#Judgment Literacy and Numeracy
df2$JN <- df2$E_Num1_OII + df2$E_Num2_OII
df2$JL <- df2$E_Lit3_OII + df2$E_Lit4_OII
##Descriptive
library(dplyr)
## Warning: Paket 'dplyr' wurde unter R Version 4.2.3 erstellt
##
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:stats':
##
## filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
## intersect, setdiff, setequal, union
library(Hmisc)
## Warning: Paket 'Hmisc' wurde unter R Version 4.2.3 erstellt
##
## Attache Paket: 'Hmisc'
## Die folgenden Objekte sind maskiert von 'package:dplyr':
##
## src, summarize
## Die folgenden Objekte sind maskiert von 'package:base':
##
## format.pval, units
describe(df2$Wave2)
## df2$Wave2
## n missing distinct Info Mean Gmd
## 97 1 1 0 1 0
##
## Value 1
## Frequency 97
## Proportion 1
describe(df2$TotEII)
## df2$TotEII
## n missing distinct Info Mean Gmd .05 .10
## 95 3 34 0.997 17.59 11.56 0.0 0.0
## .25 .50 .75 .90 .95
## 11.5 18.0 24.0 31.6 34.6
##
## lowest : 0 6 7 8 9, highest: 34 36 38 39 43
describe(df2$TotPII)
## df2$TotPII
## n missing distinct Info Mean Gmd .05 .10
## 97 1 67 1 103 42.59 43.8 50.8
## .25 .50 .75 .90 .95
## 79.0 102.0 126.0 156.2 161.4
##
## lowest : 0 30 38 43 44, highest: 160 161 163 168 170
describe(df2$DifP)
## df2$DifP
## n missing distinct Info Mean Gmd .05 .10
## 97 1 63 0.999 13.55 40.73 -44.2 -30.4
## .25 .50 .75 .90 .95
## -4.0 12.0 34.0 64.2 69.2
##
## lowest : -107 -101 -60 -57 -53, highest: 74 77 89 95 102
describe(df2$DifE)
## df2$DifE
## n missing distinct Info Mean Gmd .05 .10
## 97 1 37 0.998 -0.07216 11.77 -19.0 -13.4
## .25 .50 .75 .90 .95
## -6.0 0.0 8.0 12.0 15.2
##
## lowest : -30 -23 -19 -18 -15, highest: 15 16 17 21 22
describe(df2$HLE1)
## df2$HLE1
## n missing distinct Info Mean Gmd .05 .10
## 97 1 10 0.711 10.77 1.92 6.0 7.6
## .25 .50 .75 .90 .95
## 10.0 12.0 12.0 12.0 12.0
##
## Value 3.00 3.99 4.98 5.97 6.96 7.95 8.94 9.93 10.92 12.00
## Frequency 1 1 2 4 2 3 9 4 7 64
## Proportion 0.010 0.010 0.021 0.041 0.021 0.031 0.093 0.041 0.072 0.660
##
## For the frequency table, variable is rounded to the nearest 0.09
describe(df2$HLE2)
## df2$HLE2
## n missing distinct Info Mean Gmd .05 .10
## 97 1 18 0.993 15 4.573 8.8 10.0
## .25 .50 .75 .90 .95
## 12.0 15.0 17.0 21.0 21.2
##
## Value 5.00 6.98 7.88 8.96 9.86 10.94 11.84 12.92 14.00 14.90 15.98
## Frequency 1 2 2 4 3 9 5 7 10 12 8
## Proportion 0.010 0.021 0.021 0.041 0.031 0.093 0.052 0.072 0.103 0.124 0.082
##
## Value 16.88 17.96 18.86 19.94 20.84 21.92 23.00
## Frequency 10 5 3 5 6 2 3
## Proportion 0.103 0.052 0.031 0.052 0.062 0.021 0.031
##
## For the frequency table, variable is rounded to the nearest 0.18
describe(df2$HNE1)
## df2$HNE1
## n missing distinct Info Mean Gmd .05 .10
## 97 1 18 0.877 20.02 5.435 9 12
## .25 .50 .75 .90 .95
## 18 23 24 24 24
##
## Value 0.00 7.92 8.88 9.84 10.80 12.00 12.96 13.92 14.88 15.84 16.80
## Frequency 1 3 3 1 1 3 4 2 2 1 1
## Proportion 0.010 0.031 0.031 0.010 0.010 0.031 0.041 0.021 0.021 0.010 0.010
##
## Value 18.00 18.96 19.92 20.88 21.84 22.80 24.00
## Frequency 10 4 2 3 4 4 48
## Proportion 0.103 0.041 0.021 0.031 0.041 0.041 0.495
##
## For the frequency table, variable is rounded to the nearest 0.24
describe(df2$HNE2)
## df2$HNE2
## n missing distinct Info Mean Gmd .05 .10
## 97 1 20 0.996 14.33 5.83 7 8
## .25 .50 .75 .90 .95
## 11 14 18 21 22
##
## Value 0 5 6 7 8 9 10 11 12 13 14
## Frequency 1 1 2 5 5 7 2 5 6 9 7
## Proportion 0.010 0.010 0.021 0.052 0.052 0.072 0.021 0.052 0.062 0.093 0.072
##
## Value 15 16 17 18 19 20 21 22 25
## Frequency 9 6 6 4 5 5 3 5 4
## Proportion 0.093 0.062 0.062 0.041 0.052 0.052 0.031 0.052 0.041
##
## For the frequency table, variable is rounded to the nearest 0.25
describe(df2$B_Ind_OII)
## df2$B_Ind_OII
## n missing distinct Info Mean Gmd .05 .10
## 45 53 13 0.961 59.64 30.54 10 20
## .25 .50 .75 .90 .95
## 50 60 80 90 94
##
## Value 0 10 20 30 40 50 60 70 80 90 95
## Frequency 2 2 2 3 2 9 3 2 14 3 1
## Proportion 0.044 0.044 0.044 0.067 0.044 0.200 0.067 0.044 0.311 0.067 0.022
##
## Value 99 100
## Frequency 1 1
## Proportion 0.022 0.022
##
## For the frequency table, variable is rounded to the nearest 1
describe(df2$B_Sun_OII)
## df2$B_Sun_OII
## n missing distinct Info Mean Gmd .05 .10
## 46 52 15 0.979 41.07 34.45 2.0 5.0
## .25 .50 .75 .90 .95
## 18.5 45.0 57.5 85.0 97.5
##
## Value 0 1 5 10 15 18 20 30 40 50 60
## Frequency 2 1 3 4 1 1 8 2 1 11 1
## Proportion 0.043 0.022 0.065 0.087 0.022 0.022 0.174 0.043 0.022 0.239 0.022
##
## Value 70 80 90 100
## Frequency 3 3 2 3
## Proportion 0.065 0.065 0.043 0.065
##
## For the frequency table, variable is rounded to the nearest 1
describe(df2$JN)
## df2$JN
## n missing distinct Info Mean Gmd .05 .10
## 46 52 20 0.993 36.33 12.68 14.00 22.50
## .25 .50 .75 .90 .95
## 32.25 39.00 45.00 49.00 49.75
##
## Value 7.00 12.59 13.88 21.62 22.91 23.77 27.64 31.94 32.80 33.66 37.96
## Frequency 1 1 2 1 2 3 1 1 7 3 1
## Proportion 0.022 0.022 0.043 0.022 0.043 0.065 0.022 0.022 0.152 0.065 0.022
##
## Value 39.68 42.69 43.98 44.84 45.70 46.99 47.85 48.71 50.00
## Frequency 1 5 4 3 1 1 2 3 3
## Proportion 0.022 0.109 0.087 0.065 0.022 0.022 0.043 0.065 0.065
##
## For the frequency table, variable is rounded to the nearest 0.43
describe(df2$JL)
## df2$JL
## n missing distinct Info Mean Gmd .05 .10
## 47 51 25 0.994 169.8 67.98 33.3 53.6
## .25 .50 .75 .90 .95
## 138.0 203.0 205.0 230.4 236.8
##
## lowest : 15 23 33 34 53, highest: 228 234 238 240 242
##Internal Consistency
library(ltm)
## Warning: Paket 'ltm' wurde unter R Version 4.2.3 erstellt
## Lade nötiges Paket: MASS
##
## Attache Paket: 'MASS'
## Das folgende Objekt ist maskiert 'package:dplyr':
##
## select
## Lade nötiges Paket: msm
## Lade nötiges Paket: polycor
library(MASS)
PPVTII <- dplyr::select(df2, P1II:P240II)
cronbach.alpha(PPVTII, na.rm=T)
##
## Cronbach's alpha for the 'PPVTII' data-set
##
## Items: 240
## Sample units: 98
## alpha: 0.978
ENII <- dplyr::select(df2, E1II: E45II)
cronbach.alpha(ENII, na.rm=T)
##
## Cronbach's alpha for the 'ENII' data-set
##
## Items: 45
## Sample units: 98
## alpha: 0.852
JN <- dplyr::select(df2, E_Num1_OII, E_Num2_OII )
cronbach.alpha(JN, na.rm=T)
##
## Cronbach's alpha for the 'JN' data-set
##
## Items: 2
## Sample units: 98
## alpha: 0.084
JL <- dplyr::select(df2, E_Lit3_OII, E_Lit4_OII)
cronbach.alpha(JL, na.rm=T)
##
## Cronbach's alpha for the 'JL' data-set
##
## Items: 2
## Sample units: 98
## alpha: 0.012
###multiple imputation
df2$df2.ID <- df2$ID
summary(df2)
## No. Nama.Sekolah IDSekolah Nama.Guru
## Min. : 2.0 Length:98 Min. : 1.000 Length:98
## 1st Qu.: 39.0 Class :character 1st Qu.: 1.000 Class :character
## Median :106.0 Mode :character Median : 4.000 Mode :character
## Mean :101.1 Mean : 4.711
## 3rd Qu.:153.0 3rd Qu.: 8.000
## Max. :194.0 Max. :10.000
## NA's :1 NA's :1
## IDGuru Jenis.Kelamin Usia Kelas
## Min. : 11.00 Min. :0.000 Length:98 Length:98
## 1st Qu.: 13.00 1st Qu.:0.000 Class :character Class :character
## Median : 42.00 Median :0.000 Mode :character Mode :character
## Mean : 48.77 Mean :0.134
## 3rd Qu.: 81.00 3rd Qu.:0.000
## Max. :101.00 Max. :1.000
## NA's :1 NA's :1
## Rentang.usia.anak..tahun. Lama.Belajar Jumlah.guru.dalam.satu.kelas
## Length:98 Min. :1.000 Min. :1.000
## Class :character 1st Qu.:2.000 1st Qu.:1.000
## Mode :character Median :2.000 Median :1.000
## Mean :2.206 Mean :1.392
## 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :4.000 Max. :3.000
## NA's :1 NA's :1
## Jumlah.anak.dalam.satu.kelas Rasio K1 K2
## Min. :10.00 Length:98 Min. :5.00 Min. :3.000
## 1st Qu.:12.00 Class :character 1st Qu.:6.00 1st Qu.:6.000
## Median :15.00 Mode :character Median :7.00 Median :8.000
## Mean :16.09 Mean :6.67 Mean :6.907
## 3rd Qu.:20.00 3rd Qu.:7.00 3rd Qu.:8.000
## Max. :24.00 Max. :8.00 Max. :8.000
## NA's :1 NA's :1 NA's :1
## K3 K4 K5 K6
## Min. :1.000 Min. :4.000 Min. :1.000 Min. :3.000
## 1st Qu.:2.000 1st Qu.:7.000 1st Qu.:4.000 1st Qu.:7.000
## Median :6.000 Median :7.000 Median :4.000 Median :8.000
## Mean :4.856 Mean :7.175 Mean :4.608 Mean :7.055
## 3rd Qu.:7.000 3rd Qu.:8.000 3rd Qu.:6.000 3rd Qu.:8.000
## Max. :8.000 Max. :8.000 Max. :7.000 Max. :8.000
## NA's :1 NA's :1 NA's :1 NA's :7
## K7 K8 K9 K10
## Min. :6.000 Min. :1.000 Min. :5.000 Min. :3.000
## 1st Qu.:7.000 1st Qu.:4.000 1st Qu.:7.000 1st Qu.:5.000
## Median :8.000 Median :5.000 Median :8.000 Median :6.000
## Mean :7.505 Mean :4.918 Mean :7.402 Mean :5.711
## 3rd Qu.:8.000 3rd Qu.:6.000 3rd Qu.:8.000 3rd Qu.:7.000
## Max. :8.000 Max. :8.000 Max. :8.000 Max. :7.000
## NA's :1 NA's :1 NA's :1 NA's :1
## Apakah.sekolah.menawarkan.kegiatan.tambahan.yang.mendukung.perkembangan.bahasa.anak.
## Min. :1.000
## 1st Qu.:1.000
## Median :1.000
## Mean :1.381
## 3rd Qu.:2.000
## Max. :2.000
## NA's :1
## Nama.Anak Jenkel ID JK
## Length:98 Length:98 Length:98 Min. :0.0000
## Class :character Class :character Class :character 1st Qu.:0.0000
## Mode :character Mode :character Mode :character Median :1.0000
## Mean :0.5312
## 3rd Qu.:1.0000
## Max. :1.0000
## NA's :2
## Usia.1 Umur LevelPPVT E1
## Length:98 Min. :48.0 Min. : 9.00 Min. :0.0000
## Class :character 1st Qu.:56.0 1st Qu.:12.00 1st Qu.:1.0000
## Mode :character Median :60.0 Median :24.00 Median :1.0000
## Mean :59.6 Mean :22.31 Mean :0.8866
## 3rd Qu.:63.0 3rd Qu.:26.00 3rd Qu.:1.0000
## Max. :72.0 Max. :53.00 Max. :1.0000
## NA's :1 NA's :2 NA's :1
## E2 E3 E4 E5
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.000
## Mean :0.8247 Mean :0.5258 Mean :0.7732 Mean :0.701
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :1 NA's :1 NA's :1 NA's :1
## E6 E7 E8 E9
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.000 Median :0.0000
## Mean :0.7216 Mean :0.4688 Mean :0.299 Mean :0.1856
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
## NA's :1 NA's :2 NA's :1 NA's :1
## E10 E11 E12 E13
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :0.2784 Mean :0.7526 Mean :0.7216 Mean :0.4639
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :1 NA's :1 NA's :1 NA's :1
## E14 E15 E16 E17
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.5464 Mean :0.2371 Mean :0.3505 Mean :0.3299
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :1 NA's :1 NA's :1 NA's :1
## E18 E19 E20 E21
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.000
## Median :0.0000 Median :0.000 Median :0.0000 Median :0.000
## Mean :0.4536 Mean :0.299 Mean :0.3711 Mean :0.268
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.000
## NA's :1 NA's :1 NA's :1 NA's :1
## E22 E23 E24 E25
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.2062 Mean :0.07216 Mean :0.1649 Mean :0.06186
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :1 NA's :1 NA's :1 NA's :1
## E26 E27 E28 E29
## Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.000 Median :1.0000 Median :0.0000 Median :0.0000
## Mean :0.299 Mean :0.5833 Mean :0.3854 Mean :0.3333
## 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :1 NA's :2 NA's :2 NA's :2
## E30 E31 E32 E33
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.000
## Median :0.0000 Median :0.0000 Median :0.000 Median :0.000
## Mean :0.3021 Mean :0.3958 Mean :0.375 Mean :0.375
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.000
## NA's :2 NA's :2 NA's :2 NA's :2
## E34 E35 E36 E37
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :1.0000 Median :0.0000
## Mean :0.4062 Mean :0.2604 Mean :0.6875 Mean :0.4062
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :2 NA's :2 NA's :2 NA's :2
## E38 E39 E40 E41
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.3854 Mean :0.4375 Mean :0.3438 Mean :0.4316
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :2 NA's :2 NA's :2 NA's :3
## E42 E43 E44 E45
## Min. :0.0000 Min. :0.0 Min. :0.0000 Length:98
## 1st Qu.:0.0000 1st Qu.:0.0 1st Qu.:0.0000 Class :character
## Median :0.0000 Median :0.0 Median :0.0000 Mode :character
## Mean :0.3053 Mean :0.2 Mean :0.1684
## 3rd Qu.:1.0000 3rd Qu.:0.0 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0 Max. :1.0000
## NA's :3 NA's :3 NA's :3
## TotEI E1II E2II E3II
## Min. : 1.0 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:11.0 1st Qu.:1.0000 1st Qu.:1.000 1st Qu.:0.0000
## Median :15.0 Median :1.0000 Median :1.000 Median :0.0000
## Mean :17.3 Mean :0.9759 Mean :0.881 Mean :0.4819
## 3rd Qu.:23.0 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :40.0 Max. :1.0000 Max. :1.000 Max. :1.0000
## NA's :1 NA's :15 NA's :14 NA's :15
## E4II E5II E6II E7II
## Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.869 Mean :0.7857 Mean :0.5238 Mean :0.5357
## 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :14 NA's :14 NA's :14 NA's :14
## E8II E9II E10II E11II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :1.000
## Mean :0.2143 Mean :0.2619 Mean :0.1905 Mean :0.881
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :14 NA's :14 NA's :14 NA's :14
## E12II E13II E14II E15II
## Min. :0.0000 Length:98 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 Class :character 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Mode :character Median :1.0000 Median :0.0000
## Mean :0.8554 Mean :0.5714 Mean :0.4524
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :15 NA's :14 NA's :14
## E16II E17II E18II E19II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.0000 Median :0.0000 Median :0.0000
## Mean :0.2738 Mean :0.5119 Mean :0.4819 Mean :0.2048
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :14 NA's :14 NA's :15 NA's :15
## E20II E21II E22II E23II
## Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.000 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :0.241 Mean :0.8434 Mean :0.7262 Mean :0.2317
## 3rd Qu.:0.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :15 NA's :15 NA's :14 NA's :16
## E24II E25II E26II E27II
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.000
## Median :0.0000 Median :0.00000 Median :1.0000 Median :1.000
## Mean :0.2439 Mean :0.06098 Mean :0.5122 Mean :0.642
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.000
## NA's :16 NA's :16 NA's :16 NA's :17
## E28II E29II E30II E31II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :1.0000
## Mean :0.3049 Mean :0.2561 Mean :0.3049 Mean :0.6829
## 3rd Qu.:1.0000 3rd Qu.:0.7500 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :16 NA's :16 NA's :16 NA's :16
## E32II E33II E34II E35II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.5122 Mean :0.4878 Mean :0.2073 Mean :0.2073
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :16 NA's :16 NA's :16 NA's :16
## E36II E37II E38II E39II E40II
## Min. :0.0000 Min. :0.0 Min. :0.0 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0 1st Qu.:0.0 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.5 Median :0.5 Median :0.0000 Median :0.0000
## Mean :0.5366 Mean :0.5 Mean :0.5 Mean :0.2805 Mean :0.1463
## 3rd Qu.:1.0000 3rd Qu.:1.0 3rd Qu.:1.0 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0 Max. :1.0 Max. :1.0000 Max. :1.0000
## NA's :16 NA's :16 NA's :16 NA's :16 NA's :16
## E41II E42II E43II E44II
## Length:98 Length:98 Length:98 Length:98
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## E45II TotEII P1 P2 P3
## Length:98 Min. : 0.00 Min. :1 Min. :1 Min. :1
## Class :character 1st Qu.:11.50 1st Qu.:1 1st Qu.:1 1st Qu.:1
## Mode :character Median :18.00 Median :1 Median :1 Median :1
## Mean :17.59 Mean :1 Mean :1 Mean :1
## 3rd Qu.:24.00 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1
## Max. :43.00 Max. :1 Max. :1 Max. :1
## NA's :3 NA's :2 NA's :2 NA's :2
## P4 P5 P6 P7 P8 P9
## Min. :1 Min. :1 Min. :1 Min. :1 Min. :1 Min. :1
## 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1
## Median :1 Median :1 Median :1 Median :1 Median :1 Median :1
## Mean :1 Mean :1 Mean :1 Mean :1 Mean :1 Mean :1
## 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1
## Max. :1 Max. :1 Max. :1 Max. :1 Max. :1 Max. :1
## NA's :2 NA's :2 NA's :2 NA's :2 NA's :2 NA's :2
## P10 P11 P12 P13 P14 P15
## Min. :1 Min. :1 Min. :0.0000 Min. :1 Min. :1 Min. :1
## 1st Qu.:1 1st Qu.:1 1st Qu.:1.0000 1st Qu.:1 1st Qu.:1 1st Qu.:1
## Median :1 Median :1 Median :1.0000 Median :1 Median :1 Median :1
## Mean :1 Mean :1 Mean :0.9896 Mean :1 Mean :1 Mean :1
## 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1
## Max. :1 Max. :1 Max. :1.0000 Max. :1 Max. :1 Max. :1
## NA's :2 NA's :2 NA's :2 NA's :2 NA's :2 NA's :2
## P16 P17 P18 P19 P20
## Min. :0.0000 Min. :1 Min. :1 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1 1st Qu.:1 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1 Median :1 Median :1.0000 Median :1.0000
## Mean :0.9167 Mean :1 Mean :1 Mean :0.9792 Mean :0.9583
## 3rd Qu.:1.0000 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1 Max. :1 Max. :1.0000 Max. :1.0000
## NA's :2 NA's :2 NA's :3 NA's :2 NA's :2
## P21 P22 P23 P24
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.8854 Mean :0.9792 Mean :0.9167 Mean :0.9688
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :2 NA's :2 NA's :2 NA's :2
## P25 P26 P27 P28
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.8632 Mean :0.9688 Mean :0.6667 Mean :0.7895
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :2 NA's :2 NA's :3
## P29 P30 P31 P32
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.9474 Mean :0.9158 Mean :0.8947 Mean :0.9158
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P33 P34 P35 P36
## Min. :0.0000 Min. :0.0000 Min. :1 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1 Median :1.0000
## Mean :0.8211 Mean :0.9579 Mean :1 Mean :0.8421
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P37 P38 P39 P40
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.9474 Mean :0.8526 Mean :0.8526 Mean :0.8421
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P41 P42 P43 P44
## Min. :0.0 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0.0000
## Median :0.0 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.4 Mean :0.9579 Mean :0.9474 Mean :0.7263
## 3rd Qu.:1.0 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P45 P46 P47 P48
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.8947 Mean :0.7263 Mean :0.7895 Mean :0.7789
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P49 P50 P51 P52
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :1.0000
## Mean :0.7579 Mean :0.2632 Mean :0.6105 Mean :0.9263
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P53 P54 P55 P56
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.6316 Mean :0.9263 Mean :0.6316 Mean :0.7684
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P57 P58 P59 P60
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.9263 Mean :0.3895 Mean :0.4947 Mean :0.3368
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P61 P62 P63 P64
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :0.0000 Median :1.0000
## Mean :0.7368 Mean :0.6842 Mean :0.3368 Mean :0.7895
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P65 P66 P67 P68
## Min. :0.0 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.8 Mean :0.8316 Mean :0.5684 Mean :0.7368
## 3rd Qu.:1.0 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P69 P70 P71 P72
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :1.000 Median :0.0000
## Mean :0.4842 Mean :0.2526 Mean :0.766 Mean :0.2947
## 3rd Qu.:1.0000 3rd Qu.:0.5000 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
## NA's :3 NA's :3 NA's :4 NA's :3
## P73 P74 P75 P76
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :0.5158 Mean :0.5895 Mean :0.7684 Mean :0.3158
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P77 P78 P79 P80
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :0.0000
## Mean :0.6632 Mean :0.3158 Mean :0.5158 Mean :0.4316
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P81 P82 P83 P84
## Length:98 Min. :0.0000 Min. :0.0000 Min. :0.0000
## Class :character 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Mode :character Median :0.0000 Median :0.0000 Median :1.0000
## Mean :0.2526 Mean :0.3474 Mean :0.5684
## 3rd Qu.:0.5000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3
## P85 P86 P87 P88
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0
## Mean :0.5684 Mean :0.2842 Mean :0.3158 Mean :0.4
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0
## NA's :3 NA's :3 NA's :3 NA's :3
## P89 P90 P91 P92
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :0.4105 Mean :0.5684 Mean :0.5368 Mean :0.4632
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P93 P94 P95 P96
## Min. :0.0000 Min. :0.0000 Min. :0.0 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0 1st Qu.:0.0000
## Median :0.0000 Median :1.0000 Median :0.0 Median :1.0000
## Mean :0.4632 Mean :0.6421 Mean :0.4 Mean :0.6105
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P97 P98 P99 P100
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.0000 Median :0.0000 Median :0.0000
## Mean :0.3474 Mean :0.6737 Mean :0.3158 Mean :0.3895
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P101 P102 P103 P104
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2632 Mean :0.2632 Mean :0.3474 Mean :0.1789
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P105 P106 P107 P108
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :1.0000
## Mean :0.4632 Mean :0.1895 Mean :0.2947 Mean :0.6632
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P109 P110 P111 P112
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.4526 Mean :0.3053 Mean :0.4526 Mean :0.4421
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P113 P114 P115 P116
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.6316 Mean :0.3263 Mean :0.2947 Mean :0.3684
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P117 P118 P119 P120
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2316 Mean :0.1158 Mean :0.1579 Mean :0.4842
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P121 P122 P123 P124
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.1684 Mean :0.2842 Mean :0.2316 Mean :0.1474
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P125 P126 P127 P128
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.3263 Mean :0.2316 Mean :0.2632 Mean :0.2632
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P129 P130 P131 P132
## Min. :0.0 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2 Mean :0.1895 Mean :0.2105 Mean :0.1474
## 3rd Qu.:0.0 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P133 P134 P135 P136
## Min. :0.0000 Min. :0.0000 Min. :0.0 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0 Median :0.0000
## Mean :0.2737 Mean :0.2421 Mean :0.2 Mean :0.1579
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P137 P138 P139 P140
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2211 Mean :0.1895 Mean :0.1368 Mean :0.1053
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P141 P142 P143 P144
## Min. :0.0 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2 Mean :0.2316 Mean :0.2211 Mean :0.1158
## 3rd Qu.:0.0 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P145 P146 P147 P148
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.00000
## Mean :0.3474 Mean :0.2632 Mean :0.06316 Mean :0.05263
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P149 P150 P151 P152
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.00000
## Mean :0.3053 Mean :0.1263 Mean :0.2526 Mean :0.04211
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.5000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P153 P154 P155 P156
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0
## Mean :0.1053 Mean :0.1158 Mean :0.1684 Mean :0.2
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0
## NA's :3 NA's :3 NA's :3 NA's :3
## P157 P158 P159 P160
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.0000
## Mean :0.1579 Mean :0.1579 Mean :0.08421 Mean :0.2526
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.5000
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P161 P162 P163 P164
## Min. :0.00000 Min. :0.0000 Min. :0.0 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0 1st Qu.:0.0000
## Median :0.00000 Median :0.0000 Median :0.0 Median :0.0000
## Mean :0.08421 Mean :0.1368 Mean :0.2 Mean :0.1684
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.0 3rd Qu.:0.0000
## Max. :1.00000 Max. :1.0000 Max. :1.0 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P165 P166 P167 P168
## Min. :0.0 Min. :0.00000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0 Median :0.00000 Median :0.0000 Median :0.0000
## Mean :0.2 Mean :0.09474 Mean :0.2316 Mean :0.2105
## 3rd Qu.:0.0 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0 Max. :1.00000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P169 P170 P171 P172
## Min. :0.0000 Min. :0.00000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.0000 Median :0.00000 Median :0.00000 Median :0.0000
## Mean :0.1158 Mean :0.07368 Mean :0.05263 Mean :0.1474
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.00000 Max. :1.00000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P173 P174 P175 P176
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.0000 Median :0.00000
## Mean :0.06316 Mean :0.1368 Mean :0.1368 Mean :0.09474
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P177 P178 P179 P180
## Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.00000 Median :0.00000
## Mean :0.05263 Mean :0.1053 Mean :0.05263 Mean :0.05263
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P181 P182 P183 P184
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.1684 Mean :0.1368 Mean :0.1053 Mean :0.1789
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P185 P186 P187 P188
## Min. :0.0000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.1579 Mean :0.05263 Mean :0.05263 Mean :0.06316
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P189 P190 P191 P192
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.0000 Median :0.00000
## Mean :0.05263 Mean :0.1053 Mean :0.1263 Mean :0.07368
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P193 P194 P195 P196
## Min. :0.00000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.04211 Mean :0.06316 Mean :0.1158 Mean :0.06316
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## P197 P198 P199 P200
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.00000
## Mean :0.1368 Mean :0.1158 Mean :0.08421 Mean :0.03158
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.00000
## NA's :3 NA's :3 NA's :3 NA's :3
## TotPI P1II P2II P3II P4II
## Min. : 0.00 Min. :1 Min. :1 Min. :1 Min. :0.0000
## 1st Qu.: 66.00 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1.0000
## Median : 88.00 Median :1 Median :1 Median :1 Median :1.0000
## Mean : 89.47 Mean :1 Mean :1 Mean :1 Mean :0.9895
## 3rd Qu.:108.00 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1.0000
## Max. :200.00 Max. :1 Max. :1 Max. :1 Max. :1.0000
## NA's :1 NA's :3 NA's :3 NA's :3 NA's :3
## P5II P6II P7II P8II P9II
## Min. :0.0000 Min. :0.0000 Min. :1 Min. :0.0000 Min. :1
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1 1st Qu.:1.0000 1st Qu.:1
## Median :1.0000 Median :1.0000 Median :1 Median :1.0000 Median :1
## Mean :0.9895 Mean :0.9895 Mean :1 Mean :0.9895 Mean :1
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1
## Max. :1.0000 Max. :1.0000 Max. :1 Max. :1.0000 Max. :1
## NA's :3 NA's :3 NA's :3 NA's :3 NA's :3
## P10II P11II P12II P13II P14II P15II
## Min. :1 Min. :1 Min. :1 Min. :1 Min. :0.0000 Min. :1
## 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1 1st Qu.:1.0000 1st Qu.:1
## Median :1 Median :1 Median :1 Median :1 Median :1.0000 Median :1
## Mean :1 Mean :1 Mean :1 Mean :1 Mean :0.9895 Mean :1
## 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1
## Max. :1 Max. :1 Max. :1 Max. :1 Max. :1.0000 Max. :1
## NA's :3 NA's :3 NA's :3 NA's :3 NA's :3 NA's :3
## P16II P17II P18II P19II P20II
## Min. :0.0000 Min. :0.0000 Min. :1 Min. :1 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1 1st Qu.:1 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1 Median :1 Median :1.0000
## Mean :0.9158 Mean :0.9895 Mean :1 Mean :1 Mean :0.9895
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1 3rd Qu.:1 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1 Max. :1 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3 NA's :3
## P21II P22II P23II P24II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.9053 Mean :0.9684 Mean :0.9684 Mean :0.9895
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P25II P26II P27II P28II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.9895 Mean :0.9895 Mean :0.8737 Mean :0.8632
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P29II P30II P31II P32II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.9263 Mean :0.9789 Mean :0.9368 Mean :0.9789
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P33II P34II P35II P36II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.8947 Mean :0.9684 Mean :0.9789 Mean :0.9789
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P37II P38II P39II P40II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.9789 Mean :0.9158 Mean :0.9895 Mean :0.9158
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :3
## P41II P42II P43II P44II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.5684 Mean :0.9895 Mean :0.9684 Mean :0.8085
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :3 NA's :3 NA's :3 NA's :4
## P45II P46II P47II P48II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.000
## Mean :0.9787 Mean :0.7979 Mean :0.8511 Mean :0.871
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :4 NA's :4 NA's :4 NA's :5
## P49II P50II P51II P52II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :1.0000
## Mean :0.8511 Mean :0.4839 Mean :0.7634 Mean :0.9892
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :4 NA's :5 NA's :5 NA's :5
## P53II P54II P55II P56II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.000
## Mean :0.7097 Mean :0.9892 Mean :0.7742 Mean :0.871
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :5 NA's :5 NA's :5 NA's :5
## P57II P58II P59II P60II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :0.9677 Mean :0.5484 Mean :0.6022 Mean :0.4409
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P61II P62II P63II P64II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.000
## Median :1.0000 Median :1.0000 Median :0.0000 Median :1.000
## Mean :0.8387 Mean :0.8495 Mean :0.4043 Mean :0.871
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :5 NA's :5 NA's :4 NA's :5
## P65II P66II P67II P68II
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :1.0000 Median :1.000 Median :1.0000 Median :1.0000
## Mean :0.9149 Mean :0.914 Mean :0.7312 Mean :0.8495
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
## NA's :4 NA's :5 NA's :5 NA's :5
## P69II P70II P71II P72II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :0.0000
## Mean :0.5806 Mean :0.3011 Mean :0.9032 Mean :0.3763
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P73II P74II P75II P76II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :0.6882 Mean :0.7527 Mean :0.9032 Mean :0.3441
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :4.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P77II P78II P79II P80II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :1.0000
## Mean :0.7742 Mean :0.3548 Mean :0.6129 Mean :0.6344
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P81II P82II P83II P84II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :1.0000
## Mean :0.7742 Mean :0.3763 Mean :0.4301 Mean :0.6774
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P85II P86II P87II P88II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :1.0000
## Mean :0.7527 Mean :0.4731 Mean :0.5161 Mean :0.5319
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :4
## P89II P90II P91II P92II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.5161 Mean :0.6989 Mean :0.7312 Mean :0.6882
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P93II P94II P95II P96II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :0.0000 Median :1.0000 Median :0.0000 Median :1.0000
## Mean :0.4839 Mean :0.7097 Mean :0.4731 Mean :0.7634
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :5
## P97II P98II P99II P100II
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.000 Median :0.0000 Median :1.0000
## Mean :0.4574 Mean :0.766 Mean :0.3763 Mean :0.5484
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
## NA's :4 NA's :4 NA's :5 NA's :5
## P101II P102II P103II P104II
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.000 Median :0.0000 Median :0.0000
## Mean :0.3118 Mean :0.234 Mean :0.4086 Mean :0.1935
## 3rd Qu.:1.0000 3rd Qu.:0.000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :4 NA's :5 NA's :5
## P105II P106II P107II P108II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :1.0000
## Mean :0.5435 Mean :0.2366 Mean :0.2935 Mean :0.7609
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :6 NA's :5 NA's :6 NA's :6
## P109II P110II P111II P112II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :1.0000 Median :1.0000
## Mean :0.3152 Mean :0.2903 Mean :0.5054 Mean :0.5275
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :6 NA's :5 NA's :5 NA's :7
## P113II P114II P115II P116II
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.000 Median :0.0000 Median :0.0000
## Mean :0.7253 Mean :0.337 Mean :0.3261 Mean :0.4022
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
## NA's :7 NA's :6 NA's :6 NA's :6
## P117II P118II P119II P120II
## Min. :0.0000 Min. :0.00000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.0000 Median :0.00000 Median :0.00000 Median :1.0000
## Mean :0.3118 Mean :0.09677 Mean :0.09677 Mean :0.5652
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.00000 Max. :1.00000 Max. :1.0000
## NA's :5 NA's :5 NA's :5 NA's :6
## P121II P122II P123II P124II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.000
## Mean :0.2473 Mean :0.3478 Mean :0.4674 Mean :0.129
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :5 NA's :6 NA's :6 NA's :5
## P125II P126II P127II P128II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.000
## Mean :0.5269 Mean :0.3226 Mean :0.3043 Mean :0.413
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## NA's :5 NA's :5 NA's :6 NA's :6
## P129II P130II P131II P132II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2043 Mean :0.1848 Mean :0.1613 Mean :0.1613
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :6 NA's :5 NA's :5
## P133II P134II P135II P136II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2935 Mean :0.3978 Mean :0.2151 Mean :0.2151
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :6 NA's :5 NA's :5 NA's :5
## P137II P138II P139II P140II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2473 Mean :0.3478 Mean :0.1087 Mean :0.1075
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :6 NA's :6 NA's :5
## P141II P142II P143II P144II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2151 Mean :0.3956 Mean :0.3407 Mean :0.1538
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :5 NA's :7 NA's :7 NA's :7
## P145II P146II P147II P148II
## Min. :0.0000 Min. :0.000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.0000 Median :0.000 Median :0.00000 Median :0.00000
## Mean :0.4778 Mean :0.427 Mean :0.04396 Mean :0.05495
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.000 Max. :1.00000 Max. :1.00000
## NA's :8 NA's :9 NA's :7 NA's :7
## P149II P150II P151II P152II
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.4556 Mean :0.08889 Mean :0.3889 Mean :0.08889
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :8 NA's :8 NA's :8 NA's :8
## P153II P154II P155II P156II
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.00000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.06593 Mean :0.2747 Mean :0.1778 Mean :0.2088
## 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :7 NA's :7 NA's :8 NA's :7
## P157II P158II P159II P160II
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.0
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.0
## Mean :0.1333 Mean :0.1978 Mean :0.03297 Mean :0.4
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:1.0
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.0
## NA's :8 NA's :7 NA's :7 NA's :8
## P161II P162II P163II P164II
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.1333 Mean :0.2967 Mean :0.3556 Mean :0.1889
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :8 NA's :7 NA's :8 NA's :8
## P165II P166II P167II P168II
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.00000 Median :0.0000 Median :0.0000
## Mean :0.3444 Mean :0.07778 Mean :0.4111 Mean :0.3516
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000
## NA's :8 NA's :8 NA's :8 NA's :7
## P169II P170II P171II P172II
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.00000 Median :0.0000 Median :0.0000
## Mean :0.1209 Mean :0.06667 Mean :0.1319 Mean :0.2857
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000
## NA's :7 NA's :8 NA's :7 NA's :7
## P173II P174II P175II P176II
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.0000 Median :0.00000
## Mean :0.07692 Mean :0.2667 Mean :0.2088 Mean :0.06593
## 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.00000
## NA's :7 NA's :8 NA's :7 NA's :7
## P177II P178II P179II P180II
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.0000 Median :0.00000
## Mean :0.05495 Mean :0.2111 Mean :0.1111 Mean :0.02198
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.00000
## NA's :7 NA's :8 NA's :8 NA's :7
## P181II P182II P183II P184II
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.0000
## Mean :0.1978 Mean :0.1978 Mean :0.08889 Mean :0.2889
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.0000
## NA's :7 NA's :7 NA's :8 NA's :8
## P185II P186II P187II P188II
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.3111 Mean :0.07778 Mean :0.1222 Mean :0.08889
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :8 NA's :8 NA's :8 NA's :8
## P189II P190II P191II P192II
## Min. :0.00000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.07778 Mean :0.06667 Mean :0.2444 Mean :0.06667
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :8 NA's :8 NA's :8 NA's :8
## P193II P194II P195II P196II
## Min. :0.00000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.02222 Mean :0.07778 Mean :0.2667 Mean :0.07778
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :8 NA's :8 NA's :8 NA's :8
## P197II P198II P199II P200II
## Min. :0.0 Min. :0.0000 Min. :0.0000 Min. :0.0
## 1st Qu.:0.0 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0
## Median :0.0 Median :0.0000 Median :0.0000 Median :0.0
## Mean :0.2 Mean :0.2111 Mean :0.2556 Mean :0.1
## 3rd Qu.:0.0 3rd Qu.:0.0000 3rd Qu.:0.7500 3rd Qu.:0.0
## Max. :1.0 Max. :1.0000 Max. :1.0000 Max. :1.0
## NA's :8 NA's :8 NA's :8 NA's :8
## P201II P202II P203II P204II
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.08889 Mean :0.08889 Mean :0.03333 Mean :0.07778
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## NA's :8 NA's :8 NA's :8 NA's :8
## P205II P206II P207II P208II
## Min. :0.00000 Min. :0.0 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.00000 Median :0.0 Median :0.00000 Median :0.0000
## Mean :0.04444 Mean :0.1 Mean :0.02222 Mean :0.1667
## 3rd Qu.:0.00000 3rd Qu.:0.0 3rd Qu.:0.00000 3rd Qu.:0.0000
## Max. :1.00000 Max. :1.0 Max. :1.00000 Max. :1.0000
## NA's :8 NA's :8 NA's :8 NA's :8
## P209II P210II P211II P212II
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.01111 Mean :0.04444 Mean :0.03333 Mean :0.02222
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## NA's :8 NA's :8 NA's :8 NA's :8
## P213II P214II P215II P216II
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.00000 Median :0.00000 Median :0.00000 Median :0.0000
## Mean :0.04494 Mean :0.08989 Mean :0.05618 Mean :0.1573
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000
## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.0000
## NA's :9 NA's :9 NA's :9 NA's :9
## P217II P218II P219II P220II
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.04494 Mean :0.04494 Mean :0.06742 Mean :0.06742
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## NA's :9 NA's :9 NA's :9 NA's :9
## P221II P222II P223II P224II
## Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.00000 Median :0.00000
## Mean :0.07865 Mean :0.1236 Mean :0.02273 Mean :0.05682
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.00000
## NA's :9 NA's :9 NA's :10 NA's :10
## P225II P226II P227II P228II
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.06818 Mean :0.04546 Mean :0.06818 Mean :0.03409
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## NA's :10 NA's :10 NA's :10 NA's :10
## P229II P230II P231II P232II
## Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.00000 Median :0.0000 Median :0.00000 Median :0.0000
## Mean :0.01136 Mean :0.1364 Mean :0.06818 Mean :0.1023
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.0000
## Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.0000
## NA's :10 NA's :10 NA's :10 NA's :10
## P233II P234II P235II P236II
## Min. :0.00000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.03409 Mean :0.07955 Mean :0.1136 Mean :0.07955
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## NA's :10 NA's :10 NA's :10 NA's :10
## P237II P238II P239II P240II
## Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.0000 Median :0.00000 Median :0.00000
## Mean :0.06818 Mean :0.1023 Mean :0.04546 Mean :0.04546
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.00000
## NA's :10 NA's :10 NA's :10 NA's :10
## TotPII DifP DifE Wave2
## Min. : 0 Min. :-107.00 Min. :-30.00000 Min. :1
## 1st Qu.: 79 1st Qu.: -4.00 1st Qu.: -6.00000 1st Qu.:1
## Median :102 Median : 12.00 Median : 0.00000 Median :1
## Mean :103 Mean : 13.55 Mean : -0.07217 Mean :1
## 3rd Qu.:126 3rd Qu.: 34.00 3rd Qu.: 8.00000 3rd Qu.:1
## Max. :170 Max. : 102.00 Max. : 22.00000 Max. :1
## NA's :1 NA's :1 NA's :1 NA's :1
## Nama Jenis.Kelamin.1 TTL Jumlah.Anak
## Length:98 Min. :0.0000 Length:98 Min. :1.000
## Class :character 1st Qu.:0.0000 Class :character 1st Qu.:1.000
## Mode :character Median :0.0000 Mode :character Median :2.000
## Mean :0.1753 Mean :1.979
## 3rd Qu.:0.0000 3rd Qu.:2.000
## Max. :2.0000 Max. :6.000
## NA's :1 NA's :2
## PendidikanI PenghasilanI NamaOII JKOII
## Min. :1.000 Min. :1.000 Length:98 Min. :1.000
## 1st Qu.:3.000 1st Qu.:1.000 Class :character 1st Qu.:2.000
## Median :3.000 Median :1.000 Mode :character Median :2.000
## Mean :3.371 Mean :1.691 Mean :1.939
## 3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :6.000 Max. :7.000 Max. :2.000
## NA's :1 NA's :4 NA's :49
## TempatOII TLII WAOII J_AnakOII
## Length:98 Length:98 Length:98 Min. :1.000
## Class :character Class :character Class :character 1st Qu.:1.000
## Mode :character Mode :character Mode :character Median :2.000
## Mean :1.857
## 3rd Qu.:2.000
## Max. :3.000
## NA's :49
## Pend_TOII PenghasilanOII Usia_AnakOII Kelas_AnakOII
## Min. :1.000 Min. :1.00 Length:98 Length:98
## 1st Qu.:2.500 1st Qu.:1.00 Class :character Class :character
## Median :3.000 Median :1.00 Mode :character Mode :character
## Mean :3.431 Mean :1.56
## 3rd Qu.:5.000 3rd Qu.:2.00
## Max. :6.000 Max. :7.00
## NA's :47 NA's :48
## B_Ind_OII B_Sun_OII B_Lain_OII E_Num1_OII
## Min. : 0.00 Min. : 0.00 Length:98 Min. : 3.0
## 1st Qu.: 50.00 1st Qu.: 18.50 Class :character 1st Qu.:30.0
## Median : 60.00 Median : 45.00 Mode :character Median :35.0
## Mean : 59.64 Mean : 41.07 Mean :32.7
## 3rd Qu.: 80.00 3rd Qu.: 57.50 3rd Qu.:40.0
## Max. :100.00 Max. :100.00 Max. :45.0
## NA's :53 NA's :52 NA's :52
## E_Num2_OII E_Lit3_OII E_Lit4_OII NamaGII JKGII
## Min. :2.00 Min. : 10 Min. :3.00 Length:98 Min. :2
## 1st Qu.:3.00 1st Qu.:135 1st Qu.:3.00 Class :character 1st Qu.:2
## Median :4.00 Median :200 Median :4.00 Mode :character Median :2
## Mean :3.66 Mean :166 Mean :3.78 Mean :2
## 3rd Qu.:4.00 3rd Qu.:200 3rd Qu.:4.00 3rd Qu.:2
## Max. :5.00 Max. :238 Max. :5.00 Max. :2
## NA's :48 NA's :51 NA's :48 NA's :72
## UsiaGII Pend_TGII LM_AjarGII PelatihanGII
## Min. :19.00 Min. :2.000 Length:98 Min. :1.000
## 1st Qu.:28.00 1st Qu.:3.000 Class :character 1st Qu.:1.000
## Median :45.00 Median :3.000 Mode :character Median :1.000
## Mean :35.46 Mean :3.269 Mean :1.238
## 3rd Qu.:45.00 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :46.00 Max. :5.000 Max. :2.000
## NA's :72 NA's :72 NA's :77
## XPelatihanGII PAUD.TK_GII Kelas_GII Usia_Anak_GII
## Min. :0.000 Length:98 Length:98 Length:98
## 1st Qu.:2.000 Class :character Class :character Class :character
## Median :2.000 Mode :character Mode :character Mode :character
## Mean :1.524
## 3rd Qu.:2.000
## Max. :2.000
## NA's :77
## JmlGuruGII JmlAnakGII B_Ind_GII B_Sun_GII B_Lain_GII
## Min. :2.00 Min. : 7 Min. : 50.00 Min. : 5.00 Min. : 0.00
## 1st Qu.:2.00 1st Qu.:13 1st Qu.: 50.00 1st Qu.:30.00 1st Qu.: 0.00
## Median :2.00 Median :15 Median : 50.00 Median :35.00 Median :15.00
## Mean :2.25 Mean :13 Mean : 65.38 Mean :32.88 Mean :10.58
## 3rd Qu.:2.25 3rd Qu.:15 3rd Qu.: 70.00 3rd Qu.:50.00 3rd Qu.:20.00
## Max. :3.00 Max. :15 Max. :100.00 Max. :50.00 Max. :20.00
## NA's :78 NA's :78 NA's :72 NA's :72 NA's :72
## E_Num1_GII E_Num2_GII E_Lit3_GII E_Lit4_GII H_kenalhuruf
## Min. :15.00 Min. :2.000 Min. : 70.0 Min. :2.000 Min. :1.00
## 1st Qu.:25.00 1st Qu.:3.000 1st Qu.:130.0 1st Qu.:3.000 1st Qu.:4.00
## Median :40.00 Median :4.500 Median :200.0 Median :4.500 Median :4.00
## Mean :32.88 Mean :4.038 Mean :168.7 Mean :4.115 Mean :3.68
## 3rd Qu.:40.00 3rd Qu.:5.000 3rd Qu.:200.0 3rd Qu.:5.000 3rd Qu.:4.00
## Max. :45.00 Max. :5.000 Max. :240.0 Max. :5.000 Max. :4.00
## NA's :72 NA's :72 NA's :72 NA's :72 NA's :1
## H_sintesis H_membaca HLE1 A_cerita
## Min. :1.000 Min. :1.000 Min. : 3.00 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:10.00 1st Qu.:2.000
## Median :4.000 Median :4.000 Median :12.00 Median :3.000
## Mean :3.505 Mean :3.588 Mean :10.77 Mean :2.577
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:12.00 3rd Qu.:3.000
## Max. :4.000 Max. :4.000 Max. :12.00 Max. :5.000
## NA's :1 NA's :1 NA's :1 NA's :1
## A_membaca A_membacamandiri A_menulissendiri A_permainankata HLE2
## Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. : 5
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:3.00 1st Qu.:2.000 1st Qu.:12
## Median :3.000 Median :3.000 Median :4.00 Median :3.000 Median :15
## Mean :2.677 Mean :2.897 Mean :3.66 Mean :3.216 Mean :15
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:4.00 3rd Qu.:4.000 3rd Qu.:17
## Max. :5.000 Max. :5.000 Max. :5.00 Max. :5.000 Max. :23
## NA's :2 NA's :1 NA's :1 NA's :1 NA's :1
## H_hitungkelompok H_hitung20 H_jumlah10 H_jumlah20
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000
## Median :4.000 Median :4.00 Median :4.000 Median :4.000
## Mean :3.635 Mean :3.51 Mean :3.406 Mean :3.271
## 3rd Qu.:4.000 3rd Qu.:4.00 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :4.000 Max. :4.00 Max. :4.000 Max. :4.000
## NA's :2 NA's :2 NA's :2 NA's :2
## H_kurang10 H_kurang20 HNE1 A_hitung A_urut
## Min. :1.000 Min. :1.000 Min. : 0.00 Min. :1.00 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:18.00 1st Qu.:3.00 1st Qu.:2.000
## Median :4.000 Median :4.000 Median :23.00 Median :4.00 Median :3.000
## Mean :3.263 Mean :3.177 Mean :20.02 Mean :3.76 Mean :3.062
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:24.00 3rd Qu.:5.00 3rd Qu.:4.000
## Max. :4.000 Max. :4.000 Max. :24.00 Max. :5.00 Max. :5.000
## NA's :3 NA's :2 NA's :1 NA's :2 NA's :2
## A_main A_numerik A_hitungrima HNE2
## Min. :1.000 Min. :1.000 Min. :1.000 Min. : 0.00
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:11.00
## Median :3.000 Median :3.000 Median :2.000 Median :14.00
## Mean :2.448 Mean :2.938 Mean :2.271 Mean :14.33
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:18.00
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :25.00
## NA's :2 NA's :2 NA's :2 NA's :1
## JN JL df2.ID
## Min. : 7.00 Min. : 15.0 Length:98
## 1st Qu.:32.25 1st Qu.:138.0 Class :character
## Median :39.00 Median :203.0 Mode :character
## Mean :36.33 Mean :169.8
## 3rd Qu.:45.00 3rd Qu.:205.0
## Max. :50.00 Max. :242.0
## NA's :52 NA's :51
dataMI <- data.frame(df2$ID, df2$HLE1, df2$HLE2, df2$HNE1, df2$HNE2,
df2$Pend_TOII, df2$PenghasilanOII, df2$B_Ind_OII, df2$B_Sun_OII,
df2$E_Num1_OII, df2$E_Num2_OII, df2$E_Lit3_OII, df2$E_Lit4_OII)
summary(dataMI)
## df2.ID df2.HLE1 df2.HLE2 df2.HNE1
## Length:98 Min. : 3.00 Min. : 5 Min. : 0.00
## Class :character 1st Qu.:10.00 1st Qu.:12 1st Qu.:18.00
## Mode :character Median :12.00 Median :15 Median :23.00
## Mean :10.77 Mean :15 Mean :20.02
## 3rd Qu.:12.00 3rd Qu.:17 3rd Qu.:24.00
## Max. :12.00 Max. :23 Max. :24.00
## NA's :1 NA's :1 NA's :1
## df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII
## Min. : 0.00 Min. :1.000 Min. :1.00 Min. : 0.00
## 1st Qu.:11.00 1st Qu.:2.500 1st Qu.:1.00 1st Qu.: 50.00
## Median :14.00 Median :3.000 Median :1.00 Median : 60.00
## Mean :14.33 Mean :3.431 Mean :1.56 Mean : 59.64
## 3rd Qu.:18.00 3rd Qu.:5.000 3rd Qu.:2.00 3rd Qu.: 80.00
## Max. :25.00 Max. :6.000 Max. :7.00 Max. :100.00
## NA's :1 NA's :47 NA's :48 NA's :53
## df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## Min. : 0.00 Min. : 3.0 Min. :2.00 Min. : 10 Min. :3.00
## 1st Qu.: 18.50 1st Qu.:30.0 1st Qu.:3.00 1st Qu.:135 1st Qu.:3.00
## Median : 45.00 Median :35.0 Median :4.00 Median :200 Median :4.00
## Mean : 41.07 Mean :32.7 Mean :3.66 Mean :166 Mean :3.78
## 3rd Qu.: 57.50 3rd Qu.:40.0 3rd Qu.:4.00 3rd Qu.:200 3rd Qu.:4.00
## Max. :100.00 Max. :45.0 Max. :5.00 Max. :238 Max. :5.00
## NA's :52 NA's :52 NA's :48 NA's :51 NA's :48
library(mice)
## Warning: Paket 'mice' wurde unter R Version 4.2.3 erstellt
##
## Attache Paket: 'mice'
## Das folgende Objekt ist maskiert 'package:stats':
##
## filter
## Die folgenden Objekte sind maskiert von 'package:base':
##
## cbind, rbind
pMIss <- function(x){sum(is.na(x))/length(x)*100}
apply(dataMI, 2, pMIss)
## df2.ID df2.HLE1 df2.HLE2 df2.HNE1
## 1.020408 1.020408 1.020408 1.020408
## df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII
## 1.020408 47.959184 48.979592 54.081633
## df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII
## 53.061224 53.061224 48.979592 52.040816
## df2.E_Lit4_OII
## 48.979592
apply(dataMI, 1, pMIss)
## [1] 0.000000 23.076923 61.538462 61.538462 61.538462 61.538462
## [7] 0.000000 0.000000 61.538462 61.538462 0.000000 0.000000
## [13] 0.000000 61.538462 0.000000 61.538462 30.769231 61.538462
## [19] 0.000000 0.000000 7.692308 61.538462 30.769231 61.538462
## [25] 61.538462 15.384615 61.538462 61.538462 61.538462 61.538462
## [31] 61.538462 61.538462 61.538462 61.538462 61.538462 0.000000
## [37] 61.538462 61.538462 61.538462 61.538462 61.538462 15.384615
## [43] 61.538462 0.000000 7.692308 61.538462 0.000000 0.000000
## [49] 0.000000 0.000000 7.692308 7.692308 7.692308 61.538462
## [55] 0.000000 0.000000 0.000000 0.000000 61.538462 61.538462
## [61] 61.538462 61.538462 61.538462 61.538462 61.538462 61.538462
## [67] 7.692308 0.000000 0.000000 0.000000 61.538462 0.000000
## [73] 0.000000 61.538462 0.000000 0.000000 61.538462 0.000000
## [79] 0.000000 61.538462 0.000000 61.538462 0.000000 0.000000
## [85] 61.538462 0.000000 0.000000 61.538462 0.000000 0.000000
## [91] 61.538462 61.538462 15.384615 0.000000 0.000000 0.000000
## [97] 0.000000 100.000000
#Plot1
md.pattern(dataMI)

## df2.ID df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII
## 39 1 1 1 1 1 1 1
## 3 1 1 1 1 1 1 1
## 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1
## 1 1 1 1 1 1 1 1
## 1 1 1 1 1 1 1 1
## 1 1 1 1 1 1 1 1
## 1 1 1 1 1 1 1 0
## 46 1 1 1 1 1 0 0
## 1 0 0 0 0 0 0 0
## 1 1 1 1 1 47 48
## df2.E_Num2_OII df2.E_Lit4_OII df2.E_Lit3_OII df2.B_Sun_OII df2.E_Num1_OII
## 39 1 1 1 1 1
## 3 1 1 1 1 1
## 1 1 1 1 1 0
## 2 1 1 1 0 1
## 2 1 1 1 0 1
## 1 1 1 0 1 0
## 1 1 1 0 0 0
## 1 0 0 0 1 0
## 1 1 1 0 1 0
## 46 0 0 0 0 0
## 1 0 0 0 0 0
## 48 48 51 52 52
## df2.B_Ind_OII
## 39 1 0
## 3 0 1
## 1 1 1
## 2 1 1
## 2 0 2
## 1 1 2
## 1 0 4
## 1 1 4
## 1 1 3
## 46 0 8
## 1 0 13
## 53 404
#Multiple Imputation
data_complete <- mice(dataMI, m=5, maxit=50, meth='cart', seed=NA)
##
## iter imp variable
## 1 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 1 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 1 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 1 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 1 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 2 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 2 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 2 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 2 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 2 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 3 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 3 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 3 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 3 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 3 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 4 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 4 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 4 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 4 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 4 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 5 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 5 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 5 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 5 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 5 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 6 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 6 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 6 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 6 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 6 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 7 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 7 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 7 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 7 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 7 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 8 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 8 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 8 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 8 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 8 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 9 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 9 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 9 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 9 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 9 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 10 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 10 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 10 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 10 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 10 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 11 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 11 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 11 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 11 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 11 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 12 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 12 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 12 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 12 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 12 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 13 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 13 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 13 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 13 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 13 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 14 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 14 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 14 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 14 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 14 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 15 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 15 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 15 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 15 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 15 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 16 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 16 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 16 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 16 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 16 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 17 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 17 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 17 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 17 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 17 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 18 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 18 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 18 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 18 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 18 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 19 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 19 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 19 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 19 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 19 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 20 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 20 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 20 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 20 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 20 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 21 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 21 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 21 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 21 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 21 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 22 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 22 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 22 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 22 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 22 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 23 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 23 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 23 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 23 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 23 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 24 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 24 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 24 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 24 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 24 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 25 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 25 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 25 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 25 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 25 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 26 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 26 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 26 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 26 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 26 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 27 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 27 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 27 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 27 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 27 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 28 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 28 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 28 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 28 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 28 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 29 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 29 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 29 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 29 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 29 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 30 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 30 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 30 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 30 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 30 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 31 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 31 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 31 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 31 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 31 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 32 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 32 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 32 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 32 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 32 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 33 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 33 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 33 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 33 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 33 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 34 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 34 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 34 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 34 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 34 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 35 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 35 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 35 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 35 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 35 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 36 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 36 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 36 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 36 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 36 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 37 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 37 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 37 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 37 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 37 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 38 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 38 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 38 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 38 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 38 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 39 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 39 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 39 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 39 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 39 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 40 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 40 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 40 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 40 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 40 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 41 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 41 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 41 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 41 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 41 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 42 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 42 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 42 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 42 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 42 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 43 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 43 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 43 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 43 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 43 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 44 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 44 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 44 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 44 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 44 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 45 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 45 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 45 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 45 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 45 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 46 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 46 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 46 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 46 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 46 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 47 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 47 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 47 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 47 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 47 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 48 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 48 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 48 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 48 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 48 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 49 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 49 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 49 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 49 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 49 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 50 1 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 50 2 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 50 3 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 50 4 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## 50 5 df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## Warning: Number of logged events: 1
summary(data_complete)
## Class: mids
## Number of multiple imputations: 5
## Imputation methods:
## df2.ID df2.HLE1 df2.HLE2 df2.HNE1
## "" "cart" "cart" "cart"
## df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII
## "cart" "cart" "cart" "cart"
## df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII
## "cart" "cart" "cart" "cart"
## df2.E_Lit4_OII
## "cart"
## PredictorMatrix:
## df2.ID df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2 df2.Pend_TOII
## df2.ID 0 0 0 0 0 0
## df2.HLE1 0 0 1 1 1 1
## df2.HLE2 0 1 0 1 1 1
## df2.HNE1 0 1 1 0 1 1
## df2.HNE2 0 1 1 1 0 1
## df2.Pend_TOII 0 1 1 1 1 0
## df2.PenghasilanOII df2.B_Ind_OII df2.B_Sun_OII df2.E_Num1_OII
## df2.ID 0 0 0 0
## df2.HLE1 1 1 1 1
## df2.HLE2 1 1 1 1
## df2.HNE1 1 1 1 1
## df2.HNE2 1 1 1 1
## df2.Pend_TOII 1 1 1 1
## df2.E_Num2_OII df2.E_Lit3_OII df2.E_Lit4_OII
## df2.ID 0 0 0
## df2.HLE1 1 1 1
## df2.HLE2 1 1 1
## df2.HNE1 1 1 1
## df2.HNE2 1 1 1
## df2.Pend_TOII 1 1 1
## Number of logged events: 1
## it im dep meth out
## 1 0 0 constant df2.ID
data_complete <- complete(data_complete, 1)
summary(data_complete)
## df2.ID df2.HLE1 df2.HLE2 df2.HNE1
## Length:98 Min. : 3.00 Min. : 5.00 Min. : 0.00
## Class :character 1st Qu.:10.00 1st Qu.:12.00 1st Qu.:18.00
## Mode :character Median :12.00 Median :15.00 Median :23.00
## Mean :10.78 Mean :15.03 Mean :19.93
## 3rd Qu.:12.00 3rd Qu.:17.75 3rd Qu.:24.00
## Max. :12.00 Max. :23.00 Max. :24.00
## df2.HNE2 df2.Pend_TOII df2.PenghasilanOII df2.B_Ind_OII
## Min. : 0.00 Min. :1.000 Min. :1.000 Min. : 0.00
## 1st Qu.:11.00 1st Qu.:2.000 1st Qu.:1.000 1st Qu.: 50.00
## Median :14.00 Median :3.000 Median :1.000 Median : 60.00
## Mean :14.41 Mean :3.388 Mean :1.551 Mean : 57.63
## 3rd Qu.:18.00 3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.: 80.00
## Max. :25.00 Max. :6.000 Max. :7.000 Max. :100.00
## df2.B_Sun_OII df2.E_Num1_OII df2.E_Num2_OII df2.E_Lit3_OII
## Min. : 0.00 Min. : 3.00 Min. :2.000 Min. : 10.0
## 1st Qu.: 20.00 1st Qu.:30.00 1st Qu.:3.000 1st Qu.:150.0
## Median : 35.00 Median :40.00 Median :4.000 Median :200.0
## Mean : 39.82 Mean :33.94 Mean :3.653 Mean :174.8
## 3rd Qu.: 50.00 3rd Qu.:40.00 3rd Qu.:4.000 3rd Qu.:207.8
## Max. :100.00 Max. :45.00 Max. :5.000 Max. :238.0
## df2.E_Lit4_OII
## Min. :3.000
## 1st Qu.:3.000
## Median :4.000
## Mean :3.816
## 3rd Qu.:4.000
## Max. :5.000
###Merge imputed df4 with outcome variables
df3 <- data_complete
df4 <- merge(df3, df2, by = "df2.ID", all = T)
#Judgment Literacy and Numeracy
df4$JNMI <- df4$df2.E_Num1_OII + df4$df2.E_Num2_OII
df4$JLMI <- df4$df2.E_Lit3_OII + df4$df2.E_Lit4_OII
JNMI <- dplyr::select(df4, df2.E_Num1_OII, df2.E_Num2_OII )
cronbach.alpha(JNMI, na.rm=T)
##
## Cronbach's alpha for the 'JNMI' data-set
##
## Items: 2
## Sample units: 98
## alpha: 0.061
JLMI <- dplyr::select(df4, df2.E_Lit3_OII, df2.E_Lit4_OII)
cronbach.alpha(JLMI, na.rm=T)
##
## Cronbach's alpha for the 'JLMI' data-set
##
## Items: 2
## Sample units: 98
## alpha: 0.009
##Correlation
dcor <- dplyr::select(df4, JK, Umur, TotEI, TotEII, TotPI, TotPII, DifP, DifE, df2.HLE1, df2.HLE2, df2.HNE1, df2.HNE2,
PendidikanI, df2.Pend_TOII, df2.PenghasilanOII, PenghasilanI, df2.B_Ind_OII, df2.B_Sun_OII, JNMI, JLMI)
cor(dcor, method= "pearson", use='complete.obs')
## JK Umur TotEI TotEII
## JK 1.0000000000 -0.078090330 -0.31646912 0.06234351
## Umur -0.0780903300 1.000000000 0.17419806 0.07082251
## TotEI -0.3164691209 0.174198061 1.00000000 0.43137728
## TotEII 0.0623435071 0.070822515 0.43137728 1.00000000
## TotPI -0.1456734454 0.078924695 0.48234437 0.35449440
## TotPII -0.1440665421 0.023944941 0.37997648 0.30749511
## DifP -0.0092126019 -0.049726245 -0.06763427 -0.02115466
## DifE 0.3342865681 -0.078581338 -0.42622198 0.63225876
## df2.HLE1 -0.1303040281 0.008804591 0.01852788 0.06737826
## df2.HLE2 -0.1362059460 0.117542366 -0.08408102 0.01456615
## df2.HNE1 -0.1200601944 0.020165074 0.08585025 0.04648639
## df2.HNE2 -0.2281723958 -0.112557636 -0.12599085 0.03299076
## PendidikanI -0.0905648806 -0.274093684 0.28499644 0.30869496
## df2.Pend_TOII 0.0182644169 -0.215547290 0.16223442 0.15795505
## df2.PenghasilanOII -0.0277609892 -0.252699992 0.20828944 0.19126950
## PenghasilanI -0.1615725606 -0.319235451 0.31233876 0.14841838
## df2.B_Ind_OII -0.0815656501 -0.260426209 0.10344754 0.10176989
## df2.B_Sun_OII 0.0579957021 0.230213216 -0.09093367 -0.11086095
## JNMI -0.0965983814 0.014203016 0.21240115 0.15022736
## JLMI 0.0003842008 -0.068610109 0.13004597 0.13517890
## TotPI TotPII DifP DifE
## JK -0.145673445 -0.144066542 -0.009212602 0.33428657
## Umur 0.078924695 0.023944941 -0.049726245 -0.07858134
## TotEI 0.482344372 0.379976477 -0.067634272 -0.42622198
## TotEII 0.354494398 0.307495114 -0.021154660 0.63225876
## TotPI 1.000000000 0.475150828 -0.456354305 -0.05876664
## TotPII 0.475150828 1.000000000 0.566100150 -0.01798299
## DifP -0.456354305 0.566100150 1.000000000 0.03687020
## DifE -0.058766635 -0.017982992 0.036870198 1.00000000
## df2.HLE1 0.054881370 0.036211459 -0.014796864 0.05164984
## df2.HLE2 0.009533271 -0.171500282 -0.182359883 0.08681185
## df2.HNE1 0.185237569 0.117735943 -0.054479625 -0.02711309
## df2.HNE2 -0.030684219 0.008195476 0.037034070 0.14127732
## PendidikanI 0.222426723 0.257748747 0.052266928 0.06478605
## df2.Pend_TOII 0.132589289 0.240768365 0.119259618 0.01906154
## df2.PenghasilanOII 0.225472247 0.328696192 0.121158925 0.01291570
## PenghasilanI 0.096685047 0.123653536 0.034464742 -0.11940600
## df2.B_Ind_OII -0.067316878 0.164659357 0.229576483 0.01320835
## df2.B_Sun_OII -0.002686823 -0.229418786 -0.229481264 -0.03307059
## JNMI 0.085924737 0.137444802 0.058491853 -0.03176875
## JLMI 0.111822875 0.063307361 -0.040741816 0.02386607
## df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2
## JK -0.130304028 -0.136205946 -0.12006019 -0.228172396
## Umur 0.008804591 0.117542366 0.02016507 -0.112557636
## TotEI 0.018527875 -0.084081015 0.08585025 -0.125990854
## TotEII 0.067378261 0.014566147 0.04648639 0.032990761
## TotPI 0.054881370 0.009533271 0.18523757 -0.030684219
## TotPII 0.036211459 -0.171500282 0.11773594 0.008195476
## DifP -0.014796864 -0.182359883 -0.05447963 0.037034070
## DifE 0.051649843 0.086811850 -0.02711309 0.141277321
## df2.HLE1 1.000000000 0.352819654 0.70874822 0.383978734
## df2.HLE2 0.352819654 1.000000000 0.23691218 0.518295809
## df2.HNE1 0.708748216 0.236912184 1.00000000 0.395793928
## df2.HNE2 0.383978734 0.518295809 0.39579393 1.000000000
## PendidikanI -0.109334275 -0.076423527 -0.03236092 0.154343360
## df2.Pend_TOII 0.089767078 -0.102280096 0.09694902 0.103438280
## df2.PenghasilanOII 0.116337654 -0.158947401 0.06090741 0.133061590
## PenghasilanI -0.083592623 -0.042567969 -0.08181924 0.112463336
## df2.B_Ind_OII -0.049122191 -0.215062774 -0.01135446 0.053589782
## df2.B_Sun_OII 0.050425540 0.203208844 0.01705597 -0.037127567
## JNMI -0.053803122 0.043798920 -0.09314970 -0.141190179
## JLMI 0.030270547 0.148619852 0.05008061 0.164339951
## PendidikanI df2.Pend_TOII df2.PenghasilanOII PenghasilanI
## JK -0.09056488 0.01826442 -0.02776099 -0.16157256
## Umur -0.27409368 -0.21554729 -0.25269999 -0.31923545
## TotEI 0.28499644 0.16223442 0.20828944 0.31233876
## TotEII 0.30869496 0.15795505 0.19126950 0.14841838
## TotPI 0.22242672 0.13258929 0.22547225 0.09668505
## TotPII 0.25774875 0.24076836 0.32869619 0.12365354
## DifP 0.05226693 0.11925962 0.12115892 0.03446474
## DifE 0.06478605 0.01906154 0.01291570 -0.11940600
## df2.HLE1 -0.10933427 0.08976708 0.11633765 -0.08359262
## df2.HLE2 -0.07642353 -0.10228010 -0.15894740 -0.04256797
## df2.HNE1 -0.03236092 0.09694902 0.06090741 -0.08181924
## df2.HNE2 0.15434336 0.10343828 0.13306159 0.11246334
## PendidikanI 1.00000000 0.46952335 0.31507430 0.58395112
## df2.Pend_TOII 0.46952335 1.00000000 0.48711398 0.31756279
## df2.PenghasilanOII 0.31507430 0.48711398 1.00000000 0.43244829
## PenghasilanI 0.58395112 0.31756279 0.43244829 1.00000000
## df2.B_Ind_OII 0.31785335 0.40714510 0.22217372 0.27756172
## df2.B_Sun_OII -0.31945299 -0.47002124 -0.25954870 -0.25425672
## JNMI 0.09783158 0.14329045 -0.03921691 0.11034310
## JLMI 0.22304512 0.12652497 0.11981954 0.22952433
## df2.B_Ind_OII df2.B_Sun_OII JNMI JLMI
## JK -0.08156565 0.057995702 -0.09659838 0.0003842008
## Umur -0.26042621 0.230213216 0.01420302 -0.0686101086
## TotEI 0.10344754 -0.090933674 0.21240115 0.1300459670
## TotEII 0.10176989 -0.110860951 0.15022736 0.1351789001
## TotPI -0.06731688 -0.002686823 0.08592474 0.1118228753
## TotPII 0.16465936 -0.229418786 0.13744480 0.0633073609
## DifP 0.22957648 -0.229481264 0.05849185 -0.0407418162
## DifE 0.01320835 -0.033070595 -0.03176875 0.0238660656
## df2.HLE1 -0.04912219 0.050425540 -0.05380312 0.0302705471
## df2.HLE2 -0.21506277 0.203208844 0.04379892 0.1486198519
## df2.HNE1 -0.01135446 0.017055972 -0.09314970 0.0500806108
## df2.HNE2 0.05358978 -0.037127567 -0.14119018 0.1643399511
## PendidikanI 0.31785335 -0.319452986 0.09783158 0.2230451189
## df2.Pend_TOII 0.40714510 -0.470021243 0.14329045 0.1265249684
## df2.PenghasilanOII 0.22217372 -0.259548696 -0.03921691 0.1198195359
## PenghasilanI 0.27756172 -0.254256721 0.11034310 0.2295243299
## df2.B_Ind_OII 1.00000000 -0.936349036 0.13119508 -0.0314344093
## df2.B_Sun_OII -0.93634904 1.000000000 -0.11441621 0.0604107993
## JNMI 0.13119508 -0.114416213 1.00000000 0.4003926527
## JLMI -0.03143441 0.060410799 0.40039265 1.0000000000
library(psych)
## Warning: Paket 'psych' wurde unter R Version 4.2.3 erstellt
##
## Attache Paket: 'psych'
## Das folgende Objekt ist maskiert 'package:ltm':
##
## factor.scores
## Das folgende Objekt ist maskiert 'package:polycor':
##
## polyserial
## Das folgende Objekt ist maskiert 'package:Hmisc':
##
## describe
cor_sig <- corr.test(dcor)$p
cor_sig
## JK Umur TotEI TotEII
## JK 0.0000000000 1.000000000 1.170706e-01 1.000000e+00
## Umur 0.4391037754 0.000000000 1.000000e+00 1.000000e+00
## TotEI 0.0007010214 0.066891968 0.000000e+00 2.178640e-03
## TotEII 0.7124380732 0.557925814 1.237864e-05 0.000000e+00
## TotPI 0.1532452547 0.306999576 5.473585e-07 1.881753e-03
## TotPII 0.1136154646 0.531205057 9.104248e-05 2.692128e-03
## DifP 0.7866080670 0.750784912 5.637909e-01 8.917145e-01
## DifE 0.0014034784 0.527734363 2.069935e-05 1.393216e-12
## df2.HLE1 0.2088270448 0.993988371 7.897107e-01 3.754885e-01
## df2.HLE2 0.1347738651 0.455747846 3.799700e-01 6.339893e-01
## df2.HNE1 0.1434574698 0.773603333 2.588348e-01 4.002611e-01
## df2.HNE2 0.0260955601 0.131848674 1.771821e-01 5.888718e-01
## PendidikanI 0.2655780732 0.002854093 7.505156e-03 1.348962e-03
## df2.Pend_TOII 0.9743455278 0.014405479 1.678839e-01 7.599353e-02
## df2.PenghasilanOII 0.7590529016 0.010277715 4.971161e-02 7.041216e-02
## PenghasilanI 0.1055478887 0.001826247 1.763358e-03 1.374965e-01
## df2.B_Ind_OII 0.3512329108 0.003385558 3.762668e-01 3.233211e-01
## df2.B_Sun_OII 0.4458307822 0.011538416 4.126853e-01 2.886798e-01
## JNMI 0.4339288187 0.961646429 7.234620e-02 1.969205e-01
## JLMI 0.7783021131 0.354870484 1.980303e-01 1.853180e-01
## TotPI TotPII DifP DifE
## JK 1.000000e+00 1.000000e+00 1.000000e+00 2.301705e-01
## Umur 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## TotEI 9.907190e-05 1.575035e-02 1.000000e+00 3.622387e-03
## TotEII 3.026247e-01 4.253562e-01 1.000000e+00 2.619246e-10
## TotPI 0.000000e+00 1.925547e-04 4.996434e-04 1.000000e+00
## TotPII 1.069748e-06 0.000000e+00 2.015582e-07 1.000000e+00
## DifP 2.791304e-06 1.083646e-09 0.000000e+00 1.000000e+00
## DifE 3.526953e-01 9.717007e-01 4.067480e-01 0.000000e+00
## df2.HLE1 7.225745e-01 8.895382e-01 8.489594e-01 4.487588e-01
## df2.HLE2 7.808823e-01 1.127723e-01 1.809021e-01 1.758383e-01
## df2.HNE1 9.515826e-02 2.267681e-01 7.431470e-01 9.668909e-01
## df2.HNE2 5.146672e-01 9.609725e-01 5.772107e-01 6.311602e-02
## PendidikanI 7.510493e-02 2.269888e-02 5.315231e-01 5.868893e-01
## df2.Pend_TOII 3.885491e-01 3.344366e-02 1.846917e-01 6.918956e-01
## df2.PenghasilanOII 3.650593e-02 2.315127e-03 2.803666e-01 9.945913e-01
## PenghasilanI 3.629818e-01 2.761778e-01 8.081428e-01 1.935147e-01
## df2.B_Ind_OII 4.114221e-01 1.672231e-01 2.935050e-02 9.494561e-01
## df2.B_Sun_OII 8.990967e-01 4.218269e-02 2.966886e-02 8.596230e-01
## JNMI 4.479769e-01 1.733998e-01 5.074301e-01 9.426522e-01
## JLMI 3.271791e-01 5.269365e-01 7.852846e-01 9.809258e-01
## df2.HLE1 df2.HLE2 df2.HNE1 df2.HNE2
## JK 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## Umur 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## TotEI 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## TotEII 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## TotPI 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## TotPII 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## DifP 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## DifE 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## df2.HLE1 0.000000e+00 8.661745e-02 1.454139e-13 1.913461e-02
## df2.HLE2 5.155801e-04 0.000000e+00 1.000000e+00 7.045379e-07
## df2.HNE1 7.693858e-16 2.586439e-02 0.000000e+00 6.110683e-02
## df2.HNE2 1.112477e-04 3.808313e-09 3.573499e-04 0.000000e+00
## PendidikanI 3.356628e-01 8.847029e-01 8.198805e-01 7.122223e-02
## df2.Pend_TOII 4.348682e-01 8.118312e-01 4.338830e-01 1.270675e-01
## df2.PenghasilanOII 2.328744e-01 2.248546e-01 7.318310e-01 1.197666e-01
## PenghasilanI 5.412781e-01 6.750729e-01 5.269283e-01 3.241630e-01
## df2.B_Ind_OII 6.585208e-01 1.499627e-01 7.276721e-01 2.742358e-01
## df2.B_Sun_OII 6.579001e-01 1.788487e-01 7.109351e-01 3.795498e-01
## JNMI 3.727753e-01 6.969499e-01 2.888929e-01 2.244584e-01
## JLMI 9.616639e-01 9.704357e-02 8.408391e-01 7.839347e-02
## PendidikanI df2.Pend_TOII df2.PenghasilanOII PenghasilanI
## JK 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## Umur 4.480927e-01 1.000000e+00 1.000000e+00 2.958520e-01
## TotEI 1.000000e+00 1.000000e+00 1.000000e+00 2.874273e-01
## TotEII 2.225787e-01 1.000000e+00 1.000000e+00 1.000000e+00
## TotPI 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## TotPII 1.000000e+00 1.000000e+00 3.681052e-01 1.000000e+00
## DifP 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## DifE 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## df2.HLE1 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## df2.HLE2 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## df2.HNE1 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## df2.HNE2 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
## PendidikanI 0.000000e+00 2.198829e-05 1.947212e-01 1.099631e-07
## df2.Pend_TOII 1.195016e-07 0.000000e+00 6.509424e-05 3.026247e-01
## df2.PenghasilanOII 1.173019e-03 3.576607e-07 0.000000e+00 1.925302e-03
## PenghasilanI 5.880382e-10 1.879656e-03 1.087741e-05 0.000000e+00
## df2.B_Ind_OII 4.428419e-04 7.241242e-06 1.372062e-02 6.361621e-03
## df2.B_Sun_OII 4.076107e-04 2.540920e-07 4.481468e-03 1.156125e-02
## JNMI 4.099652e-01 1.789704e-01 5.984474e-01 4.085640e-01
## JLMI 1.101487e-02 1.008572e-01 1.823521e-01 2.510918e-02
## df2.B_Ind_OII df2.B_Sun_OII JNMI JLMI
## JK 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## Umur 5.281470e-01 1.000000e+00 1.000000e+00 1.00000000
## TotEI 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## TotEII 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## TotPI 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## TotPII 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## DifP 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## DifE 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## df2.HLE1 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## df2.HLE2 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## df2.HNE1 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## df2.HNE2 1.000000e+00 1.000000e+00 1.000000e+00 1.00000000
## PendidikanI 7.484029e-02 6.929382e-02 1.000000e+00 1.00000000
## df2.Pend_TOII 1.288941e-03 4.649884e-05 1.000000e+00 1.00000000
## df2.PenghasilanOII 1.000000e+00 6.946275e-01 1.000000e+00 1.00000000
## PenghasilanI 9.796896e-01 1.000000e+00 1.000000e+00 1.00000000
## df2.B_Ind_OII 0.000000e+00 5.796580e-44 1.000000e+00 1.00000000
## df2.B_Sun_OII 3.050832e-46 0.000000e+00 1.000000e+00 1.00000000
## JNMI 2.191576e-01 3.209918e-01 0.000000e+00 0.01244813
## JLMI 8.610687e-01 9.165787e-01 7.154098e-05 0.00000000
##Latent variables
#Numeracy1
df4$ent1 <- as.numeric(df4$E1) + as.numeric(df4$E2) + as.numeric(df4$E3) + as.numeric(df4$E4) + as.numeric(df4$E5)
df4$ent2 <- df4$E6 + df4$E7 + df4$E8 + df4$E9 + df4$E10
df4$ent3 <- df4$E11 + df4$E12 + df4$E13 + df4$E14 + df4$E15
df4$ent4 <- df4$E16 + df4$E17 + df4$E18 + df4$E19 + df4$E20
df4$ent5 <- df4$E21 + df4$E22 + df4$E23 + df4$E24 + df4$E25
df4$ent6 <- df4$E26 + df4$E27 + df4$E28 + df4$E29 + df4$E30
df4$ent7 <- df4$E31 + df4$E32 + df4$E33 + df4$E34 + df4$E35
df4$ent8 <- df4$E36 + df4$E37 + df4$E38 + df4$E39 + df4$E40
df4$ent9 <- df4$E41 + df4$E42 + df4$E43 + df4$E44 + as.numeric(df4$E45)
df4$ent <- df4$ent1 + df4$ent2 + df4$ent3 + df4$ent4 + df4$ent5 + df4$ent6 +
df4$ent7 + df4$ent8 + df4$ent9
#Numeracy2
df4$ent1II <- df4$E1II + df4$E2II + df4$E3II + df4$E4II + df4$E5
df4$ent2II <- df4$E6 + df4$E7 + df4$E8 + df4$E9 + df4$E10
df4$ent3II <- df4$E11 + df4$E12 + df4$E13 + df4$E14 + df4$E15
df4$ent4II <- df4$E16 + df4$E17 + df4$E18 + df4$E19 + df4$E20
df4$ent5II <- df4$E21 + df4$E22 + df4$E23 + df4$E24 + df4$E25
df4$ent6II <- df4$E26 + df4$E27 + df4$E28 + df4$E29 + df4$E30
df4$ent7II <- df4$E31 + df4$E32 + df4$E33 + df4$E34 + df4$E35
df4$ent8II <- df4$E36 + df4$E37 + df4$E38 + df4$E39 + df4$E40
df4$ent9II <- df4$E41 + df4$E42 + df4$E43 + df4$E44 + as.numeric(df4$E45)
df4$entII <- df4$ent1II + df4$ent2II + df4$ent3II + df4$ent4II + df4$ent5II + df4$ent6II +
df4$ent7II + df4$ent8II + df4$ent9II
df4$EtotScII <- (df4$entII/45)*100
#Language1
df4$PPVT1 <- df4$P1 + df4$P2 + df4$P3 + df4$P4 + df4$P5 + df4$P6 + df4$P7 + df4$P8 + df4$P9 + df4$P10 +
df4$P71 + df4$P72 + df4$P73 + df4$P74 + df4$P75 + df4$P76 + df4$P77 + df4$P78 + df4$P79 + df4$P80 +
df4$P131 + df4$P132 + df4$P133 + df4$P134 + df4$P135 + df4$P136 + df4$P137 + df4$P138 + df4$P139 + df4$P140 +
df4$P191 + df4$P192 + df4$P193 + df4$P194 + df4$P195 + df4$P196 + df4$P197 + df4$P198 + df4$P199 + df4$P200
df4$PPVT2 <- df4$P11 + df4$P12 + df4$P13 + df4$P14 + df4$P15 + df4$P16 + df4$P17 + df4$P18 + df4$P19 + df4$P20 +
as.numeric(df4$P81) + df4$P82 + df4$P83 + df4$P84 + df4$P85 + df4$P86 + df4$P87 + df4$P88 + df4$P89 + df4$P90 +
df4$P141 + df4$P142 + df4$P143 + df4$P144 + df4$P145 + df4$P146 + df4$P147 + df4$P148 + df4$P149 + df4$P150 +
df4$P181 + df4$P182 + df4$P183 + df4$P184 + df4$P185 + df4$P186 + df4$P187 + df4$P188 + df4$P189 + df4$P190
df4$PPVT3 <- df4$P21 + df4$P22 + df4$P23 + df4$P24 + df4$P25 + df4$P26 + df4$P27 + df4$P28 + df4$P29 + df4$P30 +
df4$P91 + df4$P92 + df4$P93 + df4$P94 + df4$P95 + df4$P96 + df4$P97 + df4$P98 + df4$P99 + df4$P100 +
df4$P111 + df4$P112 + df4$P113 + df4$P114 + df4$P115 + df4$P116 + df4$P117 + df4$P118 + df4$P119 + df4$P120 +
df4$P151 + df4$P152 + df4$P153 + df4$P154 + df4$P155 + df4$P156 + df4$P157 + df4$P158 + df4$P159 + df4$P150
df4$PPVT4 <- df4$P31 + df4$P32 + df4$P33 + df4$P34 + df4$P35 + df4$P36 + df4$P37 + df4$P38 + df4$P39 + df4$P40 +
df4$P51 + df4$P52 + df4$P53 + df4$P54 + df4$P55 + df4$P56 + df4$P57 + df4$P58 + df4$P59 + df4$P60 +
df4$P121 + df4$P122 + df4$P123 + df4$P124 + df4$P125 + df4$P126 + df4$P127 + df4$P128 + df4$P129 + df4$P130 +
df4$P161 + df4$P162 + df4$P163 + df4$P164 + df4$P165 + df4$P166 + df4$P167 + df4$P168 + df4$P169 + df4$P170
df4$PPVT5 <- df4$P41 + df4$P42 + df4$P43 + df4$P44 + df4$P45 + df4$P46 + df4$P47 + df4$P48 + df4$P49 + df4$P50 +
df4$P61 + df4$P62 + df4$P63 + df4$P64 + df4$P65 + df4$P66 + df4$P67 + df4$P68 + df4$P69 + df4$P70 +
df4$P101 + df4$P102 + df4$P103 + df4$P104 + df4$P105 + df4$P106 + df4$P107 + df4$P108 + df4$P109 + df4$P110 +
df4$P171 + df4$P172 + df4$P173 + df4$P174 + df4$P175 + df4$P176 + df4$P177 + df4$P178 + df4$P179 + df4$P180
df4$PPVT <- df4$PPVT1 + df4$PPVT2 + df4$PPVT3 + df4$PPVT4 + df4$PPVT5
#Language2
df4$PPVT1II <- df4$P1II + df4$P2II + df4$P3II + df4$P4II + df4$P5II + df4$P6II + df4$P7II + df4$P8II + df4$P9II + df4$P10II +
df4$P71II + df4$P72II + df4$P73II + df4$P74II + df4$P75II + df4$P76II + df4$P77II + df4$P78II + df4$P79II + df4$P80II +
df4$P131II + df4$P132II + df4$P133II + df4$P134II + df4$P135II + df4$P136II + df4$P137II + df4$P138II + df4$P139II + df4$P140II +
df4$P191II + df4$P192II + df4$P193II + df4$P194II + df4$P195II + df4$P196II + df4$P197II + df4$P198II + df4$P199II + df4$P200II +
df4$P201II + df4$P202II + df4$P203II + df4$P204II + df4$P205II + df4$P237II + df4$P238II + df4$P239II
df4$PPVT2II <- df4$P11II + df4$P12II + df4$P13II + df4$P14II + df4$P15II + df4$P16II + df4$P17II + df4$P18II + df4$P19II + df4$P20II +
as.numeric(df4$P81II) + df4$P82II + df4$P83II + df4$P84II + df4$P85II + df4$P86II + df4$P87II + df4$P88II + df4$P89II + df4$P90II +
df4$P141II + df4$P142II + df4$P143II + df4$P144II + df4$P145II + df4$P146II + df4$P147II + df4$P148II + df4$P149II + df4$P150II +
df4$P181II + df4$P182II + df4$P183II + df4$P184II + df4$P185II + df4$P186II + df4$P187II + df4$P188II + df4$P189II + df4$P190II +
df4$P206II + df4$P207II + df4$P208II + df4$P209II + df4$P210II + df4$P235II + df4$P236II + df4$P240II
df4$PPVT3II <- df4$P21II + df4$P22II + df4$P23II + df4$P24II + df4$P25II + df4$P26II + df4$P27II + df4$P28II + df4$P29II + df4$P30II +
df4$P91II + df4$P92II + df4$P93II + df4$P94II + df4$P95II + df4$P96II + df4$P97II + df4$P98II + df4$P99II + df4$P100II +
df4$P111II + df4$P112II + df4$P113II + df4$P114II + df4$P115II + df4$P116II + df4$P117II + df4$P118II + df4$P119II + df4$P120II +
df4$P151II + df4$P152II + df4$P153II + df4$P154II + df4$P155II + df4$P156II + df4$P157II + df4$P158II + df4$P159II + df4$P150II +
df4$P211II + df4$P212II + df4$P213II + df4$P214II + df4$P215II + df4$P233II + df4$P234II
df4$PPVT4II <- df4$P31II + df4$P32II + df4$P33II + df4$P34II + df4$P35II + df4$P36II + df4$P37II + df4$P38II + df4$P39II + df4$P40II +
df4$P51II + df4$P52II + df4$P53II + df4$P54II + df4$P55II + df4$P56II + df4$P57II + df4$P58II + df4$P59II + df4$P60II +
df4$P121II + df4$P122II + df4$P123II + df4$P124II + df4$P125II + df4$P126II + df4$P127II + df4$P128II + df4$P129II + df4$P130II +
df4$P161II + df4$P162II + df4$P163II + df4$P164II + df4$P165II + df4$P166II + df4$P167II + df4$P168II + df4$P169II + df4$P170II +
df4$P216II + df4$P217II + df4$P218II + df4$P219II + df4$P220II + df4$P231II + df4$P232II
df4$PPVT5II <- df4$P41II + df4$P42II + df4$P43II + df4$P44II + df4$P45II + df4$P46II + df4$P47II + df4$P48II + df4$P49II + df4$P50II +
df4$P61II + df4$P62II + df4$P63II + df4$P64II + df4$P65II + df4$P66II + df4$P67II + df4$P68II + df4$P69II + df4$P70II +
df4$P101II + df4$P102II + df4$P103II + df4$P104II + df4$P105II + df4$P106II + df4$P107II + df4$P108II + df4$P109II + df4$P110II +
df4$P171II + df4$P172II + df4$P173II + df4$P174II + df4$P175II + df4$P176II + df4$P177II + df4$P178II + df4$P179II + df4$P180II +
df4$P221II + df4$P222II + df4$P223II + df4$P224II + df4$P225II + df4$P226II + df4$P227II + df4$P228II + df4$P229II + df4$P230II
df4$PPVTII <- df4$PPVT1II + df4$PPVT2II + df4$PPVT3II + df4$PPVT4II + df4$PPVT5II
##Analysis of Language (Thesis Fika)
library(lavaan)
## Warning: Paket 'lavaan' wurde unter R Version 4.2.3 erstellt
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
##
## Attache Paket: 'lavaan'
## Das folgende Objekt ist maskiert 'package:psych':
##
## cor2cov
modelp2 <- "
PPVTL2 =~ PPVT1II + PPVT2II + PPVT3II + PPVT4II + PPVT5II
PPVTL2 ~ TotPI + PenghasilanI + JK + Umur + df2.B_Sun_OII + df2.E_Lit3_OII + df2.E_Lit4_OII + HLE1 + HLE2
"
fitp2 <- sem(modelp2, data = df4, fixed.x=T)
summary(fitp2, std=T, fit=T, rsquare=T)
## lavaan 0.6.15 ended normally after 77 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 19
##
## Used Total
## Number of observations 83 98
##
## Model Test User Model:
##
## Test statistic 63.487
## Degrees of freedom 41
## P-value (Chi-square) 0.014
##
## Model Test Baseline Model:
##
## Test statistic 636.982
## Degrees of freedom 55
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.961
## Tucker-Lewis Index (TLI) 0.948
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1118.054
## Loglikelihood unrestricted model (H1) -1086.311
##
## Akaike (AIC) 2274.108
## Bayesian (BIC) 2320.066
## Sample-size adjusted Bayesian (SABIC) 2260.135
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.081
## 90 Percent confidence interval - lower 0.038
## 90 Percent confidence interval - upper 0.119
## P-value H_0: RMSEA <= 0.050 0.103
## P-value H_0: RMSEA >= 0.080 0.547
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.029
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## PPVTL2 =~
## PPVT1II 1.000 6.055 0.916
## PPVT2II 1.198 0.073 16.367 0.000 7.255 0.952
## PPVT3II 1.121 0.080 13.970 0.000 6.789 0.906
## PPVT4II 1.160 0.072 16.081 0.000 7.021 0.947
## PPVT5II 1.014 0.069 14.806 0.000 6.142 0.924
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## PPVTL2 ~
## TotPI 0.082 0.017 4.753 0.000 0.014 0.473
## PenghasilanI 0.209 0.504 0.415 0.678 0.035 0.044
## JK 0.189 1.189 0.159 0.874 0.031 0.016
## Umur 0.144 0.124 1.166 0.244 0.024 0.120
## df2.B_Sun_OII -0.053 0.025 -2.131 0.033 -0.009 -0.227
## df2.E_Lit3_OII -0.003 0.011 -0.249 0.803 -0.000 -0.025
## df2.E_Lit4_OII 0.154 0.852 0.181 0.856 0.025 0.018
## HLE1 0.235 0.293 0.804 0.421 0.039 0.080
## HLE2 -0.281 0.159 -1.763 0.078 -0.046 -0.183
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .PPVT1II 7.018 1.290 5.441 0.000 7.018 0.161
## .PPVT2II 5.462 1.194 4.573 0.000 5.462 0.094
## .PPVT3II 10.015 1.800 5.563 0.000 10.015 0.178
## .PPVT4II 5.664 1.191 4.754 0.000 5.664 0.103
## .PPVT5II 6.475 1.217 5.323 0.000 6.475 0.147
## .PPVTL2 25.360 4.699 5.397 0.000 0.692 0.692
##
## R-Square:
## Estimate
## PPVT1II 0.839
## PPVT2II 0.906
## PPVT3II 0.822
## PPVT4II 0.897
## PPVT5II 0.853
## PPVTL2 0.308
##Analysis of Numeracy (Paper 1)
library(psych)
fE1 <- lm(DifE ~ PenghasilanI + JK + Umur,data=df4)
summary(fE1)
##
## Call:
## lm(formula = DifE ~ PenghasilanI + JK + Umur, data = df4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.8951 -5.6272 -0.0928 6.8340 18.8887
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.7395 13.5524 0.424 0.67295
## PenghasilanI -0.9771 0.9051 -1.080 0.28325
## JK 6.6032 2.1388 3.087 0.00269 **
## Umur -0.1290 0.2123 -0.607 0.54509
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.99 on 89 degrees of freedom
## (5 Beobachtungen als fehlend gelöscht)
## Multiple R-squared: 0.1274, Adjusted R-squared: 0.09802
## F-statistic: 4.333 on 3 and 89 DF, p-value: 0.006731
fE2 <- lm(DifE ~ PenghasilanI + JK + Umur + HNE1 + HNE2, data=df4)
summary(fE2)
##
## Call:
## lm(formula = DifE ~ PenghasilanI + JK + Umur + HNE1 + HNE2, data = df4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.7431 -6.2704 -0.1557 7.6504 21.1376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.90658 14.15152 -0.276 0.783161
## PenghasilanI -1.11470 0.88278 -1.263 0.210065
## JK 7.62361 2.12886 3.581 0.000563 ***
## Umur -0.05425 0.20757 -0.261 0.794421
## HNE1 -0.19615 0.20463 -0.959 0.340427
## HNE2 0.61650 0.22205 2.776 0.006729 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.684 on 87 degrees of freedom
## (5 Beobachtungen als fehlend gelöscht)
## Multiple R-squared: 0.1985, Adjusted R-squared: 0.1524
## F-statistic: 4.309 on 5 and 87 DF, p-value: 0.001502
fE3 <- lm(DifE ~ PenghasilanI + JK + Umur + HNE1 + HNE2 + JNMI, data=df4)
summary(fE3)
##
## Call:
## lm(formula = DifE ~ PenghasilanI + JK + Umur + HNE1 + HNE2 +
## JNMI, data = df4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.0901 -6.0469 0.5173 7.0007 20.6932
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.98257 14.76323 -0.473 0.637433
## PenghasilanI -1.17013 0.88804 -1.318 0.191120
## JK 7.76696 2.14265 3.625 0.000489 ***
## Umur -0.05610 0.20810 -0.270 0.788121
## HNE1 -0.18568 0.20561 -0.903 0.369009
## HNE2 0.63486 0.22394 2.835 0.005711 **
## JNMI 0.07298 0.09691 0.753 0.453490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.708 on 86 degrees of freedom
## (5 Beobachtungen als fehlend gelöscht)
## Multiple R-squared: 0.2038, Adjusted R-squared: 0.1482
## F-statistic: 3.668 on 6 and 86 DF, p-value: 0.002726