output: html_document: distill::distill_article: default theme: flatly highlight: haddock transition: concave center: true toc: true toc_float: collapsed: true smooth_scroll: true toc_depth: 2 fig_caption: yes code_folding: show number_sections: false fontsize: 15pt weight: 5 type: docs —
output: html_document: distill::distill_article: default theme: flatly highlight: haddock transition: concave center: true toc: true toc_float: collapsed: true smooth_scroll: true toc_depth: 2 fig_caption: yes code_folding: show number_sections: false fontsize: 15pt weight: 5 type: docs —
Campo de R -> Ctrl+Alt+i
## [1] 4.227407 5.244599 5.218549 5.246759 5.721831 5.280621 4.018992 4.465101
## [9] 5.332168 5.028502 5.387183 5.089950 4.565467 5.846867 4.584632 5.674591
## [17] 4.572447 4.533642 4.373446 4.464452 4.633225 4.605387 4.318092 4.079992
Campo de ecuación \(\LARGE{\LaTeX}\)
\[t=\frac{\bar x-\mu}{s/\sqrt{n}}\]
La ecuación anterior representa un estadístico de prueba, t-student
# Redondear a 2 decimales
diam = round(diam,2)
orient = gl(n = 2,k = 12,length = 24,labels = c("ecuatorial","longitudinal"))
df = data.frame(orient,diam)
head(df) #cabeza## orient diam
## 1 ecuatorial 4.23
## 2 ecuatorial 5.24
## 3 ecuatorial 5.22
## 4 ecuatorial 5.25
## 5 ecuatorial 5.72
## 6 ecuatorial 5.28
## orient diam
## 19 longitudinal 4.37
## 20 longitudinal 4.46
## 21 longitudinal 4.63
## 22 longitudinal 4.61
## 23 longitudinal 4.32
## 24 longitudinal 4.08
Resumen estadístico descriptivo
# Distribución exponencial
diam2 = rexp(n = 24,rate = 1/4)
# boxplot
boxplot(diam2~orient,horizontal = T,col=c("lightgreen","lightblue"))Agregarle promedios a las cajas
## ecuatorial longitudinal
## 5.022500 4.686667
## ecuatorial longitudinal
## 3.444301 3.396487
# boxplot + medias
boxplot(diam~orient,horizontal = T,col=c("lightgreen","lightblue"),xlab = "Diametro (cm)",ylab="Orientación")
points(y=1:2,x=m1,pch=16,col="red",cex=1.5)
rug(diam[which(orient=="ecuatorial")],lwd = 3,side = 3,col="darkgreen")
rug(diam[which(orient=="longitudinal")],lwd = 3,side = 1,col="blue")# Densidad
set.seed(1234)
# Generación de datos
diam = runif(n = 240,min = 4,max = 6)
orient = gl(n = 2,k = 120,length = 240,labels = c("ecuatorial","longitudinal"))# Usando ggplot2
# Grafico de densidades
ggplot(df,aes(x=diam,fill=orient))+
geom_density(alpha=0.4)## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
df2=split(diam,orient)
df2 = data.frame(ecuatorial=df2$ecuatorial,
longitudinal = df2$longitudinal)
ggplot(df2,aes(x=ecuatorial,
y=longitudinal))+ geom_point(size=2)##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 240 4.98 0.57 4.99 4.97 0.7 4.02 6 1.98 0.11 -1.14 0.04
##
## Descriptive statistics by group
## group: ecuatorial
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 120 4.85 0.57 4.65 4.83 0.6 4.02 5.98 1.97 0.34 -1.18 0.05
## ------------------------------------------------------------
## group: longitudinal
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 120 5.1 0.53 5.13 5.11 0.65 4.04 6 1.95 -0.05 -0.96 0.05
\[\%~CV = \frac{s}{\bar{x}}\times 100\]
# Mi primera funcion
fun_cv= function(datos){
media=mean(datos)
desv = sd(datos)
cv = 100*desv/media
return(cv)
}
# evaluando la funcion
cat("%CV ecuatorial",fun_cv(df2$ecuatorial))## %CV ecuatorial 11.7698
## %CV longitudinal 10.44618
## [1] NaN
# Validando inicialmente la funcion
fun_cv= function(datos){
media=mean(datos)
desv = sd(datos)
if(media==0 & desv==0){
print("Indeterminación")
}else{
cv = 100*desv/media
return(cv)
}
}## [1] "Indeterminación"