Absolute output
years <- tibble(year = 1600:1700) %>%
copy_to_a(con)
years %>%
transmute(m=year,b=year-5,e=year+5) %>%
left_join(fbs_metadata_a %>%
count(year=Estimated_admission_year), join_by(b<=year,e>=year)) %>%
group_by(m) %>%
summarise(mn=mean(n),.groups="drop") %>%
transmute(year=m,n=mn,set="Member inductments 10 year rolling mean") %>%
union_all(years %>% left_join(fbs_metadata_a %>%
count(year=Estimated_admission_year) %>%
mutate(set="Member inductments"))) %>%
union_all(years %>% inner_join(fbs_metadata_a, join_by(year>=Estimated_admission_year,year<=Estimated_DOD)) %>%
count(year) %>%
mutate(set="Active members")) %>%
union_all(years %>% left_join(fbs_records_a %>%
inner_join(vd17_id_a, join_by(vd17_id)) %>%
inner_join(vd17_normalized_years_a, join_by(record_number)) %>%
count(year=normalized_year, set))) %>%
union_all(years %>% left_join(vd17_normalized_years_a %>%
count(year=normalized_year) %>%
mutate(set = "VD17"))) %>%
mutate(graph=case_when(
str_detect(set,"^Member inductments") ~ "Member inductments",
set=="Active members" ~ "Active members",
set=="VD17" ~ "VD17",
str_detect(set,"^Active") ~ "Active member publications",
T ~ "Member publications"
)) %>%
filter(year > 1600, year < 1700) %>%
arrange(desc(set)) %>%
collect() %>%
mutate(graph=fct_relevel(graph,"VD17","Active member publications","Member publications", "Active members", "Member inductments")) %>%
ggplot(aes(x = year, y = n, color = set)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete() +
theme(legend.justification = c(1, 0), legend.position = c(0.98, -0.06), legend.background = element_blank(), legend.box.just = "bottom", legend.key = element_blank(), legend.box = "horizontal") +
facet_wrap(~ graph, scales = "free_y", ncol = 2)
Joining with `by = join_by(year)`Joining with `by = join_by(year)`Joining with `by = join_by(year)`

years %>% left_join(fbs_metadata_a, join_by(year>=Estimated_admission_year,year<=Estimated_DOD)) %>%
count(year,name="members") %>%
replace_na(list(members=0)) %>%
inner_join(years %>% left_join(fbs_records_a %>%
filter(str_detect(set,"^Active")) %>%
inner_join(vd17_id_a, join_by(vd17_id)) %>%
inner_join(vd17_normalized_years_a, join_by(record_number)) %>%
count(year=normalized_year, set))) %>%
filter(year > 1600, year < 1700) %>%
ggplot(aes(x = year, y = n/members, color = set)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete() +
theme(legend.position = "bottom")

years %>% left_join(fbs_metadata_a %>% inner_join(fbs_links_of_interest_a %>% distinct(member_number)), join_by(year>=Estimated_admission_year,year<=Estimated_DOD)) %>%
count(year,name="members") %>%
replace_na(list(members=0)) %>%
inner_join(years %>% left_join(fbs_records_a %>%
filter(str_detect(set,"^Active")) %>%
inner_join(vd17_id_a, join_by(vd17_id)) %>%
inner_join(vd17_normalized_years_a, join_by(record_number)) %>%
count(year=normalized_year, set))) %>%
filter(year > 1600, year < 1700) %>%
ggplot(aes(x = year, y = n/members, color = set)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete() +
theme(legend.position = "bottom")

years %>% left_join(fbs_metadata_a %>% inner_join(fbs_links_of_interest_a %>% distinct(member_number)), join_by(year>=Estimated_admission_year,year<=Estimated_DOD)) %>%
count(year) %>%
mutate(set="Active members associated with publishing") %>%
union_all(
years %>% left_join(fbs_metadata_a, join_by(year>=Estimated_admission_year,year<=Estimated_DOD)) %>%
count(year) %>%
mutate(set="Active members")
) %>%
filter(year > 1600, year < 1700) %>%
ggplot(aes(x = year, y = n, color = set)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete() +
theme(legend.position = "bottom")

years %>% left_join(fbs_metadata_a, join_by(year>=Estimated_admission_year,year<=Estimated_DOD)) %>%
count(year) %>%
mutate(set="Active members") %>%
union_all(years %>% left_join(fbs_records_a %>%
filter(str_detect(set,"^Active")) %>%
inner_join(vd17_id_a, join_by(vd17_id)) %>%
inner_join(vd17_normalized_years_a, join_by(record_number)) %>%
count(year=normalized_year, set))) %>%
filter(year > 1600, year < 1700) %>%
ggplot(aes(x = year, y = n, color = set)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete() +
theme(legend.position = "bottom")
Error in UseMethod("left_join") :
no applicable method for 'left_join' applied to an object of class "function"
fbs_records_a %>%
filter(str_detect(set,"^Active")) %>%
inner_join(vd17_id_a, join_by(vd17_id)) %>%
inner_join(vd17_normalized_years_a, join_by(record_number)) %>%
left_join(vd17_genres_a, join_by(record_number)) %>%
left_join(vd17_genre_categorisation_a) %>%
count(year=normalized_year, group_1, set) %>%
ggplot(aes(x=year,y=n,color=group_1)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete() +
theme(legend.position = "bottom") +
facet_wrap(~set)

years %>%
transmute(m=year,b=year-2,e=year+2) %>%
inner_join(
fbs_records_a %>%
filter(set=="Active member substantive role and society purpose related") %>%
inner_join(vd17_id_a, join_by(vd17_id)) %>%
inner_join(vd17_genres_a, join_by(record_number)) %>%
inner_join(vd17_normalized_years_a, join_by(record_number)) %>%
left_join(vd17_genre_categorisation_a) %>%
count(year=normalized_year, group_1, group_3, set) %>%
filter(group_1=="Society-related"), join_by(b<=year,e>=year)
) %>%
group_by(m,group_3) %>%
summarise(mn=mean(n),.groups="drop") %>%
collect() %>%
mutate(group_3=fct_lump_n(group_3,n=8,w=mn)) %>%
ggplot(aes(x=m,y=mn,color=group_3)) +
geom_point() +
scale_x_continuous(breaks = seq(1600, 1700, by = 10)) +
theme_hsci_discrete()
