Más aplicaciones estadísticas en:

Concepto.

El análisis factorial confirmatorio trata de establecer si el número de factores obtenidos se corresponden con los que cabría esperar a la luz de una teoría previa acerca de los datos. Se considera como una forma de modelo de ecuaciones estructurales.

Datos utilizados.

Se utilizan los datos de Holzinger y Swineford (1939) consiste en puntuaciones de pruebas de capacidad mental de niños de séptimo y octavo grado de dos escuelas diferentes, tomados del paquete levaan.

Solamente se utilizan las variables.

x1: Visual perception

x2: Cubes

x3: Lozenges

x4: Paragraph comprehension

x5: Sentence completion

x6: Word meaning

x7: Speeded addition

x8: Speeded counting of dots

x9: Speeded discrimination straight and curved capitals

dato<-data.frame(x1,x2,x3,x4,x5,x6,x7,x8,x9)
head(dato)
##         x1   x2    x3       x4   x5        x6       x7   x8       x9
## 1 3.333333 7.75 0.375 2.333333 5.75 1.2857143 3.391304 5.75 6.361111
## 2 5.333333 5.25 2.125 1.666667 3.00 1.2857143 3.782609 6.25 7.916667
## 3 4.500000 5.25 1.875 1.000000 1.75 0.4285714 3.260870 3.90 4.416667
## 4 5.333333 7.75 3.000 2.666667 4.50 2.4285714 3.000000 5.30 4.861111
## 5 4.833333 4.75 0.875 2.666667 4.00 2.5714286 3.695652 6.30 5.916667
## 6 5.333333 5.00 2.250 1.000000 3.00 0.8571429 4.347826 6.65 7.500000

El modelo.

El modelo se obtuvo mediante el análisis factorial.

modelo<-"visual=~ x1 + x2 + x3
            textual=~ x4 + x5 + x6
            speed =~ x7 + x8 + x9"
fit<-cfa(model= modelo,
           data = dato)
summary(fit)  
## lavaan 0.6.16 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   speed =~                                            
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     speed             0.262    0.056    4.660    0.000
##   textual ~~                                          
##     speed             0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     speed             0.384    0.086    4.451    0.000
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6.16 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               918.852
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.931
##   Tucker-Lewis Index (TLI)                       0.896
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3737.745
##   Loglikelihood unrestricted model (H1)      -3695.092
##                                                       
##   Akaike (AIC)                                7517.490
##   Bayesian (BIC)                              7595.339
##   Sample-size adjusted Bayesian (SABIC)       7528.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.092
##   90 Percent confidence interval - lower         0.071
##   90 Percent confidence interval - upper         0.114
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.840
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   visual =~                                                             
##     x1                1.000                               0.900    0.772
##     x2                0.554    0.100    5.554    0.000    0.498    0.424
##     x3                0.729    0.109    6.685    0.000    0.656    0.581
##   textual =~                                                            
##     x4                1.000                               0.990    0.852
##     x5                1.113    0.065   17.014    0.000    1.102    0.855
##     x6                0.926    0.055   16.703    0.000    0.917    0.838
##   speed =~                                                              
##     x7                1.000                               0.619    0.570
##     x8                1.180    0.165    7.152    0.000    0.731    0.723
##     x9                1.082    0.151    7.155    0.000    0.670    0.665
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   visual ~~                                                             
##     textual           0.408    0.074    5.552    0.000    0.459    0.459
##     speed             0.262    0.056    4.660    0.000    0.471    0.471
##   textual ~~                                                            
##     speed             0.173    0.049    3.518    0.000    0.283    0.283
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x1                0.549    0.114    4.833    0.000    0.549    0.404
##    .x2                1.134    0.102   11.146    0.000    1.134    0.821
##    .x3                0.844    0.091    9.317    0.000    0.844    0.662
##    .x4                0.371    0.048    7.779    0.000    0.371    0.275
##    .x5                0.446    0.058    7.642    0.000    0.446    0.269
##    .x6                0.356    0.043    8.277    0.000    0.356    0.298
##    .x7                0.799    0.081    9.823    0.000    0.799    0.676
##    .x8                0.488    0.074    6.573    0.000    0.488    0.477
##    .x9                0.566    0.071    8.003    0.000    0.566    0.558
##     visual            0.809    0.145    5.564    0.000    1.000    1.000
##     textual           0.979    0.112    8.737    0.000    1.000    1.000
##     speed             0.384    0.086    4.451    0.000    1.000    1.000
modindices(fit, sort = TRUE, maximum.number = 10)
##        lhs op rhs     mi    epc sepc.lv sepc.all sepc.nox
## 30  visual =~  x9 36.411  0.577   0.519    0.515    0.515
## 76      x7 ~~  x8 34.145  0.536   0.536    0.859    0.859
## 28  visual =~  x7 18.631 -0.422  -0.380   -0.349   -0.349
## 78      x8 ~~  x9 14.946 -0.423  -0.423   -0.805   -0.805
## 33 textual =~  x3  9.151 -0.272  -0.269   -0.238   -0.238
## 55      x2 ~~  x7  8.918 -0.183  -0.183   -0.192   -0.192
## 31 textual =~  x1  8.903  0.350   0.347    0.297    0.297
## 51      x2 ~~  x3  8.532  0.218   0.218    0.223    0.223
## 59      x3 ~~  x5  7.858 -0.130  -0.130   -0.212   -0.212
## 26  visual =~  x5  7.441 -0.210  -0.189   -0.147   -0.147
inspect(fit, what = "std")
## $lambda
##    visual textul speed
## x1  0.772  0.000 0.000
## x2  0.424  0.000 0.000
## x3  0.581  0.000 0.000
## x4  0.000  0.852 0.000
## x5  0.000  0.855 0.000
## x6  0.000  0.838 0.000
## x7  0.000  0.000 0.570
## x8  0.000  0.000 0.723
## x9  0.000  0.000 0.665
## 
## $theta
##       x1    x2    x3    x4    x5    x6    x7    x8    x9
## x1 0.404                                                
## x2 0.000 0.821                                          
## x3 0.000 0.000 0.662                                    
## x4 0.000 0.000 0.000 0.275                              
## x5 0.000 0.000 0.000 0.000 0.269                        
## x6 0.000 0.000 0.000 0.000 0.000 0.298                  
## x7 0.000 0.000 0.000 0.000 0.000 0.000 0.676            
## x8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.477      
## x9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.558
## 
## $psi
##         visual textul speed
## visual   1.000             
## textual  0.459  1.000      
## speed    0.471  0.283 1.000

-|—|—|

O.M.F.

-|—|—|

paquetes utilizados:

polycor, ggcorrplot

GPArotation, lavaan

tidyverse,semTools

semPlot,psych

MVN

diagram

lavaanPlot

piecewiseSEM

corrr

corrplot