library(tidyverse)Warning: package 'tidyverse' was built under R version 4.1.3
Warning: package 'ggplot2' was built under R version 4.1.3
Warning: package 'tibble' was built under R version 4.1.3
Warning: package 'tidyr' was built under R version 4.1.3
Warning: package 'readr' was built under R version 4.1.3
Warning: package 'purrr' was built under R version 4.1.3
Warning: package 'dplyr' was built under R version 4.1.3
Warning: package 'stringr' was built under R version 4.1.3
Warning: package 'forcats' was built under R version 4.1.3
Warning: package 'lubridate' was built under R version 4.1.3
-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.2 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.1
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(car)Warning: package 'car' was built under R version 4.1.3
Loading required package: carData
Attaching package: 'car'
The following object is masked from 'package:dplyr':
recode
The following object is masked from 'package:purrr':
some
data1 <- read.csv("Milk_Production.csv", colClasses = c(NA, "numeric"))
head(data1) EweType Diet Week MilkProd
1 2 1 0 1260
2 2 1 0 1900
3 2 1 0 1380
4 2 1 0 3910
5 2 1 0 2900
6 2 2 0 2210
str(data1)'data.frame': 240 obs. of 4 variables:
$ EweType : int 2 2 2 2 2 2 2 2 2 2 ...
$ Diet : num 1 1 1 1 1 2 2 2 2 2 ...
$ Week : int 0 0 0 0 0 0 0 0 0 0 ...
$ MilkProd: num 1260 1900 1380 3910 2900 2210 1850 1750 1900 1950 ...
glimpse(data1)Rows: 240
Columns: 4
$ EweType <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1~
$ Diet <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2~
$ Week <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ MilkProd <dbl> 1260, 1900, 1380, 3910, 2900, 2210, 1850, 1750, 1900, 1950, 1~
data1$EweType<- as.factor(data1$EweType)
data1$Diet<- as.factor(data1$Diet)
data1$Week <- as.character(data1$Week)
data1$MilkProd<- as.numeric(data1$MilkProd)
tail(data1) EweType Diet Week MilkProd
235 1 2 7 1000
236 1 3 7 550
237 1 3 7 820
238 1 3 7 520
239 1 3 7 630
240 1 3 7 500
data1 EweType Diet Week MilkProd
1 2 1 0 1260
2 2 1 0 1900
3 2 1 0 1380
4 2 1 0 3910
5 2 1 0 2900
6 2 2 0 2210
7 2 2 0 1850
8 2 2 0 1750
9 2 2 0 1900
10 2 2 0 1950
11 2 3 0 1190
12 2 3 0 1190
13 2 3 0 590
14 2 3 0 1410
15 2 3 0 1320
16 1 1 0 4120
17 1 1 0 3530
18 1 1 0 1940
19 1 1 0 3130
20 1 1 0 3230
21 1 2 0 1480
22 1 2 0 2180
23 1 2 0 2610
24 1 2 0 2320
25 1 2 0 1740
26 1 3 0 1740
27 1 3 0 1680
28 1 3 0 1890
29 1 3 0 1970
30 1 3 0 2770
31 2 1 1 1640
32 2 1 1 2570
33 2 1 1 2760
34 2 1 1 3190
35 2 1 1 2440
36 2 2 1 2330
37 2 2 1 930
38 2 2 1 1810
39 2 2 1 1500
40 2 2 1 1800
41 2 3 1 760
42 2 3 1 1030
43 2 3 1 910
44 2 3 1 990
45 2 3 1 950
46 1 1 1 4810
47 1 1 1 3040
48 1 1 1 2000
49 1 1 1 2440
50 1 1 1 4040
51 1 2 1 1870
52 1 2 1 1700
53 1 2 1 1850
54 1 2 1 1420
55 1 2 1 1260
56 1 3 1 1190
57 1 3 1 1240
58 1 3 1 1380
59 1 3 1 1170
60 1 3 1 1790
61 2 1 2 1080
62 2 1 2 1100
63 2 1 2 1550
64 2 1 2 1050
65 2 1 2 1280
66 2 2 2 1700
67 2 2 2 850
68 2 2 2 1540
69 2 2 2 950
70 2 2 2 1350
71 2 3 2 540
72 2 3 2 700
73 2 3 2 600
74 2 3 2 750
75 2 3 2 700
76 1 1 2 1850
77 1 1 2 1380
78 1 1 2 1650
79 1 1 2 1230
80 1 1 2 1580
81 1 2 2 1500
82 1 2 2 1380
83 1 2 2 1120
84 1 2 2 1130
85 1 2 2 860
86 1 3 2 960
87 1 3 2 1080
88 1 3 2 1120
89 1 3 2 960
90 1 3 2 1020
91 2 1 3 1000
92 2 1 3 1520
93 2 1 3 980
94 2 1 3 1180
95 2 1 3 1540
96 2 2 3 1180
97 2 2 3 780
98 2 2 3 1210
99 2 2 3 500
100 2 2 3 1000
101 2 3 3 500
102 2 3 3 500
103 2 3 3 320
104 2 3 3 240
105 2 3 3 460
106 1 1 3 1600
107 1 1 3 1250
108 1 1 3 1420
109 1 1 3 1020
110 1 1 3 1450
111 1 2 3 1300
112 1 2 3 1100
113 1 2 3 750
114 1 2 3 900
115 1 2 3 640
116 1 3 3 600
117 1 3 3 980
118 1 3 3 940
119 1 3 3 750
120 1 3 3 570
121 2 1 4 950
122 2 1 4 1200
123 2 1 4 1380
124 2 1 4 980
125 2 1 4 740
126 2 2 4 890
127 2 2 4 380
128 2 2 4 810
129 2 2 4 260
130 2 2 4 800
131 2 3 4 370
132 2 3 4 350
133 2 3 4 250
134 2 3 4 170
135 2 3 4 380
136 1 1 4 1680
137 1 1 4 1200
138 1 1 4 960
139 1 1 4 1100
140 1 1 4 620
141 1 2 4 900
142 1 2 4 720
143 1 2 4 680
144 1 2 4 480
145 1 2 4 800
146 1 3 4 700
147 1 3 4 800
148 1 3 4 680
149 1 3 4 400
150 1 3 4 420
151 2 1 5 1000
152 2 1 5 1300
153 2 1 5 1000
154 2 1 5 850
155 2 1 5 800
156 2 2 5 850
157 2 2 5 300
158 2 2 5 600
159 2 2 5 300
160 2 2 5 650
161 2 3 5 250
162 2 3 5 250
163 2 3 5 200
164 2 3 5 100
165 2 3 5 270
166 1 1 5 1380
167 1 1 5 920
168 1 1 5 1280
169 1 1 5 1120
170 1 1 5 800
171 1 2 5 640
172 1 2 5 800
173 1 2 5 420
174 1 2 5 380
175 1 2 5 900
176 1 3 5 660
177 1 3 5 760
178 1 3 5 640
179 1 3 5 480
180 1 3 5 460
181 2 1 6 900
182 2 1 6 1350
183 2 1 6 1300
184 2 1 6 1100
185 2 1 6 600
186 2 2 6 750
187 2 2 6 560
188 2 2 6 750
189 2 2 6 250
190 2 2 6 600
191 2 3 6 360
192 2 3 6 300
193 2 3 6 150
194 2 3 6 200
195 2 3 6 200
196 1 1 6 1100
197 1 1 6 850
198 1 1 6 1100
199 1 1 6 1200
200 1 1 6 750
201 1 2 6 400
202 1 2 6 520
203 1 2 6 500
204 1 2 6 400
205 1 2 6 950
206 1 3 6 650
207 1 3 6 900
208 1 3 6 850
209 1 3 6 500
210 1 3 6 400
211 2 1 7 800
212 2 1 7 1250
213 2 1 7 1050
214 2 1 7 950
215 2 1 7 500
216 2 2 7 600
217 2 2 7 350
218 2 2 7 500
219 2 2 7 200
220 2 2 7 500
221 2 3 7 300
222 2 3 7 100
223 2 3 7 100
224 2 3 7 200
225 2 3 7 100
226 1 1 7 1000
227 1 1 7 1150
228 1 1 7 1120
229 1 1 7 1450
230 1 1 7 660
231 1 2 7 780
232 1 2 7 620
233 1 2 7 550
234 1 2 7 450
235 1 2 7 1000
236 1 3 7 550
237 1 3 7 820
238 1 3 7 520
239 1 3 7 630
240 1 3 7 500