read me
This analys use two levels of data, locations and the 6 provider-only
organizations.
Setting up the R session and Loading packages
# environment setup to run ordered logit properly
options(contrasts = rep("contr.treatment", 2))
This chunk loads all the packages to use
#packages for ordered logit
library(ordinal) # package for ordinal logit regression
library(brant) # brant test for the parallel assumption for ordered logit
library(MASS) # models that work with the brant test
library(tidyverse) # package for data cleaning and plotting
library(readxl) # package for reading excel file
library(broom) # extracting model summary as data frame
library(modelsummary) # deriving model tables
library(scales) # label percent
library(lubridate) # working with dates
library(marginaleffects) #to calculate marginal effects
Import the cleaned data
merged <- read_csv("D:/Archive/Socialcare UK/data/combined_spinout.csv")
Prepare the data for ordinal regression
#select relevant columns, rename and relabel
merged_cleaned <- merged %>%
# recode legal form types to be more readable / easier to present
mutate(inherited = ifelse(inherited == "Y", TRUE, FALSE),
rating = recode(rating,
"Insufficient evidence to rate" = "NA",
"Requires improvement" = "Req improv"),
date = ymd(publication_date)) %>%
# assign order in the rating levels
mutate(rating = ordered(rating, levels = c("Inadequate","Req improv", "Good", "Outstanding")),
form_spinout = case_when(form == "GOV" ~ "GOV",
form == "CIC" & spin_out == "TRUE" ~ "SP_CIC",
form == "CIC" & spin_out == "FALSE" ~ "NSP_CIC"),
socialcare = ifelse(type == "Social Care Org", TRUE, FALSE)) %>%
# creating a new dummy variable for facility category
mutate(year = year(date),
during_covid = ifelse(year >= 2020, TRUE, FALSE),
before_covid = ifelse(year <= 2019, TRUE, FALSE)) %>%
# converting the ordinal variable to numerical
mutate(rating_num = case_when(rating == "Inadequate" ~ 1,
rating == "Req improv" ~ 2,
rating == "Good" ~ 3,
rating == "Outstanding" ~ 4))
# show first several rows of the data set derived
head(merged_cleaned)
## # A tibble: 6 × 22
## project_id provider_name location_name type primary_cat form region domain
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 location1 Solihull Metro… Bluebell Cen… Soci… Community … GOV West … Safe
## 2 location2 Solihull Metro… Bluebell Cen… Soci… Community … GOV West … Effec…
## 3 location3 Solihull Metro… Bluebell Cen… Soci… Community … GOV West … Caring
## 4 location4 Solihull Metro… Bluebell Cen… Soci… Community … GOV West … Respo…
## 5 location5 Solihull Metro… Bluebell Cen… Soci… Community … GOV West … Well-…
## 6 location6 Solihull Metro… Bluebell Cen… Soci… Community … GOV West … Overa…
## # ℹ 14 more variables: rating <ord>, publication_date <dttm>,
## # report_type <chr>, inherited <lgl>, std_name <chr>, level <chr>,
## # spin_out <lgl>, date <date>, form_spinout <chr>, socialcare <lgl>,
## # year <dbl>, during_covid <lgl>, before_covid <lgl>, rating_num <dbl>
Comparison table on Primary Inspection Category
datasummary(primary_cat ~ form, data = merged_cleaned, fmt = 0)
| primary_cat |
CIC |
GOV |
| Acute hospital - NHS non-specialist |
0 |
11948 |
| Acute hospital - NHS specialist |
0 |
944 |
| Ambulance service |
0 |
173 |
| Community based adult social care services |
402 |
2214 |
| Community health - NHS & Independent |
199 |
277 |
| Community substance misuse |
12 |
24 |
| Dentists |
0 |
12 |
| GP Practices |
470 |
492 |
| Hospice services |
6 |
18 |
| Independent consulting doctors |
47 |
0 |
| Mental health - community & hospital - independent |
132 |
0 |
| Mental health - community & residential - NHS |
0 |
47 |
| Out of hours |
72 |
12 |
| Remote clinical advice |
18 |
6 |
| Residential social care |
120 |
2490 |
| Urgent care services & mobile doctors |
24 |
12 |
datasummary(primary_cat ~ form_spinout, data = merged_cleaned, fmt = 0)
| primary_cat |
GOV |
NSP_CIC |
SP_CIC |
| Acute hospital - NHS non-specialist |
11948 |
0 |
0 |
| Acute hospital - NHS specialist |
944 |
0 |
0 |
| Ambulance service |
173 |
0 |
0 |
| Community based adult social care services |
2214 |
282 |
120 |
| Community health - NHS & Independent |
277 |
0 |
199 |
| Community substance misuse |
24 |
0 |
12 |
| Dentists |
12 |
0 |
0 |
| GP Practices |
492 |
338 |
132 |
| Hospice services |
18 |
0 |
6 |
| Independent consulting doctors |
0 |
47 |
0 |
| Mental health - community & hospital - independent |
0 |
0 |
132 |
| Mental health - community & residential - NHS |
47 |
0 |
0 |
| Out of hours |
12 |
72 |
0 |
| Remote clinical advice |
6 |
18 |
0 |
| Residential social care |
2490 |
60 |
60 |
| Urgent care services & mobile doctors |
12 |
12 |
12 |
whole model without control
model_order_overall <- clm(rating ~ form_spinout + socialcare + region + inherited,
data = filter(merged_short, domain == "Overall"),
link = "logit")
model_order_safe <- clm(rating ~ form_spinout + socialcare + region + inherited,
data = filter(merged_short, domain == "Safe"),
link = "logit")
model_order_effective <- clm(rating ~ form_spinout + socialcare + region + inherited,
data = filter(merged_short, domain == "Effective"),
link = "logit")
model_order_caring <- clm(rating ~ form_spinout + socialcare + region + inherited,
data = filter(merged_short, domain == "Caring"),
link = "logit")
model_order_well_led <- clm(rating ~ form_spinout + socialcare + region + inherited,
data = filter(merged_short, domain == "Well-led"),
link = "logit")
model_order_responsive <- clm(rating ~ form_spinout + socialcare + region + inherited,
data = filter(merged_short, domain == "Responsive"),
link = "logit")
ordinal_models <-
modelsummary(
list(
"overall" = model_order_overall,
"safe" = model_order_safe,
"effective" = model_order_effective,
"caring" = model_order_caring,
"well-led" = model_order_well_led,
"responsive" = model_order_responsive
),
coef_omit = "region",
exponentiate = F,
statistic = "({p.value}) {stars}")
ordinal_models
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
-6.659 |
-5.739 |
|
|
-5.370 |
|
|
(<0.001) *** |
(<0.001) *** |
|
|
(<0.001) *** |
|
| Req improv|Good |
-2.305 |
-1.463 |
-2.332 |
-3.690 |
-1.893 |
-3.083 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
2.783 |
5.173 |
4.048 |
3.368 |
2.789 |
2.864 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| form_spinoutNSP_CIC |
0.289 |
0.364 |
-0.214 |
0.623 |
0.486 |
0.363 |
|
(0.164) |
(0.283) |
(0.553) |
(0.071) + |
(0.081) + |
(0.258) |
| form_spinoutSP_CIC |
0.658 |
0.216 |
0.433 |
1.322 |
0.246 |
0.554 |
|
(0.007) ** |
(0.546) |
(0.301) |
(<0.001) *** |
(0.420) |
(0.116) |
| socialcareTRUE |
-0.328 |
0.384 |
-0.187 |
-0.253 |
-0.480 |
-0.308 |
|
(0.037) * |
(0.103) |
(0.504) |
(0.348) |
(0.020) * |
(0.212) |
| inheritedTRUE |
-0.770 |
-0.329 |
-0.656 |
-0.413 |
-0.194 |
-0.609 |
|
(<0.001) *** |
(0.280) |
(0.058) + |
(0.326) |
(0.473) |
(0.088) + |
| Num.Obs. |
1567 |
1095 |
1091 |
1092 |
1097 |
1094 |
| AIC |
1765.4 |
949.6 |
819.8 |
753.4 |
1412.2 |
948.6 |
| BIC |
1845.8 |
1024.6 |
889.8 |
823.4 |
1487.2 |
1018.6 |
| RMSE |
2.34 |
2.13 |
1.19 |
1.32 |
2.32 |
1.34 |
ordinal_models_exp <-
modelsummary(
list(
"overall" = model_order_overall,
"safe" = model_order_safe,
"effective" = model_order_effective,
"caring" = model_order_caring,
"well-led" = model_order_well_led,
"responsive" = model_order_responsive
),
coef_omit = "region",
exponentiate = T,
statistic = "({p.value}) {stars}")
ordinal_models_exp
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
0.001 |
0.003 |
|
|
0.005 |
|
|
(<0.001) *** |
(<0.001) *** |
|
|
(<0.001) *** |
|
| Req improv|Good |
0.100 |
0.232 |
0.097 |
0.025 |
0.151 |
0.046 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
16.170 |
176.373 |
57.288 |
29.017 |
16.260 |
17.526 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| form_spinoutNSP_CIC |
1.335 |
1.440 |
0.807 |
1.865 |
1.626 |
1.437 |
|
(0.164) |
(0.283) |
(0.553) |
(0.071) + |
(0.081) + |
(0.258) |
| form_spinoutSP_CIC |
1.931 |
1.241 |
1.542 |
3.750 |
1.279 |
1.740 |
|
(0.007) ** |
(0.546) |
(0.301) |
(<0.001) *** |
(0.420) |
(0.116) |
| socialcareTRUE |
0.721 |
1.469 |
0.829 |
0.776 |
0.619 |
0.735 |
|
(0.037) * |
(0.103) |
(0.504) |
(0.348) |
(0.020) * |
(0.212) |
| inheritedTRUE |
0.463 |
0.720 |
0.519 |
0.662 |
0.823 |
0.544 |
|
(<0.001) *** |
(0.280) |
(0.058) + |
(0.326) |
(0.473) |
(0.088) + |
| Num.Obs. |
1567 |
1095 |
1091 |
1092 |
1097 |
1094 |
| AIC |
1765.4 |
949.6 |
819.8 |
753.4 |
1412.2 |
948.6 |
| BIC |
1845.8 |
1024.6 |
889.8 |
823.4 |
1487.2 |
1018.6 |
| RMSE |
2.34 |
2.13 |
1.19 |
1.32 |
2.32 |
1.34 |
whole model with control
model_order_overall_covid <- clm(rating ~ form_spinout + during_covid +
socialcare + region + inherited,
data = filter(merged_short, domain == "Overall"),
link = "logit")
model_order_safe_covid <- clm(rating ~ form_spinout + during_covid + socialcare + region + inherited,
data = filter(merged_short, domain == "Safe"),
link = "logit")
model_order_effective_covid <- clm(rating ~ form_spinout + during_covid + socialcare + region + inherited,
data = filter(merged_short, domain == "Effective"),
link = "logit")
model_order_caring_covid <- clm(rating ~ form_spinout + during_covid + socialcare + region + inherited,
data = filter(merged_short, domain == "Caring"),
link = "logit")
model_order_well_led_covid <- clm(rating ~ form_spinout + during_covid + socialcare + region + inherited,
data = filter(merged_short, domain == "Well-led"),
link = "logit")
model_order_responsive_covid <- clm(rating ~ form_spinout + during_covid + socialcare + region + inherited,
data = filter(merged_short, domain == "Responsive"),
link = "logit")
ordinal_models_covid <-
modelsummary(
list(
"overall" = model_order_overall_covid,
"safe" = model_order_safe_covid,
"effective" = model_order_effective_covid,
"caring" = model_order_caring_covid,
"well-led" = model_order_well_led_covid,
"responsive" = model_order_responsive_covid
),
coef_omit = "region",
exponentiate = F,
statistic = "({p.value}) {stars}"
)
ordinal_models_covid
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
-7.316 |
-5.993 |
|
|
-5.660 |
|
|
(<0.001) *** |
(<0.001) *** |
|
|
(<0.001) *** |
|
| Req improv|Good |
-2.852 |
-1.682 |
-2.461 |
-3.748 |
-2.130 |
-3.180 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
2.565 |
5.105 |
3.986 |
3.325 |
2.688 |
2.799 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| form_spinoutNSP_CIC |
0.368 |
0.547 |
-0.102 |
0.660 |
0.627 |
0.426 |
|
(0.076) + |
(0.114) |
(0.778) |
(0.056) + |
(0.024) * |
(0.183) |
| form_spinoutSP_CIC |
0.662 |
0.158 |
0.421 |
1.308 |
0.239 |
0.533 |
|
(0.008) ** |
(0.663) |
(0.313) |
(<0.001) *** |
(0.435) |
(0.130) |
| during_covidTRUE |
-1.701 |
-1.061 |
-0.727 |
-0.349 |
-1.091 |
-0.525 |
|
(<0.001) *** |
(<0.001) *** |
(0.005) ** |
(0.238) |
(<0.001) *** |
(0.043) * |
| socialcareTRUE |
-0.222 |
0.463 |
-0.160 |
-0.242 |
-0.429 |
-0.291 |
|
(0.166) |
(0.053) + |
(0.568) |
(0.371) |
(0.038) * |
(0.237) |
| inheritedTRUE |
-1.031 |
-0.501 |
-0.758 |
-0.460 |
-0.321 |
-0.677 |
|
(<0.001) *** |
(0.107) |
(0.030) * |
(0.276) |
(0.243) |
(0.059) + |
| Num.Obs. |
1567 |
1095 |
1091 |
1092 |
1097 |
1094 |
| AIC |
1681.5 |
926.7 |
814.3 |
754.0 |
1380.2 |
946.4 |
| BIC |
1767.3 |
1006.7 |
889.2 |
828.9 |
1460.2 |
1021.4 |
| RMSE |
2.33 |
2.12 |
1.19 |
1.32 |
2.32 |
1.34 |
ordinal_models_covid_exp <-
modelsummary(
list(
"overall" = model_order_overall_covid,
"safe" = model_order_safe_covid,
"effective" = model_order_effective_covid,
"caring" = model_order_caring_covid,
"well-led" = model_order_well_led_covid,
"responsive" = model_order_responsive_covid
),
coef_omit = "region",
exponentiate = T,
statistic = "({p.value}) {stars}"
)
ordinal_models_covid_exp
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
0.001 |
0.002 |
|
|
0.003 |
|
|
(<0.001) *** |
(<0.001) *** |
|
|
(<0.001) *** |
|
| Req improv|Good |
0.058 |
0.186 |
0.085 |
0.024 |
0.119 |
0.042 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
12.994 |
164.814 |
53.821 |
27.793 |
14.704 |
16.424 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| form_spinoutNSP_CIC |
1.444 |
1.728 |
0.903 |
1.934 |
1.871 |
1.532 |
|
(0.076) + |
(0.114) |
(0.778) |
(0.056) + |
(0.024) * |
(0.183) |
| form_spinoutSP_CIC |
1.939 |
1.171 |
1.524 |
3.699 |
1.270 |
1.703 |
|
(0.008) ** |
(0.663) |
(0.313) |
(<0.001) *** |
(0.435) |
(0.130) |
| during_covidTRUE |
0.183 |
0.346 |
0.484 |
0.705 |
0.336 |
0.591 |
|
(<0.001) *** |
(<0.001) *** |
(0.005) ** |
(0.238) |
(<0.001) *** |
(0.043) * |
| socialcareTRUE |
0.801 |
1.588 |
0.852 |
0.785 |
0.651 |
0.747 |
|
(0.166) |
(0.053) + |
(0.568) |
(0.371) |
(0.038) * |
(0.237) |
| inheritedTRUE |
0.357 |
0.606 |
0.468 |
0.631 |
0.725 |
0.508 |
|
(<0.001) *** |
(0.107) |
(0.030) * |
(0.276) |
(0.243) |
(0.059) + |
| Num.Obs. |
1567 |
1095 |
1091 |
1092 |
1097 |
1094 |
| AIC |
1681.5 |
926.7 |
814.3 |
754.0 |
1380.2 |
946.4 |
| BIC |
1767.3 |
1006.7 |
889.2 |
828.9 |
1460.2 |
1021.4 |
| RMSE |
2.33 |
2.12 |
1.19 |
1.32 |
2.32 |
1.34 |
Below is additional analysis added 8/16/2023
Additional Analysis for Covid - The CIC subgroup regression, with
short/comparable data
model_cic_overall_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Overall" & form == "CIC"),
link = "logit")
model_cic_safe_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Safe" & form == "CIC"),
link = "logit")
model_cic_effective_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Effective" & form == "CIC"),
link = "logit")
model_cic_caring_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Caring" & form == "CIC"),
link = "logit")
model_cic_well_led_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Well-led" & form == "CIC"),
link = "logit")
model_cic_responsive_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Responsive" & form == "CIC"),
link = "logit")
cic_models_covid <-
modelsummary(
list(
"overall" = model_cic_overall_covid,
"safe" = model_cic_safe_covid,
"effective" = model_cic_effective_covid,
"caring" = model_cic_caring_covid,
"well-led" = model_cic_well_led_covid,
"responsive" = model_cic_responsive_covid
),
coef_omit = "region",
exponentiate = F,
statistic = "({p.value}) {stars}"
)
cic_models_covid
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
-6.639 |
-5.142 |
|
|
-5.032 |
|
|
(<0.001) *** |
(<0.001) *** |
|
|
(<0.001) *** |
|
| Req improv|Good |
-3.223 |
-2.350 |
-2.962 |
-4.228 |
-2.311 |
-4.043 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
1.415 |
3.197 |
2.540 |
1.479 |
1.631 |
1.702 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| during_covidTRUE |
-2.913 |
-1.347 |
-1.523 |
-0.938 |
-1.101 |
-1.984 |
|
(<0.001) *** |
(0.001) ** |
(0.002) ** |
(0.073) + |
(0.004) ** |
(0.001) ** |
| Num.Obs. |
433 |
213 |
213 |
213 |
214 |
213 |
| AIC |
596.9 |
233.7 |
210.1 |
230.9 |
336.9 |
220.6 |
| BIC |
613.2 |
247.2 |
220.1 |
241.0 |
350.3 |
230.7 |
| RMSE |
2.54 |
2.20 |
1.30 |
1.57 |
2.50 |
1.48 |
Additional Analysis for Covid - The CIC subgroup regression, with
altogether data
model_cic_overall_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Overall" & form == "CIC"),
link = "logit")
model_cic_safe_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Safe" & form == "CIC"),
link = "logit")
model_cic_effective_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Effective" & form == "CIC"),
link = "logit")
model_cic_caring_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Caring" & form == "CIC"),
link = "logit")
model_cic_well_led_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Well-led" & form == "CIC"),
link = "logit")
model_cic_responsive_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Responsive" & form == "CIC"),
link = "logit")
cic_models_covid2 <-
modelsummary(
list(
"overall" = model_cic_overall_covid2,
"safe" = model_cic_safe_covid2,
"effective" = model_cic_effective_covid2,
"caring" = model_cic_caring_covid2,
"well-led" = model_cic_well_led_covid2,
"responsive" = model_cic_responsive_covid2
),
coef_omit = "region",
exponentiate = F,
statistic = "({p.value}) {stars}"
)
cic_models_covid2
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
-6.639 |
-5.142 |
|
|
-5.032 |
|
|
(<0.001) *** |
(<0.001) *** |
|
|
(<0.001) *** |
|
| Req improv|Good |
-3.223 |
-2.350 |
-2.962 |
-4.228 |
-2.311 |
-4.043 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
1.415 |
3.197 |
2.540 |
1.479 |
1.631 |
1.702 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| during_covidTRUE |
-2.913 |
-1.347 |
-1.523 |
-0.938 |
-1.101 |
-1.984 |
|
(<0.001) *** |
(0.001) ** |
(0.002) ** |
(0.073) + |
(0.004) ** |
(0.001) ** |
| Num.Obs. |
433 |
213 |
213 |
213 |
214 |
213 |
| AIC |
596.9 |
233.7 |
210.1 |
230.9 |
336.9 |
220.6 |
| BIC |
613.2 |
247.2 |
220.1 |
241.0 |
350.3 |
230.7 |
| RMSE |
2.54 |
2.20 |
1.30 |
1.57 |
2.50 |
1.48 |
Additional Analysis for Covid - The Gov subgroup regression , with
short/comparable data
model_gov_overall_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Overall" & form == "GOV"),
link = "logit")
model_gov_safe_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Safe" & form == "GOV"),
link = "logit")
model_gov_effective_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Effective" & form == "GOV"),
link = "logit")
model_gov_caring_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Caring" & form == "GOV"),
link = "logit")
model_gov_well_led_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Well-led" & form == "GOV"),
link = "logit")
model_gov_responsive_covid <- clm(rating ~ during_covid,
data = filter(merged_short, domain == "Responsive" & form == "GOV"),
link = "logit")
gov_models_covid <-
modelsummary(
list(
"overall" = model_gov_overall_covid,
"safe" = model_gov_safe_covid,
"effective" = model_gov_effective_covid,
"caring" = model_gov_caring_covid,
"well-led" = model_gov_well_led_covid,
"responsive" = model_gov_responsive_covid
),
coef_omit = "region",
exponentiate = F,
statistic = "({p.value}) {stars}"
)
gov_models_covid
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Req improv|Good |
-2.688 |
-2.279 |
-2.811 |
-4.067 |
-2.175 |
-3.220 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
2.782 |
5.047 |
3.658 |
2.817 |
2.699 |
2.611 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| during_covidTRUE |
-1.166 |
-0.828 |
-0.343 |
-0.080 |
-1.017 |
-0.029 |
|
(<0.001) *** |
(<0.001) *** |
(0.269) |
(0.820) |
(<0.001) *** |
(0.920) |
| Inadequate|Req improv |
|
|
|
|
-5.982 |
|
|
|
|
|
|
(<0.001) *** |
|
| Num.Obs. |
1134 |
882 |
878 |
879 |
883 |
881 |
| AIC |
1081.8 |
673.9 |
600.8 |
534.2 |
1052.8 |
727.3 |
| BIC |
1096.9 |
688.2 |
615.1 |
548.6 |
1072.0 |
741.7 |
| RMSE |
1.27 |
1.11 |
1.16 |
1.25 |
2.28 |
1.31 |
Additional Analysis for Covid - The Gov subgroup regression , with
altogether data
model_gov_overall_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Overall" & form == "GOV"),
link = "logit")
model_gov_safe_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Safe" & form == "GOV"),
link = "logit")
model_gov_effective_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Effective" & form == "GOV"),
link = "logit")
model_gov_caring_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Caring" & form == "GOV"),
link = "logit")
model_gov_well_led_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Well-led" & form == "GOV"),
link = "logit")
model_gov_responsive_covid2 <- clm(rating ~ during_covid,
data = filter(merged_cleaned, domain == "Responsive" & form == "GOV"),
link = "logit")
gov_models_covid2 <-
modelsummary(
list(
"overall" = model_gov_overall_covid2,
"safe" = model_gov_safe_covid2,
"effective" = model_gov_effective_covid2,
"caring" = model_gov_caring_covid2,
"well-led" = model_gov_well_led_covid2,
"responsive" = model_gov_responsive_covid2
),
coef_omit = "region",
exponentiate = F,
statistic = "({p.value}) {stars}"
)
gov_models_covid2
| |
overall |
safe |
effective |
caring |
well-led |
responsive |
| Inadequate|Req improv |
-4.534 |
-4.101 |
-5.032 |
-7.507 |
-4.253 |
-4.871 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Req improv|Good |
-1.645 |
-1.128 |
-2.009 |
-4.229 |
-1.609 |
-1.573 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Good|Outstanding |
2.319 |
4.736 |
2.928 |
1.920 |
2.274 |
2.405 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| during_covidTRUE |
-1.266 |
-1.183 |
-0.813 |
-0.713 |
-1.149 |
-0.737 |
|
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
(<0.001) *** |
| Num.Obs. |
3373 |
3089 |
2747 |
3069 |
3087 |
3076 |
| AIC |
5358.3 |
4370.9 |
3330.9 |
2731.8 |
5051.1 |
4755.8 |
| BIC |
5382.8 |
4395.0 |
3354.6 |
2755.9 |
5075.3 |
4779.9 |
| RMSE |
2.35 |
2.14 |
2.25 |
2.40 |
2.36 |
2.35 |