Teoría

Gasolina 1

Gasolina 2

Probabilidad de Girasoles

Porcentaje

1-pnorm = 0.001349898

1-pnorm(39,25.5,4.5)
## [1] 0.001349898

x

qnorm = 32.90184

qnorm(0.95,25.5,4.5)
## [1] 32.90184

Probabilidad de que una planta de girasol tenga un diámetro de base de más de 40 mm

dgirasol = .0478

dgirasol <- 1-pnorm(40,35,3)

Probabilidad de que ambas plantas tengan un diámetro de base de más de 40 mm

dmas40 = .23%

dmas40 <- dgirasol * dgirasol

¿Dentro de qué límites esperaría usted que se encuentren los diámetros de base, con probabilidad de .95?

lower_limit = 29.12

upper_limit = 40.87

z_lower <- qnorm(0.025) # Valor z correspondiente al percentil 02.5
z_upper <- qnorm(0.975) # Valor z correspondiente al percentil 97.5

lower_limit <- 35 + 3 * z_lower # Media - 3 * desviación estándar
upper_limit <- 35 + 3 * z_upper # Media + 3 * desviación estándar

¿Qué diámetro representa el 90avo percentil de la distribución de diámetros?

percentile_90 = 38.84

percentile_90 <- qnorm(0.9, 35, 3)
x <- 40
promedio <- 35
desviacion_estandar <- 3

Función de Densidad de probabilidad (Normal)

x_densidad <- seq(promedio-3*desviacion_estandar,promedio+3*desviacion_estandar,length=1000)
y_densidad <- dnorm(x_densidad,promedio,desviacion_estandar)
plot( x_densidad, y_densidad, type="l",lty=1, xlab="x",ylab="f(x)",main="Función de Densidad de probabilidad (Normal)",col="coral3")

Funcion de Distribución de Probabilidad (Normal)

x_distribucion <- seq(promedio-3*desviacion_estandar,promedio+3*desviacion_estandar,length=1000)
y_distribucion <- pnorm(x_densidad,promedio,desviacion_estandar)
plot(x_distribucion, y_distribucion, type="l", lty=1, xlab="x", ylab="f(x)", main="Funcion de Distribución de Probabilidad (Normal)", col="coral3")

Shiny App 1

Shiny applications not supported in static R Markdown documents

Shiny App 2

Shiny applications not supported in static R Markdown documents
LS0tCnRpdGxlOiA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPiAiQWN0aXZpZGFkIDMtMiBEaXNlw7FhbmRvIHVuIGVzY2VuYXJpbyB2aWFibGUgcGFyYSBsYSBlbXByZXNhIgphdXRob3I6IDxzcGFuIHN0eWxlID0iY29sb3I6YmxhY2siPiAiUm9nZWlybyBEYW5pZWwgUmFtw61yZXogR2FyemEiCmRhdGU6IDxzcGFuIHN0eWxlID0iY29sb3I6Z3JleSI+ICIyMDIzLTA4LTI4IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6ICJjZXJ1bGVhbiIKLS0tCiFbXSgvVXNlcnMvZGFucndhci9EZXNrdG9wL1JzdHVkaW8gd29ya3MvZXRhcGEgMS9naXBoeSAoMykuZ2lmKQoKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPlRlb3LDrWEKCiFbXSgvVXNlcnMvZGFucndhci9EZXNrdG9wL1JzdHVkaW8gd29ya3MvZXRhcGEgMS9URU8xLmpwZWcpCgojIDxzcGFuIHN0eWxlID0iY29sb3I6I0ZGNzI1NiI+R2Fzb2xpbmEgMQoKIVtdKC9Vc2Vycy9kYW5yd2FyL0Rlc2t0b3AvUnN0dWRpbyB3b3Jrcy9ldGFwYSAxL0dBUzEuanBlZykKCiMgPHNwYW4gc3R5bGUgPSJjb2xvcjojRkY3MjU2Ij5HYXNvbGluYSAyCgohW10oL1VzZXJzL2RhbnJ3YXIvRGVza3RvcC9Sc3R1ZGlvIHdvcmtzL2V0YXBhIDEvR0FTMi5qcGVnKQoKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPlByb2JhYmlsaWRhZCBkZSBHaXJhc29sZXMKCiFbXSgvVXNlcnMvZGFucndhci9Eb3dubG9hZHMvVHlsZXIsX3RoZV9DcmVhdG9yXy1fRmxvd2VyX0JveS5wbmcpCgojIDxzcGFuIHN0eWxlID0iY29sb3I6I0ZGNzI1NiI+IFBvcmNlbnRhamUKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmV5Ij4gMS1wbm9ybSA9IDAuMDAxMzQ5ODk4CmBgYHtyfQoxLXBub3JtKDM5LDI1LjUsNC41KQpgYGAKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPiB4CiMjIDxzcGFuIHN0eWxlID0iY29sb3I6Z3JleSI+IHFub3JtID0gMzIuOTAxODQKYGBge3J9CnFub3JtKDAuOTUsMjUuNSw0LjUpCmBgYAojIDxzcGFuIHN0eWxlID0iY29sb3I6I0ZGNzI1NiI+IFByb2JhYmlsaWRhZCBkZSBxdWUgdW5hIHBsYW50YSBkZSBnaXJhc29sIHRlbmdhIHVuIGRpw6FtZXRybyBkZSBiYXNlIGRlIG3DoXMgZGUgNDAgbW0KIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmV5Ij4gZGdpcmFzb2wgPSAuMDQ3OApgYGB7cn0KZGdpcmFzb2wgPC0gMS1wbm9ybSg0MCwzNSwzKQpgYGAKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPiBQcm9iYWJpbGlkYWQgZGUgcXVlIGFtYmFzIHBsYW50YXMgdGVuZ2FuIHVuIGRpw6FtZXRybyBkZSBiYXNlIGRlIG3DoXMgZGUgNDAgbW0KIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmV5Ij4gZG1hczQwID0gLjIzJQpgYGB7cn0KZG1hczQwIDwtIGRnaXJhc29sICogZGdpcmFzb2wKYGBgCiMgPHNwYW4gc3R5bGUgPSJjb2xvcjojRkY3MjU2Ij4gwr9EZW50cm8gZGUgcXXDqSBsw61taXRlcyBlc3BlcmFyw61hIHVzdGVkIHF1ZSBzZSBlbmN1ZW50cmVuIGxvcyBkacOhbWV0cm9zIGRlIGJhc2UsIGNvbiBwcm9iYWJpbGlkYWQgZGUgLjk1PwojIyA8c3BhbiBzdHlsZSA9ImNvbG9yOmdyZXkiPiBsb3dlcl9saW1pdCA9IDI5LjEyCiMjIDxzcGFuIHN0eWxlID0iY29sb3I6Z3JleSI+IHVwcGVyX2xpbWl0ID0gNDAuODcKYGBge3J9CnpfbG93ZXIgPC0gcW5vcm0oMC4wMjUpICMgVmFsb3IgeiBjb3JyZXNwb25kaWVudGUgYWwgcGVyY2VudGlsIDAyLjUKel91cHBlciA8LSBxbm9ybSgwLjk3NSkgIyBWYWxvciB6IGNvcnJlc3BvbmRpZW50ZSBhbCBwZXJjZW50aWwgOTcuNQoKbG93ZXJfbGltaXQgPC0gMzUgKyAzICogel9sb3dlciAjIE1lZGlhIC0gMyAqIGRlc3ZpYWNpw7NuIGVzdMOhbmRhcgp1cHBlcl9saW1pdCA8LSAzNSArIDMgKiB6X3VwcGVyICMgTWVkaWEgKyAzICogZGVzdmlhY2nDs24gZXN0w6FuZGFyCmBgYAojIDxzcGFuIHN0eWxlID0iY29sb3I6I0ZGNzI1NiI+IMK/UXXDqSBkacOhbWV0cm8gcmVwcmVzZW50YSBlbCA5MGF2byBwZXJjZW50aWwgZGUgbGEgZGlzdHJpYnVjacOzbiBkZSBkacOhbWV0cm9zPyAKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmV5Ij4gcGVyY2VudGlsZV85MCA9IDM4Ljg0CmBgYHtyfQpwZXJjZW50aWxlXzkwIDwtIHFub3JtKDAuOSwgMzUsIDMpCmBgYAoKYGBge3J9CnggPC0gNDAKcHJvbWVkaW8gPC0gMzUKZGVzdmlhY2lvbl9lc3RhbmRhciA8LSAzCmBgYAoKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPiBGdW5jacOzbiBkZSBEZW5zaWRhZCBkZSBwcm9iYWJpbGlkYWQgKE5vcm1hbCkKYGBge3J9CnhfZGVuc2lkYWQgPC0gc2VxKHByb21lZGlvLTMqZGVzdmlhY2lvbl9lc3RhbmRhcixwcm9tZWRpbyszKmRlc3ZpYWNpb25fZXN0YW5kYXIsbGVuZ3RoPTEwMDApCnlfZGVuc2lkYWQgPC0gZG5vcm0oeF9kZW5zaWRhZCxwcm9tZWRpbyxkZXN2aWFjaW9uX2VzdGFuZGFyKQpwbG90KCB4X2RlbnNpZGFkLCB5X2RlbnNpZGFkLCB0eXBlPSJsIixsdHk9MSwgeGxhYj0ieCIseWxhYj0iZih4KSIsbWFpbj0iRnVuY2nDs24gZGUgRGVuc2lkYWQgZGUgcHJvYmFiaWxpZGFkIChOb3JtYWwpIixjb2w9ImNvcmFsMyIpCmBgYAoKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPiBGdW5jaW9uIGRlIERpc3RyaWJ1Y2nDs24gZGUgUHJvYmFiaWxpZGFkIChOb3JtYWwpCmBgYHtyfQp4X2Rpc3RyaWJ1Y2lvbiA8LSBzZXEocHJvbWVkaW8tMypkZXN2aWFjaW9uX2VzdGFuZGFyLHByb21lZGlvKzMqZGVzdmlhY2lvbl9lc3RhbmRhcixsZW5ndGg9MTAwMCkKeV9kaXN0cmlidWNpb24gPC0gcG5vcm0oeF9kZW5zaWRhZCxwcm9tZWRpbyxkZXN2aWFjaW9uX2VzdGFuZGFyKQpwbG90KHhfZGlzdHJpYnVjaW9uLCB5X2Rpc3RyaWJ1Y2lvbiwgdHlwZT0ibCIsIGx0eT0xLCB4bGFiPSJ4IiwgeWxhYj0iZih4KSIsIG1haW49IkZ1bmNpb24gZGUgRGlzdHJpYnVjacOzbiBkZSBQcm9iYWJpbGlkYWQgKE5vcm1hbCkiLCBjb2w9ImNvcmFsMyIpCmBgYAoKCiFbXSgvVXNlcnMvZGFucndhci9EZXNrdG9wL1JzdHVkaW8gd29ya3MvZXRhcGEgMS9wcm95ZWN0by1lc3RhZGlzdGljYS1pbnRlcmZlcmVuY2lhbC1yLmdpZikKCiMgPHNwYW4gc3R5bGUgPSJjb2xvcjojRkY3MjU2Ij5TaGlueSBBcHAgMQoKYGBge3IsIGVjaG89RkFMU0V9CmxpYnJhcnkoc2hpbnkpCmxpYnJhcnkoc2hpbnl0aGVtZXMpCnNoaW55QXBwKAogIAogIHVpIDwtIGZsdWlkUGFnZSh0aGVtZT1zaGlueXRoZW1lKCJjZXJ1bGVhbiIpLAogICAgICAgICAgICAgICAgbmF2YmFyUGFnZSgiQXBsaWNhY2lvbmVzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgdGFiUGFuZWwoIk5vbWJyZSBDb21wbGV0byIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZGViYXJQYW5lbCgKICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YWdzJGgzKCJJbmdyZXNhIGxvcyBzaWd1aWVudGVzIGRhdG9zOiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICB0ZXh0SW5wdXQoInByaW1lcl9ub21icmUiLCJQcmltZXIgTm9tYnJlOiIsIiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICB0ZXh0SW5wdXQoInNlZ3VuZG9fbm9tYnJlIiwiU2VndW5kbyBOb21icmU6IiwiIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHRleHRJbnB1dCgiYXBlbGxpZG9fcGF0ZXJubyIsIkFwZWxsaWRvIFBhdGVybm86IiwiIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHRleHRJbnB1dCgiYXBlbGxpZG9fbWF0ZXJubyIsIkFwZWxsaWRvIE1hdGVybm86IiwiIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIG1haW5QYW5lbCgKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBoMSgiVHUgTm9tYnJlIENvbXBsZXRvIGVzOiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlcmJhdGltVGV4dE91dHB1dCgibm9tYnJlX2NvbXBsZXRvIikpKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHRhYlBhbmVsKCJUYWIgMiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICB0YWJQYW5lbCgiVGFiIDMiKSwKICApKSwKCnNlcnZlciA8LSBmdW5jdGlvbihpbnB1dCwgb3V0cHV0KSB7CiAgb3V0cHV0JG5vbWJyZV9jb21wbGV0byA8LSByZW5kZXJUZXh0KAogICAgcGFzdGUoaW5wdXQkcHJpbWVyX25vbWJyZSxpbnB1dCRzZWd1bmRvX25vbWJyZSxpbnB1dCRhcGVsbGlkb19wYXRlcm5vLGlucHV0JGFwZWxsaWRvX21hdGVybm8sc2VwID0gIiAiKSkKfQopCgoKCmBgYAoKIyA8c3BhbiBzdHlsZSA9ImNvbG9yOiNGRjcyNTYiPlNoaW55IEFwcCAyCgpgYGB7ciwgZWNobz1GQUxTRX0KbGlicmFyeShzaGlueSkKbGlicmFyeShzaGlueXRoZW1lcykKbGlicmFyeShnZ3Bsb3QyKQojIERlZmluZSBVSSBmb3IgYXBwbGljYXRpb24gdGhhdCBkcmF3cyBhIGhpc3RvZ3JhbQp1aSA8LSBmbHVpZFBhZ2UodGhlbWU9c2hpbnl0aGVtZSgiY2VydWxlYW4iKSwKICAgICAgICAgICAgICAgICAgdGl0bGVQYW5lbCgiVmlzdWFsaXphY2nDs24gZGUgRGlzdHJpYnVjacOzbiBOb3JtYWwiKSwKICAgICAgICAgICAgICAgICAgc2lkZWJhckxheW91dCgKICAgICAgICAgICAgICAgICAgICBzaWRlYmFyUGFuZWwoCiAgICAgICAgICAgICAgICAgICAgICBudW1lcmljSW5wdXQoInhfdmFsdWUiLCAiWDoiLCB2YWx1ZSA9IDApLAogICAgICAgICAgICAgICAgICAgICAgbnVtZXJpY0lucHV0KCJtZWFuIiwgIlByb21lZGlvOiIsIHZhbHVlID0gMCksCiAgICAgICAgICAgICAgICAgICAgICBudW1lcmljSW5wdXQoInNkIiwgIkRlc3ZpYWNpw7NuIEVzdMOhbmRhcjoiLCB2YWx1ZSA9IDEpLAogICAgICAgICAgICAgICAgICAgICAgYWN0aW9uQnV0dG9uKCJwbG90X2J1dHRvbiIsICJHZW5lcmFyIEdyw6FmaWNvcyIpCiAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICBtYWluUGFuZWwoCiAgICAgICAgICAgICAgICAgICAgICBwbG90T3V0cHV0KCJkZW5zaXR5X3Bsb3QiKSwKICAgICAgICAgICAgICAgICAgICAgIHBsb3RPdXRwdXQoImNkZl9wbG90IikKICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICkKIyBEZWZpbmUgc2VydmVyIGxvZ2ljIHJlcXVpcmVkIHRvIGRyYXcgYSBoaXN0b2dyYW0Kc2VydmVyIDwtIGZ1bmN0aW9uKGlucHV0LCBvdXRwdXQpIHsKICAKICBvYnNlcnZlRXZlbnQoaW5wdXQkcGxvdF9idXR0b24sIHsKICAgIHggPC0gc2VxKC01LCA1LCBsZW5ndGgub3V0ID0gMTAwMCkKICAgIGRlbnNpdHlfZGF0YSA8LSBkYXRhLmZyYW1lKHggPSB4LCB5ID0gZG5vcm0oeCwgbWVhbiA9IGlucHV0JG1lYW4sIHNkID0gaW5wdXQkc2QpKQogICAgY2RmX2RhdGEgPC0gZGF0YS5mcmFtZSh4ID0geCwgeSA9IHBub3JtKHgsIG1lYW4gPSBpbnB1dCRtZWFuLCBzZCA9IGlucHV0JHNkKSkKICAgIAogICAgZGVuc2l0eV9wbG90IDwtIGdncGxvdChkZW5zaXR5X2RhdGEsIGFlcyh4LCB5KSkgKwogICAgICB0aGVtZV9idygpICsKICAgICAgZ2VvbV9saW5lKGNvbCA9ICJwaW5rIiwgKSArCiAgICAgIGxhYnModGl0bGUgPSAiRnVuY2nDs24gZGUgRGVuc2lkYWQgZGUgUHJvYmFiaWxpZGFkIiwKICAgICAgICAgICB4ID0gIngiLAogICAgICAgICAgIHkgPSAiRGVuc2lkYWQiKQogICAgCiAgICBjZGZfcGxvdCA8LSBnZ3Bsb3QoY2RmX2RhdGEsIGFlcyh4LCB5KSkgKwogICAgICB0aGVtZV9idygpICsKICAgICAgZ2VvbV9saW5lKGNvbCA9ICJwaW5rIikgKwogICAgICBsYWJzKHRpdGxlID0gIkZ1bmNpw7NuIGRlIERpc3RyaWJ1Y2nDs24gZGUgUHJvYmFiaWxpZGFkIiwKICAgICAgICAgICB4ID0gIngiLAogICAgICAgICAgIHkgPSAiUHJvYmFiaWxpZGFkIGFjdW11bGFkYSIpCiAgICAKICAgIG91dHB1dCRkZW5zaXR5X3Bsb3QgPC0gcmVuZGVyUGxvdCh7IGRlbnNpdHlfcGxvdCB9KQogICAgb3V0cHV0JGNkZl9wbG90IDwtIHJlbmRlclBsb3QoeyBjZGZfcGxvdCB9KQogIH0pCn0KCiMgRWplY3V0YXIgbGEgYXBsaWNhY2nDs24gU2hpbnkKc2hpbnlBcHAodWksIHNlcnZlcikKCmBgYAoK