Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(here) 
## here() starts at /Users/sarahdaniels/Desktop/Total_Analyses_2
library(janitor) 
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(haven) 
library(naniar) 
library(ggpubr) 
library(report) 
library(ggplot2)
library(reshape2)
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(sjPlot)
library(parameters)
library(mediation)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
library(lavaan)
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
library(modEvA)
library(report)

Set up

Reading the full data (intervention group, psychoeducation control group, and EC group) and calculating total scores

Full_data_all_t <- read_csv("MI_Data_B1W1M1.csv") %>% 
  rowwise() %>%
  mutate(A_PRE_IUS_total = sum(B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5, B_IUS_6, B_IUS_7, B_IUS_8, B_IUS_9, B_IUS_10, B_IUS_11, B_IUS_12, na.rm = TRUE)) %>%
  mutate(A_PRE_FI_total = sum(B_FI_friends, B_FI_strangers, B_FI_work, B_FI_education, B_FI_hobbies, na.rm = TRUE)) %>% 
  mutate(A_PRE_RTQ_total = sum(B_RTQ_1, B_RTQ_2, B_RTQ_3, B_RTQ_4, B_RTQ_5, B_RTQ_6, B_RTQ_7, B_RTQ_8, B_RTQ_9, B_RTQ_10, na.rm = TRUE)) %>% 
  mutate(A_PRE_ERQ_Rtotal = sum(B_ERQ_1, B_ERQ_3, B_ERQ_5, B_ERQ_7, B_ERQ_8, B_ERQ_10, na.rm = TRUE)) %>% 
  mutate(A_PRE_PHQ_total = sum(B_PHQ_1, B_PHQ_2, B_PHQ_3, B_PHQ_4, B_PHQ_5, B_PHQ_6, B_PHQ_7, B_PHQ_8, na.rm = TRUE)) %>% 
  mutate(A_PRE_GAD_total = sum(B_GAD_1, B_GAD_2, B_GAD_3, B_GAD_4, B_GAD_5, B_GAD_6, B_GAD_7, na.rm = TRUE)) %>% 
  mutate(B_POST_IUS_total = sum(POST_IUS_1, POST_IUS_2, POST_IUS_3, POST_IUS_4, POST_IUS_5, POST_IUS_6, POST_IUS_7, POST_IUS_8, POST_IUS_9, POST_IUS_10, POST_IUS_11, POST_IUS_12, na.rm = TRUE)) %>%
  mutate(C_W1_IUS_total = sum(W1_IUS_1, W1_IUS_2, W1_IUS_3, W1_IUS_4, W1_IUS_5, W1_IUS_6, W1_IUS_7, W1_IUS_8, W1_IUS_9, W1_IUS_10, W1_IUS_11, W1_IUS_12, na.rm = TRUE)) %>%
  mutate(C_W1_FI_total = sum(W1_FI_friends, W1_FI_strangers, W1_FI_work, W1_FI_education, W1_FI_hobbies, na.rm = TRUE)) %>% 
  mutate(C_W1_RTQ_total = sum(W1_RTQ_1, W1_RTQ_2, W1_RTQ_3, W1_RTQ_4, W1_RTQ_5, W1_RTQ_6, W1_RTQ_7, W1_RTQ_8, W1_RTQ_9, W1_RTQ_10, na.rm = TRUE)) %>% 
  mutate(C_W1_ERQ_Rtotal = sum(W1_ERQ_1, W1_ERQ_3, W1_ERQ_5, W1_ERQ_7, W1_ERQ_8, W1_ERQ_10, na.rm = TRUE)) %>% 
  mutate(C_W1_PHQ_total = sum(W1_PHQ_1, W1_PHQ_2, W1_PHQ_3, W1_PHQ_4, W1_PHQ_5, W1_PHQ_6, W1_PHQ_7, W1_PHQ_8, na.rm = TRUE)) %>% 
  mutate(C_W1_GAD_total = sum(W1_GAD_1, W1_GAD_2, W1_GAD_3, W1_GAD_4, W1_GAD_5, W1_GAD_6, W1_GAD_7, na.rm = TRUE)) %>% 
  mutate(D_M1_IUS_total = sum(M1_IUS_1, M1_IUS_2, M1_IUS_3, M1_IUS_4, M1_IUS_5, M1_IUS_6, M1_IUS_7, M1_IUS_8, M1_IUS_9, M1_IUS_10, M1_IUS_11, M1_IUS_12, na.rm = TRUE)) %>%
  mutate(D_M1_FI_total = sum(M1_FI_friends, M1_FI_strangers, M1_FI_work, M1_FI_education, M1_FI_hobbies, na.rm = TRUE)) %>% 
  mutate(D_M1_RTQ_total = sum(M1_RTQ_1, M1_RTQ_2, M1_RTQ_3, M1_RTQ_4, M1_RTQ_5, M1_RTQ_6, M1_RTQ_7, M1_RTQ_8, M1_RTQ_9, M1_RTQ_10, na.rm = TRUE)) %>% 
  mutate(D_M1_ERQ_Rtotal = sum(M1_ERQ_1, M1_ERQ_3, M1_ERQ_5, M1_ERQ_7, M1_ERQ_8, M1_ERQ_10, na.rm = TRUE)) %>% 
  mutate(D_M1_PHQ_total = sum(M1_PHQ_1, M1_PHQ_2, M1_PHQ_3, M1_PHQ_4, M1_PHQ_5, M1_PHQ_6, M1_PHQ_7, M1_PHQ_8, na.rm = TRUE)) %>% 
  mutate(D_M1_GAD_total = sum(M1_GAD_1, M1_GAD_2, M1_GAD_3, M1_GAD_4, M1_GAD_5, M1_GAD_6, M1_GAD_7, na.rm = TRUE)) %>% 
  ungroup()
## New names:
## Rows: 259 Columns: 207
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): Prolific_ID, Group dbl (205): ...1, ID, B_IUS_1, B_IUS_2, B_IUS_3,
## B_IUS_4, B_IUS_5, B_IUS_6, B...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

Calculating mood means

Full_data_all <- mutate(Full_data_all_t, A_PRE_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(B_distressed_pleasant, B_anxious_relaxed)), na.rm = TRUE)) %>% 
  mutate(Full_data_all_t, B_POST_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(POST_distressed_pleasant, POST_anxious_relaxed)), na.rm = TRUE)) %>%
  mutate(Full_data_all_t, C_W1_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(W1_distressed_pleasant, W1_anxious_relaxed)), na.rm = TRUE)) %>% 
 mutate(Full_data_all_t, D_M1_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(M1_distressed_pleasant, M1_anxious_relaxed)), na.rm = TRUE))

Hypothesis 1

H1a: IUS and Mood association at PRE

#Distressed
PRE_IUS_Distress_lm <- lm(A_PRE_IUS_total ~ B_distressed_pleasant, data = Full_data_all)
summary(PRE_IUS_Distress_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_distressed_pleasant, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.8365  -5.8426   0.4123   6.3128  20.1076 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            44.3702     0.7218  61.471  < 2e-16 ***
## B_distressed_pleasant  -0.0559     0.0129  -4.334 2.11e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.571 on 257 degrees of freedom
## Multiple R-squared:  0.0681, Adjusted R-squared:  0.06448 
## F-statistic: 18.78 on 1 and 257 DF,  p-value: 2.105e-05
anova(PRE_IUS_Distress_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of B_distressed_pleasant is statistically significant and
## medium (F(1, 257) = 18.78, p < .001; Eta2 = 0.07, 95% CI [0.03, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.
#Anxious
PRE_IUS_Anxiety_lm <- lm(A_PRE_IUS_total ~ B_anxious_relaxed, data = Full_data_all)
summary(PRE_IUS_Anxiety_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_anxious_relaxed, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.2289  -5.7679   0.5456   5.9105  20.4901 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       44.00514    0.61670  71.355  < 2e-16 ***
## B_anxious_relaxed -0.05551    0.01021  -5.437 1.26e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.416 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1035, Adjusted R-squared:    0.1 
## F-statistic: 29.56 on 1 and 256 DF,  p-value: 1.262e-07
anova(PRE_IUS_Anxiety_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of B_anxious_relaxed is statistically significant and medium
## (F(1, 256) = 29.56, p < .001; Eta2 = 0.10, 95% CI [0.05, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.
#Combined
PRE_IUS_mood_lm <- lm(A_PRE_IUS_total ~ A_PRE_mood_mean, data = Full_data_all)
summary(PRE_IUS_mood_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_mood_mean, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.2840  -6.0303   0.1752   6.0332  20.9727 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     44.57405    0.67547  65.989  < 2e-16 ***
## A_PRE_mood_mean -0.06646    0.01228  -5.412 1.43e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.412 on 257 degrees of freedom
## Multiple R-squared:  0.1023, Adjusted R-squared:  0.0988 
## F-statistic: 29.29 on 1 and 257 DF,  p-value: 1.431e-07
anova(PRE_IUS_mood_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of A_PRE_mood_mean is statistically significant and medium
## (F(1, 257) = 29.29, p < .001; Eta2 = 0.10, 95% CI [0.05, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.

H1a: IUS and mental health association at PRE

#Depression
PRE_IUS_PHQ_lm <- lm(A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
summary(PRE_IUS_PHQ_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.943  -4.553   0.081   4.910  22.117 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      30.1756     1.5954  18.914  < 2e-16 ***
## A_PRE_PHQ_total   0.6707     0.0842   7.965 5.36e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.951 on 257 degrees of freedom
## Multiple R-squared:  0.198,  Adjusted R-squared:  0.1949 
## F-statistic: 63.44 on 1 and 257 DF,  p-value: 5.356e-14
anova(PRE_IUS_PHQ_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_PHQ_total   1  4010.8  4010.8  63.444 5.356e-14 ***
## Residuals       257 16246.9    63.2                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Anxiety
PRE_IUS_GAD_lm <- lm(A_PRE_IUS_total ~ A_PRE_GAD_total,  data = Full_data_all)
summary(PRE_IUS_GAD_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GAD_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.3319  -4.8319   0.7045   4.1681  20.6317 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     29.26836    1.43778  20.357   <2e-16 ***
## A_PRE_GAD_total  0.82727    0.08645   9.569   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.623 on 257 degrees of freedom
## Multiple R-squared:  0.2627, Adjusted R-squared:  0.2598 
## F-statistic: 91.57 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_GAD_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_GAD_total   1  5321.7  5321.7   91.57 < 2.2e-16 ***
## Residuals       257 14935.9    58.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H1b: IUS and BT at PRE

# Adding in groups + excluding participants who only sampled (never made a choice = did not understand task)
BT_PRE_POST <- merge(BT_full,Full_data_all,
                      by=c("ID"),
                      all = TRUE) %>% 
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(ID != "8892522", ID != "8892570", ID != "8892628", ID != "8892668", ID != "8892681", ID != "8892779", ID != "8892794", ID != "8893157", ID != "8893186", ID != "8892873", ID != "9113535", ID != "9113549", ID != "9113550") # excluding those not making a choice

Keeping those who never sample (only make choices)

#Analysis
PRE_IUS_BT_lm <- lm(A_PRE_IUS_total ~ A_PRE_samples, data = BT_PRE_POST)
summary(PRE_IUS_BT_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_samples, data = BT_PRE_POST)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.813  -5.889   1.036   6.280  17.187 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   42.81292    0.61535  69.575  < 2e-16 ***
## A_PRE_samples -0.04991    0.01818  -2.745  0.00651 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.754 on 244 degrees of freedom
## Multiple R-squared:  0.02995,    Adjusted R-squared:  0.02598 
## F-statistic: 7.534 on 1 and 244 DF,  p-value: 0.006505
anova(PRE_IUS_BT_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of A_PRE_samples is statistically significant and small (F(1,
## 244) = 7.53, p = 0.007; Eta2 = 0.03, 95% CI [4.79e-03, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.

Excluding those who never sample

BT_removed_PRE <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0") # only excluding from PRE 
#Analysis
PRE_IUS_BT_removed_lm <- lm(A_PRE_IUS_total ~ A_PRE_samples, data = BT_removed_PRE)
summary(PRE_IUS_BT_removed_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_samples, data = BT_removed_PRE)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.606  -5.932   1.014   5.934  15.934 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   43.14794    0.72669  59.376  < 2e-16 ***
## A_PRE_samples -0.05408    0.01801  -3.003  0.00307 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.265 on 171 degrees of freedom
## Multiple R-squared:  0.0501, Adjusted R-squared:  0.04454 
## F-statistic: 9.018 on 1 and 171 DF,  p-value: 0.003074
anova(PRE_IUS_BT_removed_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                Df  Sum Sq Mean Sq F value   Pr(>F)   
## A_PRE_samples   1   616.1  616.12  9.0184 0.003074 **
## Residuals     171 11682.4   68.32                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hypothesis 2

H2a: difference in change in cognitive IUS over time between groups

IUS_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total")
## Formatting table as needed
IUS_alltimepoints_long <- IUS_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_alltimepoints_long, REML = TRUE)
summary(IUS_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_alltimepoints_long
## 
## REML criterion at convergence: 7807.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4802 -0.3254  0.0609  0.4737  2.3749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 72.64    8.523   
##  Residual             77.08    8.779   
## Number of obs: 1036, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error       df t value
## (Intercept)                               41.0800     1.7304 600.1493  23.740
## GroupB_Controls                            0.9483     2.0993 600.1493   0.452
## GroupC_Intervention                        1.9880     2.1090 600.1493   0.943
## TimeB_POST_IUS_total                      -0.2800     1.7559 768.0000  -0.159
## TimeC_W1_IUS_total                        -0.7200     1.7559 768.0000  -0.410
## TimeD_M1_IUS_total                        -2.9000     1.7559 768.0000  -1.652
## GroupB_Controls:TimeB_POST_IUS_total      -3.5879     2.1301 768.0000  -1.684
## GroupC_Intervention:TimeB_POST_IUS_total  -6.7200     2.1400 768.0000  -3.140
## GroupB_Controls:TimeC_W1_IUS_total        -1.8272     2.1301 768.0000  -0.858
## GroupC_Intervention:TimeC_W1_IUS_total    -4.6878     2.1400 768.0000  -2.191
## GroupB_Controls:TimeD_M1_IUS_total        -3.2415     2.1301 768.0000  -1.522
## GroupC_Intervention:TimeD_M1_IUS_total    -6.2553     2.1400 768.0000  -2.923
##                                          Pr(>|t|)    
## (Intercept)                               < 2e-16 ***
## GroupB_Controls                           0.65162    
## GroupC_Intervention                       0.34627    
## TimeB_POST_IUS_total                      0.87334    
## TimeC_W1_IUS_total                        0.68188    
## TimeD_M1_IUS_total                        0.09902 .  
## GroupB_Controls:TimeB_POST_IUS_total      0.09251 .  
## GroupC_Intervention:TimeB_POST_IUS_total  0.00175 ** 
## GroupB_Controls:TimeC_W1_IUS_total        0.39128    
## GroupC_Intervention:TimeC_W1_IUS_total    0.02879 *  
## GroupB_Controls:TimeD_M1_IUS_total        0.12848    
## GroupC_Intervention:TimeD_M1_IUS_total    0.00357 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS TC_W1_ TD_M1_ GB_C:TB GC_I:TB GB_C:TC
## GrpB_Cntrls -0.824                                                           
## GrpC_Intrvn -0.820  0.676                                                    
## TB_POST_IUS -0.507  0.418  0.416                                             
## TmC_W1_IUS_ -0.507  0.418  0.416  0.500                                      
## TmD_M1_IUS_ -0.507  0.418  0.416  0.500  0.500                               
## GB_C:TB_POS  0.418 -0.507 -0.343 -0.824 -0.412 -0.412                        
## GC_I:TB_POS  0.416 -0.343 -0.507 -0.820 -0.410 -0.410  0.676                 
## GB_C:TC_W1_  0.418 -0.507 -0.343 -0.412 -0.824 -0.412  0.500   0.338         
## GC_I:TC_W1_  0.416 -0.343 -0.507 -0.410 -0.820 -0.410  0.338   0.500   0.676 
## GB_C:TD_M1_  0.418 -0.507 -0.343 -0.412 -0.412 -0.824  0.500   0.338   0.500 
## GC_I:TD_M1_  0.416 -0.343 -0.507 -0.410 -0.410 -0.820  0.338   0.500   0.338 
##             GC_I:TC GB_C:TD
## GrpB_Cntrls                
## GrpC_Intrvn                
## TB_POST_IUS                
## TmC_W1_IUS_                
## TmD_M1_IUS_                
## GB_C:TB_POS                
## GC_I:TB_POS                
## GB_C:TC_W1_                
## GC_I:TC_W1_                
## GB_C:TD_M1_  0.338         
## GC_I:TD_M1_  0.500   0.676
anova  (IUS_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group       175.6   87.79     2   256  1.1390   0.32176    
## Time       4324.7 1441.58     3   768 18.7031 1.022e-11 ***
## Group:Time 1012.0  168.66     6   768  2.1882   0.04221 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM)
  IUS Score
Predictors Estimates CI p
(Intercept) 41.08 37.68 – 44.48 <0.001
Group [B_Controls] 0.95 -3.17 – 5.07 0.652
Group [C_Intervention] 1.99 -2.15 – 6.13 0.346
Time [B_POST_IUS_total] -0.28 -3.73 – 3.17 0.873
Time [C_W1_IUS_total] -0.72 -4.17 – 2.73 0.682
Time [D_M1_IUS_total] -2.90 -6.35 – 0.55 0.099
Group [B_Controls] × Time
[B_POST_IUS_total]
-3.59 -7.77 – 0.59 0.092
Group [C_Intervention] ×
Time [B_POST_IUS_total]
-6.72 -10.92 – -2.52 0.002
Group [B_Controls] × Time
[C_W1_IUS_total]
-1.83 -6.01 – 2.35 0.391
Group [C_Intervention] ×
Time [C_W1_IUS_total]
-4.69 -8.89 – -0.49 0.029
Group [B_Controls] × Time
[D_M1_IUS_total]
-3.24 -7.42 – 0.94 0.128
Group [C_Intervention] ×
Time [D_M1_IUS_total]
-6.26 -10.45 – -2.06 0.004
Random Effects
σ2 77.08
τ00 ID 72.64
ICC 0.49
N ID 259
Observations 1036
Marginal R2 / Conditional R2 0.049 / 0.510
parameters::standardise_parameters(IUS_MEM)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.20 | [-0.08,  0.47]
## GroupB_Controls                          |       0.08 | [-0.25,  0.41]
## GroupC_Intervention                      |       0.16 | [-0.17,  0.49]
## TimeB_POST_IUS_total                     |      -0.02 | [-0.30,  0.25]
## TimeC_W1_IUS_total                       |      -0.06 | [-0.33,  0.22]
## TimeD_M1_IUS_total                       |      -0.23 | [-0.51,  0.04]
## GroupB_Controls:TimeB_POST_IUS_total     |      -0.29 | [-0.62,  0.05]
## GroupC_Intervention:TimeB_POST_IUS_total |      -0.54 | [-0.87, -0.20]
## GroupB_Controls:TimeC_W1_IUS_total       |      -0.15 | [-0.48,  0.19]
## GroupC_Intervention:TimeC_W1_IUS_total   |      -0.38 | [-0.71, -0.04]
## GroupB_Controls:TimeD_M1_IUS_total       |      -0.26 | [-0.59,  0.08]
## GroupC_Intervention:TimeD_M1_IUS_total   |      -0.50 | [-0.84, -0.16]
report(IUS_MEM)
## We fitted a linear mixed model (estimated using REML and nloptwrap optimizer)
## to predict IUS_Score with Group and Time (formula: IUS_Score ~ Group * Time).
## The model included ID as random effect (formula: ~1 | ID). The model's total
## explanatory power is substantial (conditional R2 = 0.51) and the part related
## to the fixed effects alone (marginal R2) is of 0.05. The model's intercept,
## corresponding to Group = A_ECs and Time = A_PRE_IUS_total, is at 41.08 (95% CI
## [37.68, 44.48], t(1022) = 23.74, p < .001). Within this model:
## 
##   - The effect of Group [B_Controls] is statistically non-significant and
## positive (beta = 0.95, 95% CI [-3.17, 5.07], t(1022) = 0.45, p = 0.652; Std.
## beta = 0.08, 95% CI [-0.25, 0.41])
##   - The effect of Group [C_Intervention] is statistically non-significant and
## positive (beta = 1.99, 95% CI [-2.15, 6.13], t(1022) = 0.94, p = 0.346; Std.
## beta = 0.16, 95% CI [-0.17, 0.49])
##   - The effect of Time [B_POST_IUS_total] is statistically non-significant and
## negative (beta = -0.28, 95% CI [-3.73, 3.17], t(1022) = -0.16, p = 0.873; Std.
## beta = -0.02, 95% CI [-0.30, 0.25])
##   - The effect of Time [C_W1_IUS_total] is statistically non-significant and
## negative (beta = -0.72, 95% CI [-4.17, 2.73], t(1022) = -0.41, p = 0.682; Std.
## beta = -0.06, 95% CI [-0.33, 0.22])
##   - The effect of Time [D_M1_IUS_total] is statistically non-significant and
## negative (beta = -2.90, 95% CI [-6.35, 0.55], t(1022) = -1.65, p = 0.099; Std.
## beta = -0.23, 95% CI [-0.51, 0.04])
##   - The effect of Group [B_Controls] × Time [B_POST_IUS_total] is statistically
## non-significant and negative (beta = -3.59, 95% CI [-7.77, 0.59], t(1022) =
## -1.68, p = 0.092; Std. beta = -0.29, 95% CI [-0.62, 0.05])
##   - The effect of Group [C_Intervention] × Time [B_POST_IUS_total] is
## statistically significant and negative (beta = -6.72, 95% CI [-10.92, -2.52],
## t(1022) = -3.14, p = 0.002; Std. beta = -0.54, 95% CI [-0.87, -0.20])
##   - The effect of Group [B_Controls] × Time [C_W1_IUS_total] is statistically
## non-significant and negative (beta = -1.83, 95% CI [-6.01, 2.35], t(1022) =
## -0.86, p = 0.391; Std. beta = -0.15, 95% CI [-0.48, 0.19])
##   - The effect of Group [C_Intervention] × Time [C_W1_IUS_total] is statistically
## significant and negative (beta = -4.69, 95% CI [-8.89, -0.49], t(1022) = -2.19,
## p = 0.029; Std. beta = -0.38, 95% CI [-0.71, -0.04])
##   - The effect of Group [B_Controls] × Time [D_M1_IUS_total] is statistically
## non-significant and negative (beta = -3.24, 95% CI [-7.42, 0.94], t(1022) =
## -1.52, p = 0.128; Std. beta = -0.26, 95% CI [-0.59, 0.08])
##   - The effect of Group [C_Intervention] × Time [D_M1_IUS_total] is statistically
## significant and negative (beta = -6.26, 95% CI [-10.45, -2.06], t(1022) =
## -2.92, p = 0.004; Std. beta = -0.50, 95% CI [-0.84, -0.16])
## 
## Standardized parameters were obtained by fitting the model on a standardized
## version of the dataset. 95% Confidence Intervals (CIs) and p-values were
## computed using a Wald t-distribution approximation.

Baseline to post

IUS_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total")
## Formatting table as needed
IUS_BP_long <- IUS_BP %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_BP <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long, REML = TRUE)
summary(IUS_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_BP_long
## 
## REML criterion at convergence: 3656.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2320 -0.4094  0.0034  0.4135  3.2300 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 71.59    8.461   
##  Residual             28.73    5.360   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error       df t value
## (Intercept)                               41.0800     1.4165 339.2570  29.002
## GroupB_Controls                            0.9483     1.7184 339.2570   0.552
## GroupC_Intervention                        1.9880     1.7264 339.2570   1.152
## TimeB_POST_IUS_total                      -0.2800     1.0721 256.0000  -0.261
## GroupB_Controls:TimeB_POST_IUS_total      -3.5879     1.3006 256.0000  -2.759
## GroupC_Intervention:TimeB_POST_IUS_total  -6.7200     1.3067 256.0000  -5.143
##                                          Pr(>|t|)    
## (Intercept)                               < 2e-16 ***
## GroupB_Controls                           0.58141    
## GroupC_Intervention                       0.25033    
## TimeB_POST_IUS_total                      0.79417    
## GroupB_Controls:TimeB_POST_IUS_total      0.00622 ** 
## GroupC_Intervention:TimeB_POST_IUS_total 5.38e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TB_POST_IUS -0.378  0.312  0.311              
## GB_C:TB_POS  0.312 -0.378 -0.256 -0.824       
## GC_I:TB_POS  0.311 -0.256 -0.378 -0.820  0.676
anova  (IUS_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        21.31   10.66     2   256  0.3708    0.6905    
## Time       1587.48 1587.48     1   256 55.2457 1.595e-12 ***
## Group:Time  787.45  393.72     2   256 13.7020 2.222e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_BP)
  IUS Score
Predictors Estimates CI p
(Intercept) 41.08 38.30 – 43.86 <0.001
Group [B_Controls] 0.95 -2.43 – 4.32 0.581
Group [C_Intervention] 1.99 -1.40 – 5.38 0.250
Time [B_POST_IUS_total] -0.28 -2.39 – 1.83 0.794
Group [B_Controls] × Time
[B_POST_IUS_total]
-3.59 -6.14 – -1.03 0.006
Group [C_Intervention] ×
Time [B_POST_IUS_total]
-6.72 -9.29 – -4.15 <0.001
Random Effects
σ2 28.73
τ00 ID 71.59
ICC 0.71
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.062 / 0.731
parameters::standardise_parameters(IUS_MEM_BP)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.10 | [-0.17,  0.37]
## GroupB_Controls                          |       0.09 | [-0.24,  0.42]
## GroupC_Intervention                      |       0.19 | [-0.14,  0.52]
## TimeB_POST_IUS_total                     |      -0.03 | [-0.23,  0.18]
## GroupB_Controls:TimeB_POST_IUS_total     |      -0.35 | [-0.60, -0.10]
## GroupC_Intervention:TimeB_POST_IUS_total |      -0.65 | [-0.90, -0.40]
plot_model(IUS_MEM_BP, type = "int")

Baseline to 1W

IUS_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total")
## Formatting table as needed
IUS_B1W_long <- IUS_B1W %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_B1W <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1W_long, REML = TRUE)
summary(IUS_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1W_long
## 
## REML criterion at convergence: 3746.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9845 -0.3439  0.0235  0.4237  2.5991 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 69.60    8.342   
##  Residual             39.31    6.270   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             41.0800     1.4759 363.5479  27.834
## GroupB_Controls                          0.9483     1.7904 363.5479   0.530
## GroupC_Intervention                      1.9880     1.7988 363.5479   1.105
## TimeC_W1_IUS_total                      -0.7200     1.2540 256.0000  -0.574
## GroupB_Controls:TimeC_W1_IUS_total      -1.8272     1.5213 256.0000  -1.201
## GroupC_Intervention:TimeC_W1_IUS_total  -4.6878     1.5284 256.0000  -3.067
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                         0.59668    
## GroupC_Intervention                     0.26981    
## TimeC_W1_IUS_total                      0.56637    
## GroupB_Controls:TimeC_W1_IUS_total      0.23084    
## GroupC_Intervention:TimeC_W1_IUS_total  0.00239 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_IUS_ -0.425  0.350  0.349              
## GB_C:TC_W1_  0.350 -0.425 -0.287 -0.824       
## GC_I:TC_W1_  0.349 -0.287 -0.425 -0.820  0.676
anova  (IUS_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        3.95    1.98     2   256  0.0503  0.950967    
## Time       961.28  961.28     1   256 24.4509 1.381e-06 ***
## Group:Time 425.11  212.56     2   256  5.4065  0.005014 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_B1W)
  IUS Score
Predictors Estimates CI p
(Intercept) 41.08 38.18 – 43.98 <0.001
Group [B_Controls] 0.95 -2.57 – 4.47 0.597
Group [C_Intervention] 1.99 -1.55 – 5.52 0.270
Time [C_W1_IUS_total] -0.72 -3.18 – 1.74 0.566
Group [B_Controls] × Time
[C_W1_IUS_total]
-1.83 -4.82 – 1.16 0.230
Group [C_Intervention] ×
Time [C_W1_IUS_total]
-4.69 -7.69 – -1.69 0.002
Random Effects
σ2 39.31
τ00 ID 69.60
ICC 0.64
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.032 / 0.651
parameters::standardise_parameters(IUS_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.05 | [-0.23,  0.32]
## GroupB_Controls                        |       0.09 | [-0.24,  0.42]
## GroupC_Intervention                    |       0.19 | [-0.15,  0.52]
## TimeC_W1_IUS_total                     |      -0.07 | [-0.30,  0.17]
## GroupB_Controls:TimeC_W1_IUS_total     |      -0.17 | [-0.46,  0.11]
## GroupC_Intervention:TimeC_W1_IUS_total |      -0.44 | [-0.73, -0.16]
plot_model(IUS_MEM_B1W, type = "int")

Baseline to 1M

IUS_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total")
## Formatting table as needed
IUS_B1M_long <- IUS_B1M %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_B1M <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1M_long, REML = TRUE)
summary(IUS_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1M_long
## 
## REML criterion at convergence: 4070.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.92417 -0.36721  0.08337  0.54180  1.88810 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  59.84    7.735  
##  Residual             108.95   10.438  
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             41.0800     1.8373 454.8351  22.359
## GroupB_Controls                          0.9483     2.2289 454.8351   0.425
## GroupC_Intervention                      1.9880     2.2393 454.8351   0.888
## TimeD_M1_IUS_total                      -2.9000     2.0876 256.0000  -1.389
## GroupB_Controls:TimeD_M1_IUS_total      -3.2415     2.5325 256.0000  -1.280
## GroupC_Intervention:TimeD_M1_IUS_total  -6.2553     2.5443 256.0000  -2.459
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6707    
## GroupC_Intervention                      0.3751    
## TimeD_M1_IUS_total                       0.1660    
## GroupB_Controls:TimeD_M1_IUS_total       0.2017    
## GroupC_Intervention:TimeD_M1_IUS_total   0.0146 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_IUS_ -0.568  0.468  0.466              
## GB_C:TD_M1_  0.468 -0.568 -0.384 -0.824       
## GC_I:TD_M1_  0.466 -0.384 -0.568 -0.820  0.676
anova  (IUS_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        42.2    21.1     2   256  0.1937    0.8240    
## Time       4229.7  4229.7     1   256 38.8236 1.896e-09 ***
## Group:Time  688.0   344.0     2   256  3.1574    0.0442 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_B1M)
  IUS Score
Predictors Estimates CI p
(Intercept) 41.08 37.47 – 44.69 <0.001
Group [B_Controls] 0.95 -3.43 – 5.33 0.671
Group [C_Intervention] 1.99 -2.41 – 6.39 0.375
Time [D_M1_IUS_total] -2.90 -7.00 – 1.20 0.165
Group [B_Controls] × Time
[D_M1_IUS_total]
-3.24 -8.22 – 1.73 0.201
Group [C_Intervention] ×
Time [D_M1_IUS_total]
-6.26 -11.25 – -1.26 0.014
Random Effects
σ2 108.95
τ00 ID 59.84
ICC 0.35
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.070 / 0.400
parameters::standardise_parameters(IUS_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.16 | [-0.11,  0.43]
## GroupB_Controls                        |       0.07 | [-0.26,  0.40]
## GroupC_Intervention                    |       0.15 | [-0.18,  0.48]
## TimeD_M1_IUS_total                     |      -0.22 | [-0.52,  0.09]
## GroupB_Controls:TimeD_M1_IUS_total     |      -0.24 | [-0.61,  0.13]
## GroupC_Intervention:TimeD_M1_IUS_total |      -0.47 | [-0.84, -0.09]
plot_model(IUS_MEM_B1M, type = "int")

H2a: difference in change in behavioural IUS over time between groups (baseline to post)

Not excluding never samplers

# Excluding them at pre and post
BT_BP <- BT_PRE_POST %>%
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
## Formatting table as needed
BT_BP_long <- BT_BP %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
BT_MEM_BP <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long, REML = TRUE)
summary(BT_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long
## 
## REML criterion at convergence: 4395.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9264 -0.2398 -0.0766  0.0958  8.1574 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 354      18.81   
##  Residual             263      16.22   
## Number of obs: 488, groups:  ID, 246
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             13.5745     3.6233 364.5272   3.746
## GroupB_Controls                          3.6055     4.3930 364.5272   0.821
## GroupC_Intervention                     -1.9583     4.4001 364.5272  -0.445
## TimeB_POST_samples                      -0.5106     3.3457 240.3829  -0.153
## GroupB_Controls:TimeB_POST_samples      -7.2867     4.0668 240.9058  -1.792
## GroupC_Intervention:TimeB_POST_samples  -2.4873     4.0736 240.9148  -0.611
##                                        Pr(>|t|)    
## (Intercept)                            0.000208 ***
## GroupB_Controls                        0.412330    
## GroupC_Intervention                    0.656542    
## TimeB_POST_samples                     0.878821    
## GroupB_Controls:TimeB_POST_samples     0.074429 .  
## GroupC_Intervention:TimeB_POST_samples 0.542042    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.825                            
## GrpC_Intrvn -0.823  0.679                     
## TmB_POST_sm -0.462  0.381  0.380              
## GB_C:TB_POS  0.380 -0.461 -0.313 -0.823       
## GC_I:TB_POS  0.379 -0.313 -0.460 -0.821  0.676
anova  (BT_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       322.16  161.08     2 243.67  0.6124 0.54290  
## Time       1532.59 1532.59     1 241.18  5.8262 0.01653 *
## Group:Time 1018.76  509.38     2 241.35  1.9364 0.14645  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(BT_MEM_BP)
  BT Score
Predictors Estimates CI p
(Intercept) 13.57 6.45 – 20.69 <0.001
Group [B_Controls] 3.61 -5.03 – 12.24 0.412
Group [C_Intervention] -1.96 -10.60 – 6.69 0.656
Time [B_POST_samples] -0.51 -7.08 – 6.06 0.879
Group [B_Controls] × Time
[B_POST_samples]
-7.29 -15.28 – 0.70 0.074
Group [C_Intervention] ×
Time [B_POST_samples]
-2.49 -10.49 – 5.52 0.542
Random Effects
σ2 263.05
τ00 ID 353.98
ICC 0.57
N ID 246
Observations 488
Marginal R2 / Conditional R2 0.015 / 0.580
parameters::standardise_parameters(BT_MEM_BP)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.06 | [-0.23, 0.35]
## GroupB_Controls                        |       0.14 | [-0.20, 0.49]
## GroupC_Intervention                    |      -0.08 | [-0.43, 0.27]
## TimeB_POST_samples                     |      -0.02 | [-0.28, 0.24]
## GroupB_Controls:TimeB_POST_samples     |      -0.29 | [-0.61, 0.03]
## GroupC_Intervention:TimeB_POST_samples |      -0.10 | [-0.42, 0.22]
plot_model(BT_MEM_BP, type = "int")

Excluding never samplers at PRE

# Excluding them at pre and post
BT_BP_removed <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0") %>% # only excluding from PRE
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
## Formatting table as needed
BT_BP_long_removed <- BT_BP_removed %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
BT_MEM_BP_removed <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_removed, REML = TRUE)
summary(BT_MEM_BP_removed)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_removed
## 
## REML criterion at convergence: 3169.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0812 -0.2761 -0.0683  0.1403  6.8856 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 429.4    20.72   
##  Residual             358.4    18.93   
## Number of obs: 343, groups:  ID, 173
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             16.7895     4.5533 261.0959   3.687
## GroupB_Controls                          9.2408     5.7157 261.0959   1.617
## GroupC_Intervention                     -0.1228     5.6702 261.0959  -0.022
## TimeB_POST_samples                      -1.1053     4.3434 168.0021  -0.254
## GroupB_Controls:TimeB_POST_samples     -11.2692     5.4762 168.6705  -2.058
## GroupC_Intervention:TimeB_POST_samples  -3.4718     5.4196 168.3090  -0.641
##                                        Pr(>|t|)    
## (Intercept)                            0.000276 ***
## GroupB_Controls                        0.107143    
## GroupC_Intervention                    0.982737    
## TimeB_POST_samples                     0.799442    
## GroupB_Controls:TimeB_POST_samples     0.041143 *  
## GroupC_Intervention:TimeB_POST_samples 0.522658    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.797                            
## GrpC_Intrvn -0.803  0.640                     
## TmB_POST_sm -0.477  0.380  0.383              
## GB_C:TB_POS  0.378 -0.475 -0.304 -0.793       
## GC_I:TB_POS  0.382 -0.304 -0.476 -0.801  0.636
anova  (BT_MEM_BP_removed)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       601.59  300.79     2 170.47  0.8392 0.433833   
## Time       2885.84 2885.84     1 168.72  8.0513 0.005105 **
## Group:Time 1785.79  892.90     2 168.82  2.4911 0.085856 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(BT_MEM_BP_removed)
  BT Score
Predictors Estimates CI p
(Intercept) 16.79 7.83 – 25.75 <0.001
Group [B_Controls] 9.24 -2.00 – 20.48 0.107
Group [C_Intervention] -0.12 -11.28 – 11.03 0.983
Time [B_POST_samples] -1.11 -9.65 – 7.44 0.799
Group [B_Controls] × Time
[B_POST_samples]
-11.27 -22.04 – -0.50 0.040
Group [C_Intervention] ×
Time [B_POST_samples]
-3.47 -14.13 – 7.19 0.522
Random Effects
σ2 358.43
τ00 ID 429.41
ICC 0.55
N ID 173
Observations 343
Marginal R2 / Conditional R2 0.028 / 0.558
parameters::standardise_parameters(BT_MEM_BP_removed)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |  -6.00e-03 | [-0.32,  0.31]
## GroupB_Controls                        |       0.33 | [-0.07,  0.72]
## GroupC_Intervention                    |  -4.34e-03 | [-0.40,  0.39]
## TimeB_POST_samples                     |      -0.04 | [-0.34,  0.26]
## GroupB_Controls:TimeB_POST_samples     |      -0.40 | [-0.78, -0.02]
## GroupC_Intervention:TimeB_POST_samples |      -0.12 | [-0.50,  0.25]
plot_model(BT_MEM_BP_removed, type = "int")

Excluding never samplers at both PRE and POST

# Excluding them at pre and post
BT_BP_removed_both <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0", B_POST_samples != "0") %>% # only excluding from PRE
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
## Formatting table as needed
BT_BP_long_removed_both <- BT_BP_removed_both %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
BT_MEM_BP_removed_both <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_removed_both, REML = TRUE)
summary(BT_MEM_BP_removed_both)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_removed_both
## 
## REML criterion at convergence: 2294.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8069 -0.2375 -0.0513  0.1451  5.7469 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 545.0    23.35   
##  Residual             206.9    14.38   
## Number of obs: 256, groups:  ID, 128
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              19.250      4.848 163.890   3.971
## GroupB_Controls                           4.990      6.208 163.890   0.804
## GroupC_Intervention                       3.685      6.312 163.890   0.584
## TimeB_POST_samples                       -0.625      3.596 125.000  -0.174
## GroupB_Controls:TimeB_POST_samples       -5.895      4.605 125.000  -1.280
## GroupC_Intervention:TimeB_POST_samples   -4.288      4.683 125.000  -0.916
##                                        Pr(>|t|)    
## (Intercept)                            0.000107 ***
## GroupB_Controls                        0.422661    
## GroupC_Intervention                    0.560191    
## TimeB_POST_samples                     0.862299    
## GroupB_Controls:TimeB_POST_samples     0.202877    
## GroupC_Intervention:TimeB_POST_samples 0.361562    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.781                            
## GrpC_Intrvn -0.768  0.600                     
## TmB_POST_sm -0.371  0.290  0.285              
## GB_C:TB_POS  0.290 -0.371 -0.222 -0.781       
## GC_I:TB_POS  0.285 -0.222 -0.371 -0.768  0.600
anova  (BT_MEM_BP_removed_both)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
## Group       26.79   13.40     2   125  0.0647 0.93734  
## Time       996.01  996.01     1   125  4.8141 0.03008 *
## Group:Time 346.12  173.06     2   125  0.8365 0.43565  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(BT_MEM_BP_removed_both)
  BT Score
Predictors Estimates CI p
(Intercept) 19.25 9.70 – 28.80 <0.001
Group [B_Controls] 4.99 -7.24 – 17.22 0.422
Group [C_Intervention] 3.68 -8.75 – 16.12 0.560
Time [B_POST_samples] -0.62 -7.71 – 6.46 0.862
Group [B_Controls] × Time
[B_POST_samples]
-5.90 -14.97 – 3.18 0.202
Group [C_Intervention] ×
Time [B_POST_samples]
-4.29 -13.51 – 4.93 0.361
Random Effects
σ2 206.89
τ00 ID 545.04
ICC 0.72
N ID 128
Observations 256
Marginal R2 / Conditional R2 0.009 / 0.727
parameters::standardise_parameters(BT_MEM_BP_removed_both)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |      -0.04 | [-0.39, 0.31]
## GroupB_Controls                        |       0.18 | [-0.27, 0.63]
## GroupC_Intervention                    |       0.14 | [-0.32, 0.59]
## TimeB_POST_samples                     |      -0.02 | [-0.28, 0.24]
## GroupB_Controls:TimeB_POST_samples     |      -0.22 | [-0.55, 0.12]
## GroupC_Intervention:TimeB_POST_samples |      -0.16 | [-0.50, 0.18]
plot_model(BT_MEM_BP_removed_both, type = "int")

H2a: difference in change in growth mindsets over time between groups

GM_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM")
## Formatting table as needed
GM_alltimepoints_long <- GM_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM, C_W1_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_alltimepoints_long, REML = TRUE)
summary(GM_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_alltimepoints_long
## 
## REML criterion at convergence: 3110.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1305 -0.5023 -0.0609  0.4554  3.6922 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.3098   1.1445  
##  Residual             0.7768   0.8814  
## Number of obs: 996, groups:  ID, 259
## 
## Fixed effects:
##                                    Estimate Std. Error        df t value
## (Intercept)                         2.74000    0.20429 463.07671  13.413
## GroupB_Controls                     0.40151    0.24783 463.07671   1.620
## GroupC_Intervention                 0.16291    0.24898 463.07671   0.654
## TimeB_POST_GM                       0.04000    0.17627 728.13424   0.227
## TimeC_W1_GM                        -0.07589    0.17861 729.70994  -0.425
## TimeD_M1_GM                        -0.03987    0.18380 733.00453  -0.217
## GroupB_Controls:TimeB_POST_GM      -0.53057    0.21384 728.13424  -2.481
## GroupC_Intervention:TimeB_POST_GM  -0.71126    0.21528 728.38399  -3.304
## GroupB_Controls:TimeC_W1_GM        -0.23713    0.21621 729.54890  -1.097
## GroupC_Intervention:TimeC_W1_GM    -0.51437    0.21744 729.67920  -2.366
## GroupB_Controls:TimeD_M1_GM        -0.35002    0.22306 733.13394  -1.569
## GroupC_Intervention:TimeD_M1_GM    -0.58867    0.22393 733.05960  -2.629
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## GroupB_Controls                    0.10589    
## GroupC_Intervention                0.51323    
## TimeB_POST_GM                      0.82055    
## TimeC_W1_GM                        0.67105    
## TimeD_M1_GM                        0.82834    
## GroupB_Controls:TimeB_POST_GM      0.01332 *  
## GroupC_Intervention:TimeB_POST_GM  0.00100 ** 
## GroupB_Controls:TimeC_W1_GM        0.27310    
## GroupC_Intervention:TimeC_W1_GM    0.01826 *  
## GroupB_Controls:TimeD_M1_GM        0.11704    
## GroupC_Intervention:TimeD_M1_GM    0.00875 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS TC_W1_ TD_M1_ GB_C:TB GC_I:TB GB_C:TC
## GrpB_Cntrls -0.824                                                           
## GrpC_Intrvn -0.820  0.676                                                    
## TmB_POST_GM -0.431  0.356  0.354                                             
## TimeC_W1_GM -0.426  0.351  0.349  0.493                                      
## TimeD_M1_GM -0.414  0.341  0.340  0.480  0.472                               
## GB_C:TB_POS  0.356 -0.431 -0.292 -0.824 -0.407 -0.395                        
## GC_I:TB_POS  0.353 -0.291 -0.431 -0.819 -0.404 -0.393  0.675                 
## GB_C:TC_W1_  0.352 -0.427 -0.289 -0.408 -0.826 -0.390  0.495   0.334         
## GC_I:TC_W1_  0.350 -0.288 -0.426 -0.405 -0.821 -0.388  0.334   0.493   0.679 
## GB_C:TD_M1_  0.341 -0.414 -0.280 -0.395 -0.389 -0.824  0.479   0.324   0.474 
## GC_I:TD_M1_  0.340 -0.280 -0.414 -0.394 -0.388 -0.821  0.324   0.479   0.320 
##             GC_I:TC GB_C:TD
## GrpB_Cntrls                
## GrpC_Intrvn                
## TmB_POST_GM                
## TimeC_W1_GM                
## TimeD_M1_GM                
## GB_C:TB_POS                
## GC_I:TB_POS                
## GB_C:TC_W1_                
## GC_I:TC_W1_                
## GB_C:TD_M1_  0.320         
## GC_I:TD_M1_  0.474   0.676
anova  (GM_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       4.6999  2.3499     2 256.22  3.0251   0.05029 .  
## Time       21.1646  7.0549     3 731.30  9.0817 6.584e-06 ***
## Group:Time 10.6523  1.7754     6 731.29  2.2855   0.03414 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM)
  GM Score
Predictors Estimates CI p
(Intercept) 2.74 2.34 – 3.14 <0.001
Group [B_Controls] 0.40 -0.08 – 0.89 0.106
Group [C_Intervention] 0.16 -0.33 – 0.65 0.513
Time [B_POST_GM] 0.04 -0.31 – 0.39 0.821
Time [C_W1_GM] -0.08 -0.43 – 0.27 0.671
Time [D_M1_GM] -0.04 -0.40 – 0.32 0.828
Group [B_Controls] × Time
[B_POST_GM]
-0.53 -0.95 – -0.11 0.013
Group [C_Intervention] ×
Time [B_POST_GM]
-0.71 -1.13 – -0.29 0.001
Group [B_Controls] × Time
[C_W1_GM]
-0.24 -0.66 – 0.19 0.273
Group [C_Intervention] ×
Time [C_W1_GM]
-0.51 -0.94 – -0.09 0.018
Group [B_Controls] × Time
[D_M1_GM]
-0.35 -0.79 – 0.09 0.117
Group [C_Intervention] ×
Time [D_M1_GM]
-0.59 -1.03 – -0.15 0.009
Random Effects
σ2 0.78
τ00 ID 1.31
ICC 0.63
N ID 259
Observations 996
Marginal R2 / Conditional R2 0.037 / 0.641
parameters::standardise_parameters(GM_MEM)
## # Standardization method: refit
## 
## Parameter                         | Std. Coef. |         95% CI
## ---------------------------------------------------------------
## (Intercept)                       |       0.05 | [-0.22,  0.33]
## GroupB_Controls                   |       0.27 | [-0.06,  0.61]
## GroupC_Intervention               |       0.11 | [-0.22,  0.44]
## TimeB_POST_GM                     |       0.03 | [-0.21,  0.26]
## TimeC_W1_GM                       |      -0.05 | [-0.29,  0.19]
## TimeD_M1_GM                       |      -0.03 | [-0.27,  0.22]
## GroupB_Controls:TimeB_POST_GM     |      -0.36 | [-0.65, -0.08]
## GroupC_Intervention:TimeB_POST_GM |      -0.49 | [-0.77, -0.20]
## GroupB_Controls:TimeC_W1_GM       |      -0.16 | [-0.45,  0.13]
## GroupC_Intervention:TimeC_W1_GM   |      -0.35 | [-0.64, -0.06]
## GroupB_Controls:TimeD_M1_GM       |      -0.24 | [-0.54,  0.06]
## GroupC_Intervention:TimeD_M1_GM   |      -0.40 | [-0.70, -0.10]

Baseline to post

GM_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM")
## Formatting table as needed
GM_BP_long <- GM_BP %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_BP <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long, REML = TRUE)
summary(GM_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_BP_long
## 
## REML criterion at convergence: 1673.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5473 -0.4356 -0.0320  0.4087  2.9611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.471    1.2128  
##  Residual             0.614    0.7836  
## Number of obs: 516, groups:  ID, 259
## 
## Fixed effects:
##                                   Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                         2.7400     0.2042 341.6189  13.418  < 2e-16
## GroupB_Controls                     0.4015     0.2477 341.6189   1.621 0.105989
## GroupC_Intervention                 0.1629     0.2489 341.6189   0.655 0.513178
## TimeB_POST_GM                       0.0400     0.1567 254.5431   0.255 0.798745
## GroupB_Controls:TimeB_POST_GM      -0.5306     0.1901 254.5431  -2.791 0.005657
## GroupC_Intervention:TimeB_POST_GM  -0.7237     0.1915 254.9544  -3.779 0.000196
##                                      
## (Intercept)                       ***
## GroupB_Controls                      
## GroupC_Intervention                  
## TimeB_POST_GM                        
## GroupB_Controls:TimeB_POST_GM     ** 
## GroupC_Intervention:TimeB_POST_GM ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmB_POST_GM -0.384  0.316  0.315              
## GB_C:TB_POS  0.316 -0.384 -0.260 -0.824       
## GC_I:TB_POS  0.314 -0.259 -0.383 -0.818  0.674
anova  (GM_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2.0352  1.0176     2 256.34  1.6574 0.1926771    
## Time       16.3667 16.3667     1 254.86 26.6558   4.9e-07 ***
## Group:Time  8.8331  4.4165     2 254.92  7.1931 0.0009142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_BP)
  GM Score
Predictors Estimates CI p
(Intercept) 2.74 2.34 – 3.14 <0.001
Group [B_Controls] 0.40 -0.09 – 0.89 0.106
Group [C_Intervention] 0.16 -0.33 – 0.65 0.513
Time [B_POST_GM] 0.04 -0.27 – 0.35 0.799
Group [B_Controls] × Time
[B_POST_GM]
-0.53 -0.90 – -0.16 0.005
Group [C_Intervention] ×
Time [B_POST_GM]
-0.72 -1.10 – -0.35 <0.001
Random Effects
σ2 0.61
τ00 ID 1.47
ICC 0.71
N ID 259
Observations 516
Marginal R2 / Conditional R2 0.043 / 0.718
parameters::standardise_parameters(GM_MEM_BP)
## # Standardization method: refit
## 
## Parameter                         | Std. Coef. |         95% CI
## ---------------------------------------------------------------
## (Intercept)                       |   1.11e-03 | [-0.27,  0.27]
## GroupB_Controls                   |       0.27 | [-0.06,  0.60]
## GroupC_Intervention               |       0.11 | [-0.22,  0.44]
## TimeB_POST_GM                     |       0.03 | [-0.18,  0.24]
## GroupB_Controls:TimeB_POST_GM     |      -0.36 | [-0.61, -0.11]
## GroupC_Intervention:TimeB_POST_GM |      -0.49 | [-0.75, -0.24]
plot_model(GM_MEM_BP, type = "int")

Baseline to 1W

GM_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM")
## Formatting table as needed
GM_B1W_long <- GM_B1W %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_B1W <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1W_long, REML = TRUE)
summary(GM_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1W_long
## 
## REML criterion at convergence: 1747.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2664 -0.5109 -0.1518  0.4940  2.7870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.038    1.019   
##  Residual             1.010    1.005   
## Number of obs: 511, groups:  ID, 259
## 
## Fixed effects:
##                                 Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                       2.7400     0.2024 403.7332  13.539   <2e-16
## GroupB_Controls                   0.4015     0.2455 403.7332   1.635   0.1027
## GroupC_Intervention               0.1629     0.2467 403.7332   0.661   0.5093
## TimeC_W1_GM                      -0.0784     0.2041 253.9941  -0.384   0.7012
## GroupB_Controls:TimeC_W1_GM      -0.2376     0.2470 253.3522  -0.962   0.3370
## GroupC_Intervention:TimeC_W1_GM  -0.5133     0.2484 253.6544  -2.066   0.0398
##                                    
## (Intercept)                     ***
## GroupB_Controls                    
## GroupC_Intervention                
## TimeC_W1_GM                        
## GroupB_Controls:TimeC_W1_GM        
## GroupC_Intervention:TimeC_W1_GM *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TimeC_W1_GM -0.489  0.403  0.401              
## GB_C:TC_W1_  0.404 -0.490 -0.332 -0.826       
## GC_I:TC_W1_  0.402 -0.331 -0.490 -0.822  0.679
anova  (GM_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       5.0659  2.5329     2 256.72  2.5080 0.0834210 .  
## Time       12.1159 12.1159     1 253.25 11.9969 0.0006256 ***
## Group:Time  4.6763  2.3381     2 253.08  2.3152 0.1008383    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_B1W)
  GM Score
Predictors Estimates CI p
(Intercept) 2.74 2.34 – 3.14 <0.001
Group [B_Controls] 0.40 -0.08 – 0.88 0.103
Group [C_Intervention] 0.16 -0.32 – 0.65 0.509
Time [C_W1_GM] -0.08 -0.48 – 0.32 0.701
Group [B_Controls] × Time
[C_W1_GM]
-0.24 -0.72 – 0.25 0.337
Group [C_Intervention] ×
Time [C_W1_GM]
-0.51 -1.00 – -0.03 0.039
Random Effects
σ2 1.01
τ00 ID 1.04
ICC 0.51
N ID 259
Observations 511
Marginal R2 / Conditional R2 0.035 / 0.524
parameters::standardise_parameters(GM_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |      -0.03 | [-0.31,  0.24]
## GroupB_Controls                 |       0.28 | [-0.06,  0.61]
## GroupC_Intervention             |       0.11 | [-0.22,  0.45]
## TimeC_W1_GM                     |      -0.05 | [-0.33,  0.22]
## GroupB_Controls:TimeC_W1_GM     |      -0.16 | [-0.50,  0.17]
## GroupC_Intervention:TimeC_W1_GM |      -0.35 | [-0.69, -0.02]
plot_model(GM_MEM_B1W, type = "int")

Baseline to 1M

GM_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM")
## Formatting table as needed
GM_B1M_long <- GM_B1M %>%
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_B1M <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1M_long, REML = TRUE)
summary(GM_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1M_long
## 
## REML criterion at convergence: 1639.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3875 -0.5367 -0.1142  0.4999  2.8661 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.0920   1.0450  
##  Residual             0.8918   0.9444  
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                       2.74000    0.19919 375.54541  13.756   <2e-16
## GroupB_Controls                   0.40151    0.24164 375.54541   1.662   0.0974
## GroupC_Intervention               0.16291    0.24277 375.54541   0.671   0.5026
## TimeD_M1_GM                      -0.03867    0.19861 235.43449  -0.195   0.8458
## GroupB_Controls:TimeD_M1_GM      -0.30728    0.24103 235.51016  -1.275   0.2036
## GroupC_Intervention:TimeD_M1_GM  -0.59125    0.24193 235.33298  -2.444   0.0153
##                                    
## (Intercept)                     ***
## GroupB_Controls                 .  
## GroupC_Intervention                
## TimeD_M1_GM                        
## GroupB_Controls:TimeD_M1_GM        
## GroupC_Intervention:TimeD_M1_GM *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TimeD_M1_GM -0.451  0.372  0.370              
## GB_C:TD_M1_  0.372 -0.451 -0.305 -0.824       
## GC_I:TD_M1_  0.370 -0.305 -0.451 -0.821  0.676
anova  (GM_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Group       4.3400  2.1700     2 254.05  2.4332 0.089803 .  
## Time       11.8930 11.8930     1 235.41 13.3353 0.000321 ***
## Group:Time  5.5615  2.7807     2 235.41  3.1180 0.046079 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_B1M)
  GM Score
Predictors Estimates CI p
(Intercept) 2.74 2.35 – 3.13 <0.001
Group [B_Controls] 0.40 -0.07 – 0.88 0.097
Group [C_Intervention] 0.16 -0.31 – 0.64 0.503
Time [D_M1_GM] -0.04 -0.43 – 0.35 0.846
Group [B_Controls] × Time
[D_M1_GM]
-0.31 -0.78 – 0.17 0.203
Group [C_Intervention] ×
Time [D_M1_GM]
-0.59 -1.07 – -0.12 0.015
Random Effects
σ2 0.89
τ00 ID 1.09
ICC 0.55
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.039 / 0.568
parameters::standardise_parameters(GM_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |      -0.03 | [-0.30,  0.25]
## GroupB_Controls                 |       0.28 | [-0.05,  0.61]
## GroupC_Intervention             |       0.11 | [-0.22,  0.45]
## TimeD_M1_GM                     |      -0.03 | [-0.30,  0.25]
## GroupB_Controls:TimeD_M1_GM     |      -0.21 | [-0.55,  0.12]
## GroupC_Intervention:TimeD_M1_GM |      -0.41 | [-0.75, -0.08]
plot_model(GM_MEM_B1M, type = "int")

H2b: difference in change in PHQ over time between groups

PHQ_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total")
## Formatting table as needed
PHQ_alltimepoints_long <- PHQ_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_alltimepoints_long, REML = TRUE)
summary(PHQ_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_alltimepoints_long
## 
## REML criterion at convergence: 5050.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2687 -0.4532 -0.0281  0.4903  2.4898 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 20.66    4.545   
##  Residual             26.75    5.172   
## Number of obs: 777, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             17.9600     0.9737 556.5908  18.445
## GroupB_Controls                         -0.5355     1.1812 556.5908  -0.453
## GroupC_Intervention                      0.6905     1.1867 556.5908   0.582
## TimeC_W1_PHQ_total                      -0.7600     1.0343 512.0000  -0.735
## TimeD_M1_PHQ_total                      -2.1800     1.0343 512.0000  -2.108
## GroupB_Controls:TimeC_W1_PHQ_total      -0.5702     1.2548 512.0000  -0.454
## GroupC_Intervention:TimeC_W1_PHQ_total  -1.2206     1.2606 512.0000  -0.968
## GroupB_Controls:TimeD_M1_PHQ_total      -0.9426     1.2548 512.0000  -0.751
## GroupC_Intervention:TimeD_M1_PHQ_total  -2.0336     1.2606 512.0000  -1.613
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6505    
## GroupC_Intervention                      0.5609    
## TimeC_W1_PHQ_total                       0.4628    
## TimeD_M1_PHQ_total                       0.0355 *  
## GroupB_Controls:TimeC_W1_PHQ_total       0.6497    
## GroupC_Intervention:TimeC_W1_PHQ_total   0.3334    
## GroupB_Controls:TimeD_M1_PHQ_total       0.4529    
## GroupC_Intervention:TimeD_M1_PHQ_total   0.1073    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ TD_M1_ GB_C:TC GC_I:TC GB_C:TD
## GrpB_Cntrls -0.824                                                    
## GrpC_Intrvn -0.820  0.676                                             
## TmC_W1_PHQ_ -0.531  0.438  0.436                                      
## TmD_M1_PHQ_ -0.531  0.438  0.436  0.500                               
## GB_C:TC_W1_  0.438 -0.531 -0.359 -0.824 -0.412                        
## GC_I:TC_W1_  0.436 -0.359 -0.531 -0.820 -0.410  0.676                 
## GB_C:TD_M1_  0.438 -0.531 -0.359 -0.412 -0.824  0.500   0.338         
## GC_I:TD_M1_  0.436 -0.359 -0.531 -0.410 -0.820  0.338   0.500   0.676
anova  (PHQ_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        38.69   19.34     2   256  0.7232    0.4862    
## Time       1164.82  582.41     2   512 21.7752 8.392e-10 ***
## Group:Time   76.29   19.07     4   512  0.7130    0.5833    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM)
  PHQ Score
Predictors Estimates CI p
(Intercept) 17.96 16.05 – 19.87 <0.001
Group [B_Controls] -0.54 -2.85 – 1.78 0.650
Group [C_Intervention] 0.69 -1.64 – 3.02 0.561
Time [C_W1_PHQ_total] -0.76 -2.79 – 1.27 0.463
Time [D_M1_PHQ_total] -2.18 -4.21 – -0.15 0.035
Group [B_Controls] × Time
[C_W1_PHQ_total]
-0.57 -3.03 – 1.89 0.650
Group [C_Intervention] ×
Time [C_W1_PHQ_total]
-1.22 -3.70 – 1.25 0.333
Group [B_Controls] × Time
[D_M1_PHQ_total]
-0.94 -3.41 – 1.52 0.453
Group [C_Intervention] ×
Time [D_M1_PHQ_total]
-2.03 -4.51 – 0.44 0.107
Random Effects
σ2 26.75
τ00 ID 20.66
ICC 0.44
N ID 259
Observations 777
Marginal R2 / Conditional R2 0.044 / 0.461
parameters::standardise_parameters(PHQ_MEM)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.22 | [-0.05,  0.50]
## GroupB_Controls                        |      -0.08 | [-0.41,  0.25]
## GroupC_Intervention                    |       0.10 | [-0.23,  0.43]
## TimeC_W1_PHQ_total                     |      -0.11 | [-0.40,  0.18]
## TimeD_M1_PHQ_total                     |      -0.31 | [-0.60, -0.02]
## GroupB_Controls:TimeC_W1_PHQ_total     |      -0.08 | [-0.43,  0.27]
## GroupC_Intervention:TimeC_W1_PHQ_total |      -0.17 | [-0.53,  0.18]
## GroupB_Controls:TimeD_M1_PHQ_total     |      -0.13 | [-0.49,  0.22]
## GroupC_Intervention:TimeD_M1_PHQ_total |      -0.29 | [-0.64,  0.06]

Baseline to 1W

PHQ_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total")
## Formatting table as needed
PHQ_B1W_long <- PHQ_B1W %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_B1W <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1W_long, REML = TRUE)
summary(PHQ_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1W_long
## 
## REML criterion at convergence: 3213.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09297 -0.46311 -0.00509  0.43990  2.68855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 25.22    5.022   
##  Residual             13.65    3.695   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             17.9600     0.8817 360.3455  20.370
## GroupB_Controls                         -0.5355     1.0696 360.3455  -0.501
## GroupC_Intervention                      0.6905     1.0746 360.3455   0.643
## TimeC_W1_PHQ_total                      -0.7600     0.7390 256.0000  -1.028
## GroupB_Controls:TimeC_W1_PHQ_total      -0.5702     0.8965 256.0000  -0.636
## GroupC_Intervention:TimeC_W1_PHQ_total  -1.2206     0.9007 256.0000  -1.355
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                           0.617    
## GroupC_Intervention                       0.521    
## TimeC_W1_PHQ_total                        0.305    
## GroupB_Controls:TimeC_W1_PHQ_total        0.525    
## GroupC_Intervention:TimeC_W1_PHQ_total    0.177    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_PHQ_ -0.419  0.345  0.344              
## GB_C:TC_W1_  0.345 -0.419 -0.283 -0.824       
## GC_I:TC_W1_  0.344 -0.283 -0.419 -0.820  0.676
anova  (PHQ_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group       20.499  10.250     2   256  0.7507 0.4730687    
## Time       211.676 211.676     1   256 15.5036 0.0001062 ***
## Group:Time  27.054  13.527     2   256  0.9908 0.3727148    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_B1W)
  PHQ Score
Predictors Estimates CI p
(Intercept) 17.96 16.23 – 19.69 <0.001
Group [B_Controls] -0.54 -2.64 – 1.57 0.617
Group [C_Intervention] 0.69 -1.42 – 2.80 0.521
Time [C_W1_PHQ_total] -0.76 -2.21 – 0.69 0.304
Group [B_Controls] × Time
[C_W1_PHQ_total]
-0.57 -2.33 – 1.19 0.525
Group [C_Intervention] ×
Time [C_W1_PHQ_total]
-1.22 -2.99 – 0.55 0.176
Random Effects
σ2 13.65
τ00 ID 25.22
ICC 0.65
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.020 / 0.656
parameters::standardise_parameters(PHQ_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.11 | [-0.17, 0.39]
## GroupB_Controls                        |      -0.09 | [-0.42, 0.25]
## GroupC_Intervention                    |       0.11 | [-0.23, 0.45]
## TimeC_W1_PHQ_total                     |      -0.12 | [-0.35, 0.11]
## GroupB_Controls:TimeC_W1_PHQ_total     |      -0.09 | [-0.37, 0.19]
## GroupC_Intervention:TimeC_W1_PHQ_total |      -0.19 | [-0.48, 0.09]
plot_model(PHQ_MEM_B1W, type = "int")

Baseline to 1M

PHQ_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total")
## Formatting table as needed
PHQ_B1M_long <- PHQ_B1M %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_B1M <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long, REML = TRUE)
summary(PHQ_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1M_long
## 
## REML criterion at convergence: 3443.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.38575 -0.50846 -0.02286  0.56387  2.22387 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 17.49    4.182   
##  Residual             32.01    5.658   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             17.9600     0.9950 455.1887  18.051
## GroupB_Controls                         -0.5355     1.2070 455.1887  -0.444
## GroupC_Intervention                      0.6905     1.2127 455.1887   0.569
## TimeD_M1_PHQ_total                      -2.1800     1.1316 256.0000  -1.927
## GroupB_Controls:TimeD_M1_PHQ_total      -0.9426     1.3728 256.0000  -0.687
## GroupC_Intervention:TimeD_M1_PHQ_total  -2.0336     1.3792 256.0000  -1.475
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6575    
## GroupC_Intervention                      0.5694    
## TimeD_M1_PHQ_total                       0.0551 .  
## GroupB_Controls:TimeD_M1_PHQ_total       0.4929    
## GroupC_Intervention:TimeD_M1_PHQ_total   0.1416    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_PHQ_ -0.569  0.469  0.467              
## GB_C:TD_M1_  0.469 -0.569 -0.385 -0.824       
## GC_I:TD_M1_  0.467 -0.385 -0.569 -0.820  0.676
anova  (PHQ_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        40.51   20.25     2   256  0.6327    0.5320    
## Time       1156.78 1156.78     1   256 36.1358 6.308e-09 ***
## Group:Time   75.29   37.65     2   256  1.1760    0.3102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_B1M)
  PHQ Score
Predictors Estimates CI p
(Intercept) 17.96 16.01 – 19.91 <0.001
Group [B_Controls] -0.54 -2.91 – 1.84 0.658
Group [C_Intervention] 0.69 -1.69 – 3.07 0.569
Time [D_M1_PHQ_total] -2.18 -4.40 – 0.04 0.055
Group [B_Controls] × Time
[D_M1_PHQ_total]
-0.94 -3.64 – 1.75 0.493
Group [C_Intervention] ×
Time [D_M1_PHQ_total]
-2.03 -4.74 – 0.68 0.141
Random Effects
σ2 32.01
τ00 ID 17.49
ICC 0.35
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.060 / 0.392
parameters::standardise_parameters(PHQ_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.23 | [-0.04, 0.50]
## GroupB_Controls                        |      -0.07 | [-0.40, 0.25]
## GroupC_Intervention                    |       0.10 | [-0.23, 0.43]
## TimeD_M1_PHQ_total                     |      -0.30 | [-0.61, 0.01]
## GroupB_Controls:TimeD_M1_PHQ_total     |      -0.13 | [-0.50, 0.24]
## GroupC_Intervention:TimeD_M1_PHQ_total |      -0.28 | [-0.66, 0.09]
plot_model(PHQ_MEM_B1M, type = "int")

H2b: difference in change in GAD over time between groups

# Merging across timepoints
GAD_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total")
## Formatting table as needed
GAD_alltimepoints_long <- GAD_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_alltimepoints_long, REML = TRUE)
summary(GAD_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_alltimepoints_long
## 
## REML criterion at convergence: 4917.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4172 -0.4747 -0.0001  0.5239  3.2139 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 19.27    4.389   
##  Residual             21.80    4.669   
## Number of obs: 777, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             15.0200     0.9063 533.2553  16.573
## GroupB_Controls                          0.4517     1.0994 533.2553   0.411
## GroupC_Intervention                      1.2518     1.1045 533.2553   1.133
## TimeC_W1_GAD_total                      -0.2600     0.9338 512.0000  -0.278
## TimeD_M1_GAD_total                      -1.1400     0.9338 512.0000  -1.221
## GroupB_Controls:TimeC_W1_GAD_total      -0.7494     1.1328 512.0000  -0.662
## GroupC_Intervention:TimeC_W1_GAD_total  -1.2254     1.1381 512.0000  -1.077
## GroupB_Controls:TimeD_M1_GAD_total      -1.6053     1.1328 512.0000  -1.417
## GroupC_Intervention:TimeD_M1_GAD_total  -2.2386     1.1381 512.0000  -1.967
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6813    
## GroupC_Intervention                      0.2576    
## TimeC_W1_GAD_total                       0.7808    
## TimeD_M1_GAD_total                       0.2227    
## GroupB_Controls:TimeC_W1_GAD_total       0.5086    
## GroupC_Intervention:TimeC_W1_GAD_total   0.2821    
## GroupB_Controls:TimeD_M1_GAD_total       0.1571    
## GroupC_Intervention:TimeD_M1_GAD_total   0.0497 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ TD_M1_ GB_C:TC GC_I:TC GB_C:TD
## GrpB_Cntrls -0.824                                                    
## GrpC_Intrvn -0.820  0.676                                             
## TmC_W1_GAD_ -0.515  0.425  0.423                                      
## TmD_M1_GAD_ -0.515  0.425  0.423  0.500                               
## GB_C:TC_W1_  0.425 -0.515 -0.348 -0.824 -0.412                        
## GC_I:TC_W1_  0.423 -0.348 -0.515 -0.820 -0.410  0.676                 
## GB_C:TD_M1_  0.425 -0.515 -0.348 -0.412 -0.824  0.500   0.338         
## GC_I:TD_M1_  0.423 -0.348 -0.515 -0.410 -0.820  0.338   0.500   0.676
anova  (GAD_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        8.44    4.22     2   256  0.1935    0.8242    
## Time       687.11  343.55     2   512 15.7595 2.281e-07 ***
## Group:Time  85.55   21.39     4   512  0.9811    0.4174    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM)
  GAD Score
Predictors Estimates CI p
(Intercept) 15.02 13.24 – 16.80 <0.001
Group [B_Controls] 0.45 -1.71 – 2.61 0.681
Group [C_Intervention] 1.25 -0.92 – 3.42 0.257
Time [C_W1_GAD_total] -0.26 -2.09 – 1.57 0.781
Time [D_M1_GAD_total] -1.14 -2.97 – 0.69 0.223
Group [B_Controls] × Time
[C_W1_GAD_total]
-0.75 -2.97 – 1.47 0.508
Group [C_Intervention] ×
Time [C_W1_GAD_total]
-1.23 -3.46 – 1.01 0.282
Group [B_Controls] × Time
[D_M1_GAD_total]
-1.61 -3.83 – 0.62 0.157
Group [C_Intervention] ×
Time [D_M1_GAD_total]
-2.24 -4.47 – -0.00 0.050
Random Effects
σ2 21.80
τ00 ID 19.27
ICC 0.47
N ID 259
Observations 777
Marginal R2 / Conditional R2 0.032 / 0.486
parameters::standardise_parameters(GAD_MEM)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.09 | [-0.19,  0.36]
## GroupB_Controls                        |       0.07 | [-0.26,  0.40]
## GroupC_Intervention                    |       0.19 | [-0.14,  0.53]
## TimeC_W1_GAD_total                     |      -0.04 | [-0.32,  0.24]
## TimeD_M1_GAD_total                     |      -0.18 | [-0.46,  0.11]
## GroupB_Controls:TimeC_W1_GAD_total     |      -0.12 | [-0.46,  0.23]
## GroupC_Intervention:TimeC_W1_GAD_total |      -0.19 | [-0.53,  0.16]
## GroupB_Controls:TimeD_M1_GAD_total     |      -0.25 | [-0.59,  0.10]
## GroupC_Intervention:TimeD_M1_GAD_total |      -0.35 | [-0.69,  0.00]

Baseline to 1W

# Merging across timepoints
GAD_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total")
## Formatting table as needed
GAD_B1W_long <- GAD_B1W %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_B1W <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1W_long, REML = TRUE)
summary(GAD_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1W_long
## 
## REML criterion at convergence: 3156.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.97971 -0.46162 -0.05959  0.48166  2.72962 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 22.31    4.723   
##  Residual             12.31    3.508   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             15.0200     0.8320 361.7397  18.052
## GroupB_Controls                          0.4517     1.0094 361.7397   0.448
## GroupC_Intervention                      1.2518     1.0141 361.7397   1.234
## TimeC_W1_GAD_total                      -0.2600     0.7016 256.0000  -0.371
## GroupB_Controls:TimeC_W1_GAD_total      -0.7494     0.8511 256.0000  -0.881
## GroupC_Intervention:TimeC_W1_GAD_total  -1.2254     0.8551 256.0000  -1.433
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                           0.655    
## GroupC_Intervention                       0.218    
## TimeC_W1_GAD_total                        0.711    
## GroupB_Controls:TimeC_W1_GAD_total        0.379    
## GroupC_Intervention:TimeC_W1_GAD_total    0.153    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_GAD_ -0.422  0.348  0.346              
## GB_C:TC_W1_  0.348 -0.422 -0.285 -0.824       
## GC_I:TC_W1_  0.346 -0.285 -0.422 -0.820  0.676
anova  (GAD_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
## Group       9.323   4.662     2   256  0.3788 0.685040   
## Time       96.944  96.944     1   256  7.8782 0.005388 **
## Group:Time 25.452  12.726     2   256  1.0342 0.356993   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM_B1W)
  GAD Score
Predictors Estimates CI p
(Intercept) 15.02 13.39 – 16.65 <0.001
Group [B_Controls] 0.45 -1.53 – 2.43 0.655
Group [C_Intervention] 1.25 -0.74 – 3.24 0.218
Time [C_W1_GAD_total] -0.26 -1.64 – 1.12 0.711
Group [B_Controls] × Time
[C_W1_GAD_total]
-0.75 -2.42 – 0.92 0.379
Group [C_Intervention] ×
Time [C_W1_GAD_total]
-1.23 -2.91 – 0.45 0.152
Random Effects
σ2 12.31
τ00 ID 22.31
ICC 0.64
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.012 / 0.649
parameters::standardise_parameters(GAD_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |      -0.03 | [-0.30, 0.25]
## GroupB_Controls                        |       0.08 | [-0.26, 0.41]
## GroupC_Intervention                    |       0.21 | [-0.13, 0.55]
## TimeC_W1_GAD_total                     |      -0.04 | [-0.28, 0.19]
## GroupB_Controls:TimeC_W1_GAD_total     |      -0.13 | [-0.41, 0.16]
## GroupC_Intervention:TimeC_W1_GAD_total |      -0.21 | [-0.49, 0.08]
plot_model(GAD_MEM_B1W, type = "int")

Baseline to 1M

# Merging across timepoints
GAD_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total")
## Formatting table as needed
GAD_B1M_long <- GAD_B1M %>%
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_B1M <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1M_long, REML = TRUE)
summary(GAD_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1M_long
## 
## REML criterion at convergence: 3351.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.49775 -0.51016 -0.03334  0.55438  2.48053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 16.32    4.039   
##  Residual             25.74    5.073   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             15.0200     0.9171 445.0075  16.378
## GroupB_Controls                          0.4517     1.1125 445.0075   0.406
## GroupC_Intervention                      1.2518     1.1177 445.0075   1.120
## TimeD_M1_GAD_total                      -1.1400     1.0146 256.0000  -1.124
## GroupB_Controls:TimeD_M1_GAD_total      -1.6053     1.2308 256.0000  -1.304
## GroupC_Intervention:TimeD_M1_GAD_total  -2.2386     1.2366 256.0000  -1.810
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6849    
## GroupC_Intervention                      0.2633    
## TimeD_M1_GAD_total                       0.2622    
## GroupB_Controls:TimeD_M1_GAD_total       0.1933    
## GroupC_Intervention:TimeD_M1_GAD_total   0.0714 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_GAD_ -0.553  0.456  0.454              
## GB_C:TD_M1_  0.456 -0.553 -0.374 -0.824       
## GC_I:TD_M1_  0.454 -0.374 -0.553 -0.820  0.676
anova  (GAD_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group       11.22    5.61     2   256  0.2180    0.8043    
## Time       674.00  674.00     1   256 26.1900 6.079e-07 ***
## Group:Time  84.65   42.32     2   256  1.6446    0.1951    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM_B1M)
  GAD Score
Predictors Estimates CI p
(Intercept) 15.02 13.22 – 16.82 <0.001
Group [B_Controls] 0.45 -1.73 – 2.64 0.685
Group [C_Intervention] 1.25 -0.94 – 3.45 0.263
Time [D_M1_GAD_total] -1.14 -3.13 – 0.85 0.262
Group [B_Controls] × Time
[D_M1_GAD_total]
-1.61 -4.02 – 0.81 0.193
Group [C_Intervention] ×
Time [D_M1_GAD_total]
-2.24 -4.67 – 0.19 0.071
Random Effects
σ2 25.74
τ00 ID 16.32
ICC 0.39
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.046 / 0.416
parameters::standardise_parameters(GAD_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.10 | [-0.17, 0.37]
## GroupB_Controls                        |       0.07 | [-0.26, 0.40]
## GroupC_Intervention                    |       0.19 | [-0.14, 0.52]
## TimeD_M1_GAD_total                     |      -0.17 | [-0.47, 0.13]
## GroupB_Controls:TimeD_M1_GAD_total     |      -0.24 | [-0.61, 0.12]
## GroupC_Intervention:TimeD_M1_GAD_total |      -0.34 | [-0.71, 0.03]
plot_model(GAD_MEM_B1M, type = "int")

H2b: difference in change in mood over time between groups

Mood_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "B_POST_mood_mean", "C_W1_mood_mean", "D_M1_mood_mean")
## Formatting tables as needed
Mood_alltimepoints_long <- Mood_alltimepoints %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "B_POST_mood_mean", "C_W1_mood_mean", "D_M1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_alltimepoints_long, REML = TRUE)
summary(Mood_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_alltimepoints_long
## 
## REML criterion at convergence: 9998.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9245 -0.4840  0.0543  0.5791  3.4075 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 892.9    29.88   
##  Residual             982.7    31.35   
## Number of obs: 995, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error      df t value
## (Intercept)                                40.300      6.125 599.204   6.580
## GroupB_Controls                            -2.984      7.430 599.204  -0.402
## GroupC_Intervention                       -10.669      7.465 599.204  -1.429
## TimeB_POST_mood_mean                       -0.020      6.270 729.243  -0.003
## TimeC_W1_mood_mean                        -14.945      6.350 731.731  -2.353
## TimeD_M1_mood_mean                        -21.095      6.579 738.302  -3.206
## GroupB_Controls:TimeB_POST_mood_mean       19.992      7.606 729.243   2.628
## GroupC_Intervention:TimeB_POST_mood_mean   29.483      7.649 729.438   3.855
## GroupB_Controls:TimeC_W1_mood_mean          8.695      7.695 731.631   1.130
## GroupC_Intervention:TimeC_W1_mood_mean      9.945      7.739 731.707   1.285
## GroupB_Controls:TimeD_M1_mood_mean         14.488      7.957 737.849   1.821
## GroupC_Intervention:TimeD_M1_mood_mean     14.299      7.996 737.788   1.788
##                                          Pr(>|t|)    
## (Intercept)                              1.03e-10 ***
## GroupB_Controls                          0.688120    
## GroupC_Intervention                      0.153456    
## TimeB_POST_mood_mean                     0.997456    
## TimeC_W1_mood_mean                       0.018866 *  
## TimeD_M1_mood_mean                       0.001403 ** 
## GroupB_Controls:TimeB_POST_mood_mean     0.008758 ** 
## GroupC_Intervention:TimeB_POST_mood_mean 0.000126 ***
## GroupB_Controls:TimeC_W1_mood_mean       0.258872    
## GroupC_Intervention:TimeC_W1_mood_mean   0.199181    
## GroupB_Controls:TimeD_M1_mood_mean       0.069040 .  
## GroupC_Intervention:TimeD_M1_mood_mean   0.074150 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS TC_W1_ TD_M1_ GB_C:TB GC_I:TB GB_C:TC
## GrpB_Cntrls -0.824                                                           
## GrpC_Intrvn -0.820  0.676                                                    
## TmB_POST_m_ -0.512  0.422  0.420                                             
## TmC_W1_md_m -0.505  0.417  0.415  0.494                                      
## TmD_M1_md_m -0.488  0.402  0.400  0.476  0.469                               
## GB_C:TB_POS  0.422 -0.512 -0.346 -0.824 -0.407 -0.393                        
## GC_I:TB_POS  0.420 -0.346 -0.511 -0.820 -0.405 -0.391  0.676                 
## GB_C:TC_W1_  0.417 -0.506 -0.342 -0.407 -0.825 -0.387  0.494   0.334         
## GC_I:TC_W1_  0.415 -0.342 -0.505 -0.405 -0.821 -0.385  0.334   0.493   0.677 
## GB_C:TD_M1_  0.403 -0.489 -0.331 -0.394 -0.388 -0.827  0.478   0.323   0.472 
## GC_I:TD_M1_  0.401 -0.331 -0.489 -0.392 -0.386 -0.823  0.323   0.477   0.319 
##             GC_I:TC GB_C:TD
## GrpB_Cntrls                
## GrpC_Intrvn                
## TmB_POST_m_                
## TmC_W1_md_m                
## TmD_M1_md_m                
## GB_C:TB_POS                
## GC_I:TB_POS                
## GB_C:TC_W1_                
## GC_I:TC_W1_                
## GB_C:TD_M1_  0.319         
## GC_I:TD_M1_  0.471   0.680
anova  (Mood_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
## Group        2110    1055     2 258.46  1.0734 0.34336    
## Time       104490   34830     3 734.51 35.4434 < 2e-16 ***
## Group:Time  15983    2664     6 734.42  2.7107 0.01307 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 28.28 – 52.32 <0.001
Group [B_Controls] -2.98 -17.56 – 11.60 0.688
Group [C_Intervention] -10.67 -25.32 – 3.98 0.153
Time [B_POST_mood_mean] -0.02 -12.32 – 12.28 0.997
Time [C_W1_mood_mean] -14.94 -27.41 – -2.48 0.019
Time [D_M1_mood_mean] -21.09 -34.01 – -8.18 0.001
Group [B_Controls] × Time
[B_POST_mood_mean]
19.99 5.07 – 34.92 0.009
Group [C_Intervention] ×
Time [B_POST_mood_mean]
29.48 14.47 – 44.49 <0.001
Group [B_Controls] × Time
[C_W1_mood_mean]
8.69 -6.41 – 23.80 0.259
Group [C_Intervention] ×
Time [C_W1_mood_mean]
9.94 -5.24 – 25.13 0.199
Group [B_Controls] × Time
[D_M1_mood_mean]
14.49 -1.13 – 30.10 0.069
Group [C_Intervention] ×
Time [D_M1_mood_mean]
14.30 -1.39 – 29.99 0.074
Random Effects
σ2 982.69
τ00 ID 892.93
ICC 0.48
N ID 259
Observations 995
Marginal R2 / Conditional R2 0.079 / 0.517
parameters::standardise_parameters(Mood_MEM)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.10 | [-0.17,  0.36]
## GroupB_Controls                          |      -0.07 | [-0.39,  0.26]
## GroupC_Intervention                      |      -0.24 | [-0.56,  0.09]
## TimeB_POST_mood_mean                     |  -4.45e-04 | [-0.27,  0.27]
## TimeC_W1_mood_mean                       |      -0.33 | [-0.61, -0.06]
## TimeD_M1_mood_mean                       |      -0.47 | [-0.76, -0.18]
## GroupB_Controls:TimeB_POST_mood_mean     |       0.44 | [ 0.11,  0.78]
## GroupC_Intervention:TimeB_POST_mood_mean |       0.66 | [ 0.32,  0.99]
## GroupB_Controls:TimeC_W1_mood_mean       |       0.19 | [-0.14,  0.53]
## GroupC_Intervention:TimeC_W1_mood_mean   |       0.22 | [-0.12,  0.56]
## GroupB_Controls:TimeD_M1_mood_mean       |       0.32 | [-0.03,  0.67]
## GroupC_Intervention:TimeD_M1_mood_mean   |       0.32 | [-0.03,  0.67]

Baseline to post

Mood_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "B_POST_mood_mean")
## Formatting tables as needed
Mood_BP_long <- Mood_BP %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "B_POST_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_BP <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_BP_long, REML = TRUE)
summary(Mood_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_BP_long
## 
## REML criterion at convergence: 5079
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1547 -0.3855  0.0476  0.4451  3.3781 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1035.6   32.18   
##  Residual              513.4   22.66   
## Number of obs: 517, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error      df t value
## (Intercept)                                40.300      5.566 353.535   7.240
## GroupB_Controls                            -2.984      6.752 353.535  -0.442
## GroupC_Intervention                       -10.669      6.784 353.535  -1.573
## TimeB_POST_mood_mean                       -0.020      4.532 255.115  -0.004
## GroupB_Controls:TimeB_POST_mood_mean       19.992      5.498 255.115   3.637
## GroupC_Intervention:TimeB_POST_mood_mean   29.341      5.530 255.341   5.305
##                                          Pr(>|t|)    
## (Intercept)                              2.81e-12 ***
## GroupB_Controls                          0.658816    
## GroupC_Intervention                      0.116674    
## TimeB_POST_mood_mean                     0.996482    
## GroupB_Controls:TimeB_POST_mood_mean     0.000334 ***
## GroupC_Intervention:TimeB_POST_mood_mean 2.44e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmB_POST_m_ -0.407  0.336  0.334              
## GB_C:TB_POS  0.336 -0.407 -0.275 -0.824       
## GC_I:TB_POS  0.334 -0.275 -0.407 -0.819  0.675
anova  (Mood_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        677.9   339.0     2 255.99  0.6603    0.5176    
## Time       30949.7 30949.7     1 255.29 60.2843 1.989e-13 ***
## Group:Time 14453.2  7226.6     2 255.32 14.0761 1.588e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_BP)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 29.36 – 51.24 <0.001
Group [B_Controls] -2.98 -16.25 – 10.28 0.659
Group [C_Intervention] -10.67 -24.00 – 2.66 0.116
Time [B_POST_mood_mean] -0.02 -8.92 – 8.88 0.996
Group [B_Controls] × Time
[B_POST_mood_mean]
19.99 9.19 – 30.79 <0.001
Group [C_Intervention] ×
Time [B_POST_mood_mean]
29.34 18.48 – 40.21 <0.001
Random Effects
σ2 513.40
τ00 ID 1035.58
ICC 0.67
N ID 259
Observations 517
Marginal R2 / Conditional R2 0.079 / 0.695
parameters::standardise_parameters(Mood_MEM_BP)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |        95% CI
## ---------------------------------------------------------------------
## (Intercept)                              |      -0.11 | [-0.38, 0.16]
## GroupB_Controls                          |      -0.07 | [-0.40, 0.25]
## GroupC_Intervention                      |      -0.26 | [-0.59, 0.07]
## TimeB_POST_mood_mean                     |  -4.90e-04 | [-0.22, 0.22]
## GroupB_Controls:TimeB_POST_mood_mean     |       0.49 | [ 0.23, 0.75]
## GroupC_Intervention:TimeB_POST_mood_mean |       0.72 | [ 0.45, 0.98]
plot_model(Mood_MEM_BP, type = "int")

Baseline to 1W

Mood_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "C_W1_mood_mean")
## Formatting tables as needed
Mood_B1W_long <- Mood_B1W %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "C_W1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_B1W <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_B1W_long, REML = TRUE)
summary(Mood_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_B1W_long
## 
## REML criterion at convergence: 5220.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1570 -0.4429  0.1159  0.5899  2.4716 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  866.2   29.43   
##  Residual             1117.7   33.43   
## Number of obs: 509, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              40.300      6.299 424.920   6.398
## GroupB_Controls                          -2.984      7.641 424.920  -0.390
## GroupC_Intervention                     -10.669      7.677 424.920  -1.390
## TimeC_W1_mood_mean                      -14.705      6.786 253.748  -2.167
## GroupB_Controls:TimeC_W1_mood_mean        8.265      8.220 253.359   1.005
## GroupC_Intervention:TimeC_W1_mood_mean    9.377      8.269 253.708   1.134
##                                        Pr(>|t|)    
## (Intercept)                            4.16e-10 ***
## GroupB_Controls                          0.6964    
## GroupC_Intervention                      0.1653    
## TimeC_W1_mood_mean                       0.0312 *  
## GroupB_Controls:TimeC_W1_mood_mean       0.3157    
## GroupC_Intervention:TimeC_W1_mood_mean   0.2579    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_md_m -0.523  0.431  0.429              
## GB_C:TC_W1_  0.432 -0.524 -0.354 -0.825       
## GC_I:TC_W1_  0.429 -0.354 -0.523 -0.821  0.677
anova  (Mood_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)   
## Group      2236.2  1118.1     2 257.40  1.0004 0.36916   
## Time       8711.4  8711.4     1 253.43  7.7944 0.00564 **
## Group:Time 1553.5   776.7     2 253.35  0.6950 0.50003   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_B1W)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 27.92 – 52.68 <0.001
Group [B_Controls] -2.98 -18.00 – 12.03 0.696
Group [C_Intervention] -10.67 -25.75 – 4.41 0.165
Time [C_W1_mood_mean] -14.70 -28.04 – -1.37 0.031
Group [B_Controls] × Time
[C_W1_mood_mean]
8.26 -7.89 – 24.42 0.315
Group [C_Intervention] ×
Time [C_W1_mood_mean]
9.38 -6.87 – 25.62 0.257
Random Effects
σ2 1117.65
τ00 ID 866.19
ICC 0.44
N ID 259
Observations 509
Marginal R2 / Conditional R2 0.014 / 0.445
parameters::standardise_parameters(Mood_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.20 | [-0.07,  0.48]
## GroupB_Controls                        |      -0.07 | [-0.40,  0.27]
## GroupC_Intervention                    |      -0.24 | [-0.58,  0.10]
## TimeC_W1_mood_mean                     |      -0.33 | [-0.63, -0.03]
## GroupB_Controls:TimeC_W1_mood_mean     |       0.19 | [-0.18,  0.55]
## GroupC_Intervention:TimeC_W1_mood_mean |       0.21 | [-0.15,  0.57]
plot_model(Mood_MEM_B1W, type = "int")

Baseline to 1M

Mood_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "D_M1_mood_mean")
## Formatting tables as needed
Mood_B1M_long <- Mood_B1M %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "D_M1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_B1M <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_B1M_long, REML = TRUE)
summary(Mood_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_B1M_long
## 
## REML criterion at convergence: 5011.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91923 -0.51813  0.07265  0.59296  2.42299 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  893.6   29.89   
##  Residual             1156.5   34.01   
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              40.300      6.403 411.735   6.294
## GroupB_Controls                          -2.984      7.768 411.735  -0.384
## GroupC_Intervention                     -10.669      7.804 411.735  -1.367
## TimeD_M1_mood_mean                      -20.875      7.188 246.670  -2.904
## GroupB_Controls:TimeD_M1_mood_mean       14.198      8.688 245.758   1.634
## GroupC_Intervention:TimeD_M1_mood_mean   14.331      8.732 245.852   1.641
##                                        Pr(>|t|)    
## (Intercept)                            7.95e-10 ***
## GroupB_Controls                         0.70108    
## GroupC_Intervention                     0.17236    
## TimeD_M1_mood_mean                      0.00402 ** 
## GroupB_Controls:TimeD_M1_mood_mean      0.10351    
## GroupC_Intervention:TimeD_M1_mood_mean  0.10205    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_md_m -0.503  0.414  0.412              
## GB_C:TD_M1_  0.416 -0.504 -0.341 -0.827       
## GC_I:TD_M1_  0.414 -0.341 -0.504 -0.823  0.681
anova  (Mood_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2302.4  1151.2     2 260.11  0.9954 0.3709746    
## Time       13435.3 13435.3     1 245.36 11.6170 0.0007637 ***
## Group:Time  3690.3  1845.2     2 245.06  1.5954 0.2049198    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_B1M)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 27.72 – 52.88 <0.001
Group [B_Controls] -2.98 -18.25 – 12.28 0.701
Group [C_Intervention] -10.67 -26.00 – 4.67 0.172
Time [D_M1_mood_mean] -20.87 -35.00 – -6.75 0.004
Group [B_Controls] × Time
[D_M1_mood_mean]
14.20 -2.87 – 31.27 0.103
Group [C_Intervention] ×
Time [D_M1_mood_mean]
14.33 -2.83 – 31.49 0.101
Random Effects
σ2 1156.52
τ00 ID 893.64
ICC 0.44
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.020 / 0.447
parameters::standardise_parameters(Mood_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.22 | [-0.06,  0.49]
## GroupB_Controls                        |      -0.07 | [-0.40,  0.27]
## GroupC_Intervention                    |      -0.23 | [-0.57,  0.10]
## TimeD_M1_mood_mean                     |      -0.46 | [-0.77, -0.15]
## GroupB_Controls:TimeD_M1_mood_mean     |       0.31 | [-0.06,  0.69]
## GroupC_Intervention:TimeD_M1_mood_mean |       0.31 | [-0.06,  0.69]
plot_model(Mood_MEM_B1M, type = "int")

Hypothesis 3

# Baseline to 1W/1M changes (creating new columns)
changeinvariables <- mutate(Full_data_all,
                      IUS_BP_change = B_POST_IUS_total - A_PRE_IUS_total,
                      IUS_B1W_change = C_W1_IUS_total - A_PRE_IUS_total,
                      IUS_B1M_change = D_M1_IUS_total - A_PRE_IUS_total,
                      PHQ_B1W_change = C_W1_PHQ_total - A_PRE_PHQ_total,
                      PHQ_B1M_change = D_M1_PHQ_total - A_PRE_PHQ_total,
                      GAD_B1W_change = C_W1_GAD_total - A_PRE_GAD_total,
                      GAD_B1M_change = D_M1_GAD_total - A_PRE_GAD_total,
                      Mood_BP_change = B_POST_mood_mean - A_PRE_mood_mean,
                      Mood_B1W_change = C_W1_mood_mean - A_PRE_mood_mean,
                      Mood_B1M_change = D_M1_mood_mean - A_PRE_mood_mean)
# Separating out each group

Intervention_group <- changeinvariables %>% 
  filter(Group == "C_Intervention")

Psychoed_group <- changeinvariables %>% 
  filter(Group == "B_Controls")

ECs_group <- changeinvariables %>% 
  filter(Group == "A_ECs")

H3: IUS mediating change in PHQ over time between groups

Full sample at 1 week: Group to change in PHQ via change in IUS

Mediation.PHQchange.1W <-
  '#regressions
PHQ_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
PHQ_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1W <- sem(Mediation.PHQchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1W_change ~                                                      
##     Group     (c1)   -0.008    0.076   -0.110    0.912   -0.008   -0.006
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.269    0.085   -3.152    0.002   -0.269   -0.199
##   PHQ_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.408    0.085    4.780    0.000    0.408    0.408
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.018    0.166    0.111    0.912    0.018    0.019
##    .IUS_B1W_change    0.592    0.196    3.018    0.003    0.592    0.593
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.829    0.092    8.992    0.000    0.829    0.833
##    .IUS_B1W_change    0.957    0.158    6.071    0.000    0.957    0.960
## 
## R-Square:
##                    Estimate
##     PHQ_B1W_change    0.167
##     IUS_B1W_change    0.040
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.110    0.039   -2.790    0.005   -0.110   -0.081
##     direct           -0.008    0.076   -0.110    0.912   -0.008   -0.006
##     total            -0.118    0.084   -1.408    0.159   -0.118   -0.088

Intervention group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.intervention.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.intervention.1W <- sem(Mediation.PHQ.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.097    0.014    6.784    0.000    0.097    0.549
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)    0.008    0.015    0.534    0.593    0.008    0.047
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.278    0.123    2.254    0.024    0.278    0.278
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.815    0.247   -7.340    0.000   -1.815   -1.823
##    .IUS_B1W_change   -0.154    0.311   -0.495    0.621   -0.154   -0.155
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.601    0.093    6.493    0.000    0.601    0.607
##    .IUS_B1W_change    0.988    0.223    4.429    0.000    0.988    0.998
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.393
##     IUS_B1W_change    0.002
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.002    0.004    0.555    0.579    0.002    0.013
##     direct            0.097    0.014    6.784    0.000    0.097    0.549
##     total             0.100    0.015    6.827    0.000    0.100    0.562

Psychoeducation group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.psychoed.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.psychoed.1W <- sem(Mediation.PHQ.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.118    0.011   10.736    0.000    0.118    0.722
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)   -0.007    0.013   -0.558    0.577   -0.007   -0.043
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.302    0.080    3.785    0.000    0.302    0.302
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -2.048    0.178  -11.515    0.000   -2.048   -2.058
##    .IUS_B1W_change    0.123    0.243    0.507    0.612    0.123    0.124
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.402    0.062    6.491    0.000    0.402    0.406
##    .IUS_B1W_change    0.989    0.233    4.249    0.000    0.989    0.998
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.594
##     IUS_B1W_change    0.002
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.004   -0.563    0.573   -0.002   -0.013
##     direct            0.118    0.011   10.736    0.000    0.118    0.722
##     total             0.115    0.011   10.108    0.000    0.115    0.709

EC group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.ECs.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.ECs.1W <- sem(Mediation.PHQ.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.104    0.008   12.929    0.000    0.104    0.602
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)    0.036    0.013    2.654    0.008    0.036    0.206
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.503    0.051    9.905    0.000    0.503    0.503
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.876    0.150  -12.504    0.000   -1.876   -1.895
##    .IUS_B1W_change   -0.643    0.303   -2.118    0.034   -0.643   -0.649
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.254    0.073    3.473    0.001    0.254    0.259
##    .IUS_B1W_change    0.938    0.464    2.024    0.043    0.938    0.957
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.741
##     IUS_B1W_change    0.043
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.018    0.007    2.505    0.012    0.018    0.104
##     direct            0.104    0.008   12.929    0.000    0.104    0.602
##     total             0.122    0.009   13.339    0.000    0.122    0.706

Full sample at 1 month: Group to change in PHQ via change in IUS

Mediation.PHQchange.1M <-
  '#regressions
PHQ_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
PHQ_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1M <- sem(Mediation.PHQchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1M_change ~                                                      
##     Group     (c1)    0.008    0.063    0.130    0.897    0.008    0.006
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.209    0.083   -2.526    0.012   -0.209   -0.155
##   PHQ_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.653    0.052   12.491    0.000    0.653    0.653
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change   -0.018    0.147   -0.122    0.903   -0.018   -0.018
##    .IUS_B1M_change    0.461    0.192    2.396    0.017    0.461    0.462
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.572    0.064    9.005    0.000    0.572    0.574
##    .IUS_B1M_change    0.972    0.122    7.988    0.000    0.972    0.976
## 
## R-Square:
##                    Estimate
##     PHQ_B1M_change    0.426
##     IUS_B1M_change    0.024
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.137    0.054   -2.547    0.011   -0.137   -0.101
##     direct            0.008    0.063    0.130    0.897    0.008    0.006
##     total            -0.128    0.084   -1.526    0.127   -0.128   -0.095

Intervention group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.intervention.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.intervention.1M <- sem(Mediation.PHQ.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.082    0.010    8.324    0.000    0.082    0.464
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.005    0.015   -0.334    0.738   -0.005   -0.028
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.565    0.081    6.974    0.000    0.565    0.565
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.535    0.186   -8.247    0.000   -1.535   -1.543
##    .IUS_B1M_change    0.093    0.290    0.322    0.748    0.093    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.476    0.075    6.303    0.000    0.476    0.481
##    .IUS_B1M_change    0.990    0.184    5.381    0.000    0.990    0.999
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.519
##     IUS_B1M_change    0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.003    0.009   -0.330    0.741   -0.003   -0.016
##     direct            0.082    0.010    8.324    0.000    0.082    0.464
##     total             0.079    0.014    5.820    0.000    0.079    0.448

Psychoeducation group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.psychoed.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.psychoed.1M <- sem(Mediation.PHQ.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.066    0.011    5.895    0.000    0.066    0.403
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.023    0.017   -1.375    0.169   -0.023   -0.142
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.615    0.070    8.805    0.000    0.615    0.615
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.143    0.198   -5.783    0.000   -1.143   -1.149
##    .IUS_B1M_change    0.403    0.273    1.474    0.140    0.403    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.524    0.079    6.655    0.000    0.524    0.529
##    .IUS_B1M_change    0.971    0.183    5.306    0.000    0.971    0.980
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.471
##     IUS_B1M_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.014    0.011   -1.295    0.195   -0.014   -0.087
##     direct            0.066    0.011    5.895    0.000    0.066    0.403
##     total             0.051    0.015    3.474    0.001    0.051    0.316

EC group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.ECs.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.ECs.1M <- sem(Mediation.PHQ.ECs.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.ECs.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.067    0.016    4.242    0.000    0.067    0.386
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.009    0.023   -0.419    0.676   -0.009   -0.055
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.727    0.058   12.599    0.000    0.727    0.727
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.202    0.265   -4.537    0.000   -1.202   -1.214
##    .IUS_B1M_change    0.170    0.382    0.445    0.656    0.170    0.172
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.346    0.120    2.882    0.004    0.346    0.353
##    .IUS_B1M_change    0.977    0.297    3.293    0.001    0.977    0.997
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.647
##     IUS_B1M_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.007    0.017   -0.414    0.679   -0.007   -0.040
##     direct            0.067    0.016    4.242    0.000    0.067    0.386
##     total             0.060    0.024    2.534    0.011    0.060    0.346

H3: IUS mediating change in GAD over time between groups

Full sample at 1 week: Group to change in GAD via change in IUS

Mediation.GADchange.1W <-
  '#regressions
GAD_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
GAD_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1W <- sem(Mediation.GADchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 16 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1W_change ~                                                      
##     Group     (c1)    0.002    0.072    0.023    0.982    0.002    0.001
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.269    0.085   -3.152    0.002   -0.269   -0.199
##   GAD_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.450    0.081    5.573    0.000    0.450    0.450
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change   -0.004    0.151   -0.024    0.981   -0.004   -0.004
##    .IUS_B1W_change    0.592    0.196    3.018    0.003    0.592    0.593
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change    0.795    0.107    7.396    0.000    0.795    0.798
##    .IUS_B1W_change    0.957    0.158    6.071    0.000    0.957    0.960
## 
## R-Square:
##                    Estimate
##     GAD_B1W_change    0.202
##     IUS_B1W_change    0.040
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.121    0.045   -2.715    0.007   -0.121   -0.090
##     direct            0.002    0.072    0.023    0.982    0.002    0.001
##     total            -0.119    0.081   -1.471    0.141   -0.119   -0.089

Intervention group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.intervention.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.intervention.1W <- sem(Mediation.GAD.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.108    0.014    7.546    0.000    0.108    0.589
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)   -0.004    0.017   -0.233    0.815   -0.004   -0.022
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.286    0.121    2.372    0.018    0.286    0.286
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.750    0.208   -8.401    0.000   -1.750   -1.759
##    .IUS_B1W_change    0.065    0.299    0.217    0.828    0.065    0.065
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.573    0.106    5.421    0.000    0.573    0.578
##    .IUS_B1W_change    0.990    0.223    4.434    0.000    0.990    1.000
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.422
##     IUS_B1W_change    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.005   -0.224    0.823   -0.001   -0.006
##     direct            0.108    0.014    7.546    0.000    0.108    0.589
##     total             0.106    0.014    7.366    0.000    0.106    0.583

Psychoeducation group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.psychoed.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.psychoed.1W <- sem(Mediation.GAD.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.122    0.010   12.186    0.000    0.122    0.706
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)   -0.009    0.013   -0.694    0.488   -0.009   -0.053
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.343    0.065    5.253    0.000    0.343    0.343
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.891    0.163  -11.636    0.000   -1.891   -1.900
##    .IUS_B1W_change    0.142    0.231    0.614    0.539    0.142    0.143
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.407    0.075    5.397    0.000    0.407    0.410
##    .IUS_B1W_change    0.988    0.232    4.253    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.590
##     IUS_B1W_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.003    0.004   -0.703    0.482   -0.003   -0.018
##     direct            0.122    0.010   12.186    0.000    0.122    0.706
##     total             0.119    0.011   11.113    0.000    0.119    0.687

EC group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.ECs.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.ECs.1W <- sem(Mediation.GAD.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.135    0.012   11.312    0.000    0.135    0.657
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)    0.027    0.017    1.622    0.105    0.027    0.131
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.503    0.039   13.030    0.000    0.503    0.503
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -2.035    0.166  -12.255    0.000   -2.035   -2.055
##    .IUS_B1W_change   -0.405    0.312   -1.297    0.195   -0.405   -0.409
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.224    0.053    4.212    0.000    0.224    0.228
##    .IUS_B1W_change    0.963    0.469    2.055    0.040    0.963    0.983
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.772
##     IUS_B1W_change    0.017
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.014    0.009    1.595    0.111    0.014    0.066
##     direct            0.135    0.012   11.312    0.000    0.135    0.657
##     total             0.149    0.013   11.412    0.000    0.149    0.723

Full sample at 1 month: Group to change in GAD via change in IUS

Mediation.GADchange.1M <-
  '#regressions
GAD_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
GAD_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1M <- sem(Mediation.GADchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 16 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1M_change ~                                                      
##     Group     (c1)   -0.004    0.062   -0.068    0.946   -0.004   -0.003
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.209    0.083   -2.526    0.012   -0.209   -0.155
##   GAD_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.675    0.050   13.451    0.000    0.675    0.675
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.009    0.151    0.062    0.950    0.009    0.009
##    .IUS_B1M_change    0.461    0.192    2.396    0.017    0.461    0.462
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.541    0.068    7.980    0.000    0.541    0.544
##    .IUS_B1M_change    0.972    0.122    7.988    0.000    0.972    0.976
## 
## R-Square:
##                    Estimate
##     GAD_B1M_change    0.456
##     IUS_B1M_change    0.024
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.141    0.056   -2.517    0.012   -0.141   -0.105
##     direct           -0.004    0.062   -0.068    0.946   -0.004   -0.003
##     total            -0.145    0.083   -1.750    0.080   -0.145   -0.108

Intervention group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.intervention.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.intervention.1M <- sem(Mediation.GAD.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.100    0.011    9.396    0.000    0.100    0.546
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)   -0.004    0.014   -0.268    0.788   -0.004   -0.021
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.572    0.075    7.597    0.000    0.572    0.572
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.622    0.170   -9.555    0.000   -1.622   -1.630
##    .IUS_B1M_change    0.063    0.247    0.256    0.798    0.063    0.063
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.384    0.062    6.200    0.000    0.384    0.388
##    .IUS_B1M_change    0.990    0.184    5.379    0.000    0.990    1.000
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.612
##     IUS_B1M_change    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.008   -0.266    0.790   -0.002   -0.012
##     direct            0.100    0.011    9.396    0.000    0.100    0.546
##     total             0.097    0.013    7.632    0.000    0.097    0.534

Psychoeducation group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.psychoed.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.psychoed.1M <- sem(Mediation.GAD.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.072    0.010    7.252    0.000    0.072    0.417
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)   -0.025    0.019   -1.300    0.194   -0.025   -0.143
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.671    0.065   10.368    0.000    0.671    0.671
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.117    0.154   -7.270    0.000   -1.117   -1.122
##    .IUS_B1M_change    0.383    0.272    1.405    0.160    0.383    0.384
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.452    0.075    5.988    0.000    0.452    0.456
##    .IUS_B1M_change    0.970    0.180    5.388    0.000    0.970    0.980
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.544
##     IUS_B1M_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.017    0.013   -1.247    0.213   -0.017   -0.096
##     direct            0.072    0.010    7.252    0.000    0.072    0.417
##     total             0.056    0.017    3.219    0.001    0.056    0.321

EC group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.ECs.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.ECs.1M <- sem(Mediation.GAD.ECs.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.ECs.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.067    0.024    2.783    0.005    0.067    0.327
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)    0.002    0.018    0.122    0.903    0.002    0.011
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.673    0.051   13.210    0.000    0.673    0.673
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.013    0.366   -2.765    0.006   -1.013   -1.023
##    .IUS_B1M_change   -0.033    0.294   -0.113    0.910   -0.033   -0.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.427    0.142    3.008    0.003    0.427    0.436
##    .IUS_B1M_change    0.980    0.301    3.256    0.001    0.980    1.000
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.564
##     IUS_B1M_change    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.001    0.012    0.122    0.903    0.001    0.007
##     direct            0.067    0.024    2.783    0.005    0.067    0.327
##     total             0.069    0.027    2.562    0.010    0.069    0.334

H3: IUS mediating change in mood over time between groups

Full sample at post: Group to change in mood via change in IUS

Mediation.Moodchange.post <-
  '#regressions
Mood_BP_change ~ c1 * Group  
IUS_BP_change ~ a1 * Group 
Mood_BP_change ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.post <- sem(Mediation.Moodchange.post, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_BP_change ~                                                      
##     Group     (c1)    0.320    0.077    4.160    0.000    0.320    0.236
##   IUS_BP_change ~                                                       
##     Group     (a1)   -0.419    0.079   -5.274    0.000   -0.419   -0.311
##   Mood_BP_change ~                                                      
##     IUS_BP_ch (b1)   -0.241    0.077   -3.154    0.002   -0.241   -0.240
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_BP_change   -0.699    0.166   -4.212    0.000   -0.699   -0.697
##    .IUS_BP_change     0.923    0.159    5.816    0.000    0.923    0.924
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_BP_change    0.855    0.144    5.952    0.000    0.855    0.851
##    .IUS_BP_change     0.900    0.139    6.490    0.000    0.900    0.903
## 
## R-Square:
##                    Estimate
##     Mood_BP_change    0.149
##     IUS_BP_change     0.097
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.101    0.034    2.984    0.003    0.101    0.075
##     direct            0.320    0.077    4.160    0.000    0.320    0.236
##     total             0.421    0.072    5.811    0.000    0.421    0.311

Intervention group at post: pre mood to post mood via change in IU

Mediation.Mood.intervention.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.post <- sem(Mediation.Mood.intervention.post, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.014    0.003    4.715    0.000    0.014    0.600
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.001    0.002    0.530    0.596    0.001    0.051
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.162    0.093   -1.751    0.080   -0.162   -0.162
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.407    0.147   -2.767    0.006   -0.407   -0.407
##    .IUS_BP_change    -0.035    0.099   -0.357    0.721   -0.035   -0.035
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.624    0.128    4.889    0.000    0.624    0.624
##    .IUS_BP_change     0.988    0.224    4.416    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.376
##     IUS_BP_change     0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.495    0.621   -0.000   -0.008
##     direct            0.014    0.003    4.715    0.000    0.014    0.600
##     total             0.014    0.003    4.724    0.000    0.014    0.591

Psychoeducation group at post: pre mood to post mood via change in IU

Mediation.Mood.psychoed.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.post <- sem(Mediation.Mood.psychoed.post, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.016    0.002    7.911    0.000    0.016    0.695
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.002    0.002    0.698    0.485    0.002    0.067
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.241    0.069   -3.506    0.000   -0.241   -0.241
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.589    0.119   -4.939    0.000   -0.589   -0.592
##    .IUS_BP_change    -0.057    0.138   -0.412    0.681   -0.057   -0.057
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.477    0.083    5.756    0.000    0.477    0.482
##    .IUS_BP_change     0.986    0.196    5.026    0.000    0.986    0.996
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.518
##     IUS_BP_change     0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.647    0.518   -0.000   -0.016
##     direct            0.016    0.002    7.911    0.000    0.016    0.695
##     total             0.015    0.002    7.039    0.000    0.015    0.679

EC group at post: pre mood to post mood via change in IU

Mediation.Mood.ECs.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.ECs.post <- sem(Mediation.Mood.ECs.post, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.ECs.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.022    0.002   13.400    0.000    0.022    0.868
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.001    0.003    0.236    0.814    0.001    0.025
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.063    0.060   -1.052    0.293   -0.063   -0.063
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.895    0.104   -8.601    0.000   -0.895   -0.904
##    .IUS_BP_change    -0.026    0.178   -0.147    0.883   -0.026   -0.026
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.240    0.063    3.801    0.000    0.240    0.245
##    .IUS_BP_change     0.979    0.226    4.336    0.000    0.979    0.999
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.755
##     IUS_BP_change     0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.231    0.817   -0.000   -0.002
##     direct            0.022    0.002   13.400    0.000    0.022    0.868
##     total             0.022    0.002   13.364    0.000    0.022    0.866

Full sample at 1 week: Group to change in mood via change in IUS

Mediation.Moodchange.1W <-
  '#regressions
Mood_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
Mood_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.1W <- sem(Mediation.Moodchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_B1W_change ~                                                      
##     Group     (c1)     0.020    0.088    0.224    0.823    0.020    0.015
##   IUS_B1W_change ~                                                       
##     Group     (a1)    -0.269    0.085   -3.152    0.002   -0.269   -0.199
##   Mood_B1W_change ~                                                      
##     IUS_B1W_c (b1)    -0.211    0.094   -2.246    0.025   -0.211   -0.209
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1W_chang   -0.021    0.207   -0.102    0.919   -0.021   -0.021
##    .IUS_B1W_change    0.592    0.196    3.018    0.003    0.592    0.593
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1W_chang    0.966    0.121    7.987    0.000    0.966    0.955
##    .IUS_B1W_change    0.957    0.158    6.071    0.000    0.957    0.960
## 
## R-Square:
##                    Estimate
##     Mood_B1W_chang    0.045
##     IUS_B1W_change    0.040
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.057    0.030    1.914    0.056    0.057    0.042
##     direct            0.020    0.088    0.224    0.823    0.020    0.015
##     total             0.076    0.082    0.929    0.353    0.076    0.056

Intervention group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.intervention.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.1W <- sem(Mediation.Mood.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.011    0.002    4.421    0.000    0.011    0.457
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.492    0.623    0.001    0.051
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.133    0.114   -1.173    0.241   -0.133   -0.134
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.311    0.110   -2.833    0.005   -0.311   -0.313
##    .IUS_B1W_change   -0.036    0.114   -0.311    0.756   -0.036   -0.036
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.768    0.155    4.947    0.000    0.768    0.779
##    .IUS_B1W_change    0.988    0.220    4.496    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.221
##     IUS_B1W_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.478    0.633   -0.000   -0.007
##     direct            0.011    0.002    4.421    0.000    0.011    0.457
##     total             0.011    0.003    4.150    0.000    0.011    0.450

Psychoeducation group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.psychoed.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.1W <- sem(Mediation.Mood.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.478    0.000    0.010    0.444
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.633    0.527    0.001    0.062
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.198    0.120   -1.648    0.099   -0.198   -0.196
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.361    0.135   -2.670    0.008   -0.361   -0.359
##    .IUS_B1W_change   -0.053    0.133   -0.397    0.691   -0.053   -0.053
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.781    0.126    6.223    0.000    0.781    0.776
##    .IUS_B1W_change    0.987    0.235    4.206    0.000    0.987    0.996
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.224
##     IUS_B1W_change    0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.554    0.579   -0.000   -0.012
##     direct            0.010    0.002    4.478    0.000    0.010    0.444
##     total             0.010    0.002    4.164    0.000    0.010    0.431

EC group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.ECs.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.ECs.1W <- sem(Mediation.Mood.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.011    0.003    3.198    0.001    0.011    0.434
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.003    0.002    2.046    0.041    0.003    0.136
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.078    0.244   -0.320    0.749   -0.078   -0.078
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.434    0.178   -2.433    0.015   -0.434   -0.439
##    .IUS_B1W_change   -0.140    0.154   -0.906    0.365   -0.140   -0.141
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.795    0.129    6.163    0.000    0.795    0.815
##    .IUS_B1W_change    0.962    0.476    2.021    0.043    0.962    0.982
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.185
##     IUS_B1W_change    0.018
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.314    0.754   -0.000   -0.011
##     direct            0.011    0.003    3.198    0.001    0.011    0.434
##     total             0.011    0.003    3.239    0.001    0.011    0.424

Full sample at 1 month: Group to change in mood via change in IUS

Mediation.Moodchange.1M <-
  '#regressions
Mood_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
Mood_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.1M <- sem(Mediation.Moodchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_B1M_change ~                                                      
##     Group     (c1)     0.025    0.089    0.281    0.779    0.025    0.017
##   IUS_B1M_change ~                                                       
##     Group     (a1)    -0.209    0.083   -2.526    0.012   -0.209   -0.155
##   Mood_B1M_change ~                                                      
##     IUS_B1M_c (b1)    -0.433    0.126   -3.450    0.001   -0.433   -0.409
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1M_chang    0.064    0.219    0.293    0.770    0.064    0.061
##    .IUS_B1M_change    0.461    0.192    2.396    0.017    0.461    0.462
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1M_chang    0.926    0.104    8.930    0.000    0.926    0.830
##    .IUS_B1M_change    0.972    0.122    7.988    0.000    0.972    0.976
## 
## R-Square:
##                    Estimate
##     Mood_B1M_chang    0.170
##     IUS_B1M_change    0.024
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.090    0.044    2.067    0.039    0.090    0.063
##     direct            0.025    0.089    0.281    0.779    0.025    0.017
##     total             0.115    0.089    1.296    0.195    0.115    0.081

Intervention group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.intervention.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.1M <- sem(Mediation.Mood.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 13 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.288    0.000    0.010    0.417
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.003    0.002    1.160    0.246    0.003    0.111
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.329    0.135   -2.428    0.015   -0.329   -0.320
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.209    0.115   -1.806    0.071   -0.209   -0.204
##    .IUS_B1M_change   -0.077    0.120   -0.645    0.519   -0.077   -0.078
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.785    0.140    5.613    0.000    0.785    0.753
##    .IUS_B1M_change    0.978    0.183    5.338    0.000    0.978    0.988
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.247
##     IUS_B1M_change    0.012
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.001   -1.014    0.311   -0.001   -0.036
##     direct            0.010    0.002    4.288    0.000    0.010    0.417
##     total             0.009    0.003    3.594    0.000    0.009    0.381

Psychoeducation group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.psychoed.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.1M <- sem(Mediation.Mood.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.816    0.000    0.010    0.422
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.786    0.432    0.001    0.060
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.342    0.145   -2.365    0.018   -0.342   -0.332
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.274    0.131   -2.092    0.036   -0.274   -0.268
##    .IUS_B1M_change   -0.051    0.121   -0.423    0.672   -0.051   -0.051
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.764    0.093    8.253    0.000    0.764    0.728
##    .IUS_B1M_change    0.987    0.197    5.013    0.000    0.987    0.996
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.272
##     IUS_B1M_change    0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.698    0.485   -0.000   -0.020
##     direct            0.010    0.002    4.816    0.000    0.010    0.422
##     total             0.009    0.002    4.193    0.000    0.009    0.403

EC group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.EC.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.EC.1M <- sem(Mediation.Mood.EC.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.EC.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.016    0.002    7.150    0.000    0.016    0.594
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)   -0.001    0.003   -0.189    0.850   -0.001   -0.024
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.294    0.292   -1.007    0.314   -0.294   -0.278
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.562    0.206   -2.725    0.006   -0.562   -0.538
##    .IUS_B1M_change    0.025    0.177    0.142    0.887    0.025    0.025
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.616    0.122    5.039    0.000    0.616    0.562
##    .IUS_B1M_change    0.979    0.300    3.266    0.001    0.979    0.999
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.438
##     IUS_B1M_change    0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.000    0.001    0.187    0.852    0.000    0.007
##     direct            0.016    0.002    7.150    0.000    0.016    0.594
##     total             0.016    0.002    6.726    0.000    0.016    0.600

Exploratory analyses

E1: Growth mindsets moderating the association between group and PHQ changes across time

# 1 week
moderation_GM_PHQ_1W <- lm(PHQ_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1W)
## 
## Call:
## lm(formula = PHQ_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.0159  -2.0823   0.7306   3.0574  12.9841 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -2.9985     1.6404  -1.828   0.0687 .
## GroupB_Controls                0.8065     2.0501   0.393   0.6944  
## GroupC_Intervention            1.1225     2.0429   0.549   0.5832  
## A_PRE_GM                       0.8170     0.5345   1.529   0.1276  
## GroupB_Controls:A_PRE_GM      -0.5426     0.6425  -0.845   0.3991  
## GroupC_Intervention:A_PRE_GM  -0.8530     0.6558  -1.301   0.1946  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.226 on 253 degrees of freedom
## Multiple R-squared:  0.01907,    Adjusted R-squared:  -0.0003146 
## F-statistic: 0.9838 on 5 and 253 DF,  p-value: 0.4282
anova(moderation_GM_PHQ_1W)
## Analysis of Variance Table
## 
## Response: PHQ_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   54.1  27.054  0.9905 0.3728
## A_PRE_GM         1   34.0  33.971  1.2438 0.2658
## Group:A_PRE_GM   2   46.3  23.135  0.8470 0.4299
## Residuals      253 6910.3  27.313
# 1 month
moderation_GM_PHQ_1M <- lm(PHQ_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1M)
## 
## Call:
## lm(formula = PHQ_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.700  -3.261   1.451   4.711  22.300 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                   -1.6831     2.5196  -0.668    0.505
## GroupB_Controls               -2.3436     3.1490  -0.744    0.457
## GroupC_Intervention           -0.8238     3.1380  -0.263    0.793
## A_PRE_GM                      -0.1813     0.8209  -0.221    0.825
## GroupB_Controls:A_PRE_GM       0.4691     0.9868   0.475    0.635
## GroupC_Intervention:A_PRE_GM  -0.4066     1.0074  -0.404    0.687
## 
## Residual standard error: 8.028 on 253 degrees of freedom
## Multiple R-squared:  0.01432,    Adjusted R-squared:  -0.00516 
## F-statistic: 0.7351 on 5 and 253 DF,  p-value: 0.5977
anova(moderation_GM_PHQ_1M)
## Analysis of Variance Table
## 
## Response: PHQ_B1M_change
##                 Df  Sum Sq Mean Sq F value Pr(>F)
## Group            2   150.6  75.293  1.1684 0.3125
## A_PRE_GM         1     8.9   8.889  0.1379 0.7106
## Group:A_PRE_GM   2    77.4  38.696  0.6005 0.5493
## Residuals      253 16303.8  64.442

E1: Growth mindsets moderating the association between group and GAD changes across time

# 1 week
moderation_GM_GAD_1W <- lm(GAD_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1W)
## 
## Call:
## lm(formula = GAD_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.5676  -2.0544   0.4949   2.4807  15.5291 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -2.1403     1.5552  -1.376   0.1700  
## GroupB_Controls                2.5470     1.9436   1.310   0.1912  
## GroupC_Intervention            0.5145     1.9368   0.266   0.7907  
## A_PRE_GM                       0.6863     0.5067   1.354   0.1768  
## GroupB_Controls:A_PRE_GM      -1.1370     0.6091  -1.867   0.0631 .
## GroupC_Intervention:A_PRE_GM  -0.6379     0.6218  -1.026   0.3059  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.955 on 253 degrees of freedom
## Multiple R-squared:  0.02205,    Adjusted R-squared:  0.002722 
## F-statistic: 1.141 on 5 and 253 DF,  p-value: 0.3392
anova(moderation_GM_GAD_1W)
## Analysis of Variance Table
## 
## Response: GAD_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   50.9  25.452  1.0367 0.3561
## A_PRE_GM         1    1.0   0.977  0.0398 0.8420
## Group:A_PRE_GM   2   88.2  44.079  1.7955 0.1682
## Residuals      253 6211.2  24.550
# 1 month
moderation_GM_GAD_1M <- lm(GAD_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1M)
## 
## Call:
## lm(formula = GAD_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.151  -2.289   1.296   4.085  19.507 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                   -1.7183     2.2558  -0.762    0.447
## GroupB_Controls               -0.9127     2.8193  -0.324    0.746
## GroupC_Intervention            0.4863     2.8094   0.173    0.863
## A_PRE_GM                       0.2110     0.7350   0.287    0.774
## GroupB_Controls:A_PRE_GM      -0.2474     0.8835  -0.280    0.780
## GroupC_Intervention:A_PRE_GM  -0.9505     0.9019  -1.054    0.293
## 
## Residual standard error: 7.187 on 253 degrees of freedom
## Multiple R-squared:  0.02077,    Adjusted R-squared:  0.001419 
## F-statistic: 1.073 on 5 and 253 DF,  p-value: 0.3756
anova(moderation_GM_GAD_1M)
## Analysis of Variance Table
## 
## Response: GAD_B1M_change
##                 Df  Sum Sq Mean Sq F value Pr(>F)
## Group            2   169.3  84.646  1.6387 0.1963
## A_PRE_GM         1    32.5  32.506  0.6293 0.4284
## Group:A_PRE_GM   2    75.4  37.704  0.7299 0.4829
## Residuals      253 13068.5  51.654

E1: Growth mindsets moderating the association between group and mood changes across time

# post
moderation_GM_mood_BP <- lm(Mood_BP_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_BP)
## 
## Call:
## lm(formula = Mood_BP_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -72.57 -19.14  -3.97  15.23 171.32 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                    -8.380     10.096  -0.830  0.40732   
## GroupB_Controls                31.642     12.618   2.508  0.01278 * 
## GroupC_Intervention            38.846     12.577   3.089  0.00223 **
## A_PRE_GM                        3.051      3.289   0.928  0.35455   
## GroupB_Controls:A_PRE_GM       -4.098      3.954  -1.036  0.30097   
## GroupC_Intervention:A_PRE_GM   -3.409      4.037  -0.845  0.39913   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.17 on 252 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1039, Adjusted R-squared:  0.08617 
## F-statistic: 5.847 on 5 and 252 DF,  p-value: 3.945e-05
anova(moderation_GM_mood_BP)
## Analysis of Variance Table
## 
## Response: Mood_BP_change
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## Group            2  29097 14548.3 14.0609 1.625e-06 ***
## A_PRE_GM         1      0     0.0  0.0000    0.9988    
## Group:A_PRE_GM   2   1150   575.1  0.5558    0.5743    
## Residuals      252 260736  1034.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1 week
moderation_GM_mood_1W <- lm(Mood_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_1W)
## 
## Call:
## lm(formula = Mood_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -185.320  -23.963    2.028   25.016  185.316 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                  -15.2285    15.0894  -1.009    0.314
## GroupB_Controls               15.5416    18.8441   0.825    0.410
## GroupC_Intervention           16.4329    18.9320   0.868    0.386
## A_PRE_GM                       0.1816     4.8849   0.037    0.970
## GroupB_Controls:A_PRE_GM      -2.3073     5.8749  -0.393    0.695
## GroupC_Intervention:A_PRE_GM  -2.5278     6.0285  -0.419    0.675
## 
## Residual standard error: 47.61 on 244 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.00881,    Adjusted R-squared:  -0.0115 
## F-statistic: 0.4338 on 5 and 244 DF,  p-value: 0.8248
anova(moderation_GM_mood_1W)
## Analysis of Variance Table
## 
## Response: Mood_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   2952  1476.0  0.6511 0.5224
## A_PRE_GM         1   1516  1515.6  0.6686 0.4143
## Group:A_PRE_GM   2    449   224.5  0.0990 0.9057
## Residuals      244 553135  2266.9
# 1 month
moderation_GM_mood_1W <- lm(Mood_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_1W)
## 
## Call:
## lm(formula = Mood_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -150.984  -28.262    4.266   26.821  183.538 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                  -29.7643    16.1860  -1.839   0.0673 .
## GroupB_Controls               27.3570    20.3907   1.342   0.1811  
## GroupC_Intervention           13.0556    20.0891   0.650   0.5164  
## A_PRE_GM                       3.0544     5.2872   0.578   0.5641  
## GroupB_Controls:A_PRE_GM      -4.2805     6.4042  -0.668   0.5046  
## GroupC_Intervention:A_PRE_GM   0.4938     6.4979   0.076   0.9395  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 48.65 on 222 degrees of freedom
##   (31 observations deleted due to missingness)
## Multiple R-squared:  0.02057,    Adjusted R-squared:  -0.001493 
## F-statistic: 0.9323 on 5 and 222 DF,  p-value: 0.4608
anova(moderation_GM_mood_1W)
## Analysis of Variance Table
## 
## Response: Mood_B1M_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   7881  3940.5  1.6652 0.1915
## A_PRE_GM         1    904   904.4  0.3822 0.5371
## Group:A_PRE_GM   2   2246  1122.9  0.4745 0.6228
## Residuals      222 525329  2366.3

E2: Association between IUS and baseline functional impairment

# Total FI scale
PRE_IUS_FI_lm <- lm(A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
summary(PRE_IUS_FI_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.4978  -4.2115   0.3611   5.1474  16.9780 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     23.5947     1.7806   13.25   <2e-16 ***
## A_PRE_FI_total   1.2379     0.1141   10.85   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.354 on 257 degrees of freedom
## Multiple R-squared:  0.314,  Adjusted R-squared:  0.3113 
## F-statistic: 117.6 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_FI_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_FI_total   1  6360.1  6360.1  117.61 < 2.2e-16 ***
## Residuals      257 13897.6    54.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Plot_lm_fi <- ggplot(data = Full_data_all, aes(x = A_PRE_IUS_total, y = A_PRE_FI_total)) +
  geom_point() +
  geom_smooth(method = "lm", color = "black")
print(Plot_lm_fi)
## `geom_smooth()` using formula = 'y ~ x'

# Friends item
PRE_IUS_friends_lm <- lm(A_PRE_IUS_total ~ B_FI_friends, data = Full_data_all)
summary(PRE_IUS_friends_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_friends, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.7419  -5.1496   0.6416   6.0252  19.2581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   33.2760     1.3886  23.963  < 2e-16 ***
## B_FI_friends   3.2329     0.4657   6.942 3.16e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.159 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1584, Adjusted R-squared:  0.1551 
## F-statistic:  48.2 on 1 and 256 DF,  p-value: 3.163e-11
anova(PRE_IUS_friends_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_friends   1  3208.3  3208.3  48.195 3.163e-11 ***
## Residuals    256 17041.8    66.6                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Strangers item
PRE_IUS_strangers_lm <- lm(A_PRE_IUS_total ~ B_FI_strangers, data = Full_data_all)
summary(PRE_IUS_strangers_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_strangers, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.857  -4.948   1.075   6.143  20.189 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     34.7198     1.7331  20.033  < 2e-16 ***
## B_FI_strangers   2.0457     0.4489   4.557 8.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.548 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.07504,    Adjusted R-squared:  0.07142 
## F-statistic: 20.77 on 1 and 256 DF,  p-value: 8.034e-06
anova(PRE_IUS_strangers_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_strangers   1  1517.6 1517.59  20.768 8.034e-06 ***
## Residuals      256 18707.0   73.07                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Work item
PRE_IUS_work_lm <- lm(A_PRE_IUS_total ~ B_FI_work, data = Full_data_all)
summary(PRE_IUS_work_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_work, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.9966  -4.3259   0.0034   5.8388  18.9211 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   29.914      1.450  20.627   <2e-16 ***
## B_FI_work      4.082      0.451   9.051   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.705 on 243 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.2521, Adjusted R-squared:  0.249 
## F-statistic: 81.92 on 1 and 243 DF,  p-value: < 2.2e-16
anova(PRE_IUS_work_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_work   1  4863.8  4863.8   81.92 < 2.2e-16 ***
## Residuals 243 14427.5    59.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Education item
PRE_IUS_education_lm <- lm(A_PRE_IUS_total ~ B_FI_education, data = Full_data_all)
summary(PRE_IUS_education_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_education, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.9221  -4.9864   0.0136   5.9976  18.0457 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     32.8900     1.3789  23.853  < 2e-16 ***
## B_FI_education   3.0321     0.4192   7.233 5.79e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.153 on 249 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1736, Adjusted R-squared:  0.1703 
## F-statistic: 52.32 on 1 and 249 DF,  p-value: 5.793e-12
anova(PRE_IUS_education_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_education   1  3478.3  3478.3  52.323 5.793e-12 ***
## Residuals      249 16552.6    66.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Hobbies item
PRE_IUS_hobbies_lm <- lm(A_PRE_IUS_total ~ B_FI_hobbies, data = Full_data_all)
summary(PRE_IUS_hobbies_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_hobbies, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.3848  -5.5183   0.0813   5.4372  17.6152 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   33.2068     1.2818  25.907  < 2e-16 ***
## B_FI_hobbies   3.1780     0.4149   7.659 3.85e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.022 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1864, Adjusted R-squared:  0.1832 
## F-statistic: 58.66 on 1 and 256 DF,  p-value: 3.853e-13
anova(PRE_IUS_hobbies_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_hobbies   1  3775.2  3775.2  58.662 3.853e-13 ***
## Residuals    256 16474.9    64.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

E2: Change in functional impairment over time across groups

# Merging across timepoints
FI_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total", "D_M1_FI_total")
## Formatting table as needed
FI_alltimepoints_long <- FI_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_alltimepoints_long, REML = TRUE)
summary(FI_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_alltimepoints_long
## 
## REML criterion at convergence: 4585.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5128 -0.3758  0.0291  0.5036  2.2680 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  9.546   3.090   
##  Residual             15.332   3.916   
## Number of obs: 777, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error        df t value
## (Intercept)                            14.86000    0.70538 593.28918  21.067
## GroupB_Controls                         0.09283    0.85573 593.28918   0.108
## GroupC_Intervention                     0.45068    0.85971 593.28918   0.524
## TimeC_W1_FI_total                      -0.48000    0.78312 512.00000  -0.613
## TimeD_M1_FI_total                      -1.90000    0.78312 512.00000  -2.426
## GroupB_Controls:TimeC_W1_FI_total      -0.07660    0.95003 512.00000  -0.081
## GroupC_Intervention:TimeC_W1_FI_total  -0.86951    0.95446 512.00000  -0.911
## GroupB_Controls:TimeD_M1_FI_total      -0.35472    0.95003 512.00000  -0.373
## GroupC_Intervention:TimeD_M1_FI_total  -0.73107    0.95446 512.00000  -0.766
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                         0.9137    
## GroupC_Intervention                     0.6003    
## TimeC_W1_FI_total                       0.5402    
## TimeD_M1_FI_total                       0.0156 *  
## GroupB_Controls:TimeC_W1_FI_total       0.9358    
## GroupC_Intervention:TimeC_W1_FI_total   0.3627    
## GroupB_Controls:TimeD_M1_FI_total       0.7090    
## GroupC_Intervention:TimeD_M1_FI_total   0.4441    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ TD_M1_ GB_C:TC GC_I:TC GB_C:TD
## GrpB_Cntrls -0.824                                                    
## GrpC_Intrvn -0.820  0.676                                             
## TmC_W1_FI_t -0.555  0.458  0.455                                      
## TmD_M1_FI_t -0.555  0.458  0.455  0.500                               
## GB_C:TC_W1_  0.458 -0.555 -0.375 -0.824 -0.412                        
## GC_I:TC_W1_  0.455 -0.375 -0.555 -0.820 -0.410  0.676                 
## GB_C:TD_M1_  0.458 -0.555 -0.375 -0.412 -0.824  0.500   0.338         
## GC_I:TD_M1_  0.455 -0.375 -0.555 -0.410 -0.820  0.338   0.500   0.676
anova  (FI_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)    
## Group        0.24   0.122     2   256  0.0079   0.9921    
## Time       605.46 302.728     2   512 19.7448 5.49e-09 ***
## Group:Time  23.37   5.842     4   512  0.3811   0.8222    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM)
  FI Score
Predictors Estimates CI p
(Intercept) 14.86 13.48 – 16.24 <0.001
Group [B_Controls] 0.09 -1.59 – 1.77 0.914
Group [C_Intervention] 0.45 -1.24 – 2.14 0.600
Time [C_W1_FI_total] -0.48 -2.02 – 1.06 0.540
Time [D_M1_FI_total] -1.90 -3.44 – -0.36 0.015
Group [B_Controls] × Time
[C_W1_FI_total]
-0.08 -1.94 – 1.79 0.936
Group [C_Intervention] ×
Time [C_W1_FI_total]
-0.87 -2.74 – 1.00 0.363
Group [B_Controls] × Time
[D_M1_FI_total]
-0.35 -2.22 – 1.51 0.709
Group [C_Intervention] ×
Time [D_M1_FI_total]
-0.73 -2.60 – 1.14 0.444
Random Effects
σ2 15.33
τ00 ID 9.55
ICC 0.38
N ID 259
Observations 777
Marginal R2 / Conditional R2 0.037 / 0.407
parameters::standardise_parameters(FI_MEM)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |         95% CI
## -------------------------------------------------------------------
## (Intercept)                           |       0.17 | [-0.11,  0.44]
## GroupB_Controls                       |       0.02 | [-0.31,  0.35]
## GroupC_Intervention                   |       0.09 | [-0.24,  0.42]
## TimeC_W1_FI_total                     |      -0.09 | [-0.40,  0.21]
## TimeD_M1_FI_total                     |      -0.38 | [-0.68, -0.07]
## GroupB_Controls:TimeC_W1_FI_total     |      -0.02 | [-0.38,  0.35]
## GroupC_Intervention:TimeC_W1_FI_total |      -0.17 | [-0.54,  0.20]
## GroupB_Controls:TimeD_M1_FI_total     |      -0.07 | [-0.44,  0.30]
## GroupC_Intervention:TimeD_M1_FI_total |      -0.14 | [-0.51,  0.23]

Baseline to 1W

# Merging across timepoints
FI_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total")
## Formatting table as needed
FI_B1W_long <- FI_B1W %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM_B1W <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1W_long, REML = TRUE)
summary(FI_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1W_long
## 
## REML criterion at convergence: 2917.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6197 -0.4865  0.0175  0.4849  2.7271 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 9.554    3.091   
##  Residual             9.586    3.096   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error        df t value
## (Intercept)                            14.86000    0.61871 409.87229  24.018
## GroupB_Controls                         0.09283    0.75058 409.87229   0.124
## GroupC_Intervention                     0.45068    0.75408 409.87229   0.598
## TimeC_W1_FI_total                      -0.48000    0.61923 256.00000  -0.775
## GroupB_Controls:TimeC_W1_FI_total      -0.07660    0.75121 256.00000  -0.102
## GroupC_Intervention:TimeC_W1_FI_total  -0.86951    0.75470 256.00000  -1.152
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                          0.902    
## GroupC_Intervention                      0.550    
## TimeC_W1_FI_total                        0.439    
## GroupB_Controls:TimeC_W1_FI_total        0.919    
## GroupC_Intervention:TimeC_W1_FI_total    0.250    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_FI_t -0.500  0.412  0.411              
## GB_C:TC_W1_  0.412 -0.500 -0.338 -0.824       
## GC_I:TC_W1_  0.411 -0.338 -0.500 -0.820  0.676
anova  (FI_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
## Group       0.086   0.043     2   256  0.0045 0.995524   
## Time       72.728  72.728     1   256  7.5869 0.006301 **
## Group:Time 20.828  10.414     2   256  1.0864 0.338986   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM_B1W)
  FI Score
Predictors Estimates CI p
(Intercept) 14.86 13.64 – 16.08 <0.001
Group [B_Controls] 0.09 -1.38 – 1.57 0.902
Group [C_Intervention] 0.45 -1.03 – 1.93 0.550
Time [C_W1_FI_total] -0.48 -1.70 – 0.74 0.439
Group [B_Controls] × Time
[C_W1_FI_total]
-0.08 -1.55 – 1.40 0.919
Group [C_Intervention] ×
Time [C_W1_FI_total]
-0.87 -2.35 – 0.61 0.250
Random Effects
σ2 9.59
τ00 ID 9.55
ICC 0.50
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.012 / 0.505
parameters::standardise_parameters(FI_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |        95% CI
## ------------------------------------------------------------------
## (Intercept)                           |       0.05 | [-0.23, 0.33]
## GroupB_Controls                       |       0.02 | [-0.32, 0.36]
## GroupC_Intervention                   |       0.10 | [-0.24, 0.44]
## TimeC_W1_FI_total                     |      -0.11 | [-0.39, 0.17]
## GroupB_Controls:TimeC_W1_FI_total     |      -0.02 | [-0.35, 0.32]
## GroupC_Intervention:TimeC_W1_FI_total |      -0.20 | [-0.54, 0.14]
plot_model(FI_MEM_B1W, type = "int")

Baseline to 1M

# Merging across timepoints
FI_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "D_M1_FI_total")
## Formatting table as needed
FI_B1M_long <- FI_B1M %>%
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM_B1M <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1M_long, REML = TRUE)
summary(FI_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1M_long
## 
## REML criterion at convergence: 3116.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.73980 -0.43311  0.05596  0.52370  2.09643 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  9.596   3.098   
##  Residual             16.669   4.083   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error        df t value
## (Intercept)                            14.86000    0.72477 451.70879  20.503
## GroupB_Controls                         0.09283    0.87925 451.70879   0.106
## GroupC_Intervention                     0.45068    0.88334 451.70879   0.510
## TimeD_M1_FI_total                      -1.90000    0.81656 256.00000  -2.327
## GroupB_Controls:TimeD_M1_FI_total      -0.35472    0.99059 256.00000  -0.358
## GroupC_Intervention:TimeD_M1_FI_total  -0.73107    0.99521 256.00000  -0.735
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                         0.9160    
## GroupC_Intervention                     0.6102    
## TimeD_M1_FI_total                       0.0208 *  
## GroupB_Controls:TimeD_M1_FI_total       0.7206    
## GroupC_Intervention:TimeD_M1_FI_total   0.4633    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_FI_t -0.563  0.464  0.462              
## GB_C:TD_M1_  0.464 -0.563 -0.381 -0.824       
## GC_I:TD_M1_  0.462 -0.381 -0.563 -0.820  0.676
anova  (FI_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        1.40    0.70     2   256  0.0419    0.9589    
## Time       588.19  588.19     1   256 35.2863 9.248e-09 ***
## Group:Time   9.59    4.79     2   256  0.2875    0.7503    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM_B1M)
  FI Score
Predictors Estimates CI p
(Intercept) 14.86 13.44 – 16.28 <0.001
Group [B_Controls] 0.09 -1.63 – 1.82 0.916
Group [C_Intervention] 0.45 -1.28 – 2.19 0.610
Time [D_M1_FI_total] -1.90 -3.50 – -0.30 0.020
Group [B_Controls] × Time
[D_M1_FI_total]
-0.35 -2.30 – 1.59 0.720
Group [C_Intervention] ×
Time [D_M1_FI_total]
-0.73 -2.69 – 1.22 0.463
Random Effects
σ2 16.67
τ00 ID 9.60
ICC 0.37
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.050 / 0.397
parameters::standardise_parameters(FI_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |         95% CI
## -------------------------------------------------------------------
## (Intercept)                           |       0.18 | [-0.09,  0.45]
## GroupB_Controls                       |       0.02 | [-0.31,  0.35]
## GroupC_Intervention                   |       0.09 | [-0.25,  0.42]
## TimeD_M1_FI_total                     |      -0.36 | [-0.67, -0.06]
## GroupB_Controls:TimeD_M1_FI_total     |      -0.07 | [-0.44,  0.30]
## GroupC_Intervention:TimeD_M1_FI_total |      -0.14 | [-0.51,  0.23]
plot_model(FI_MEM_B1M, type = "int")

Extra exploratory: IUS and GM association at PRE

PRE_IUS_GM_lm <- lm(A_PRE_IUS_total ~ A_PRE_GM, data = Full_data_all)
summary(PRE_IUS_GM_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GM, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.939  -5.868   0.918   6.097  18.132 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  38.6537     1.2714  30.402  < 2e-16 ***
## A_PRE_GM      1.2142     0.3875   3.134  0.00193 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.713 on 257 degrees of freedom
## Multiple R-squared:  0.03681,    Adjusted R-squared:  0.03306 
## F-statistic:  9.82 on 1 and 257 DF,  p-value: 0.001926
anova(PRE_IUS_GM_lm) %>%
  report()
## The ANOVA suggests that:
## 
##   - The main effect of A_PRE_GM is statistically significant and small (F(1, 257)
## = 9.82, p = 0.002; Eta2 = 0.04, 95% CI [8.34e-03, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.
Plot_lm_fi <- ggplot(data = Full_data_all, aes(x = A_PRE_IUS_total, y = A_PRE_GM)) +
  geom_point() +
  geom_smooth(method = "lm", color = "black")
print(Plot_lm_fi)
## `geom_smooth()` using formula = 'y ~ x'