resampled_vinsula_mask.nii.gz

No significant correlations after correcting for FDR

V_Insula.data <- read_csv("Vinsula_Bold_HRD.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(V_Insula.data)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Cued" "contrast-Cued-Uncued" "contrast-Uncued" "contrast-Uncued-Cued" ...
##  $ mask        : chr [1:72] "resampled_vinsula_mask" "resampled_vinsula_mask" "resampled_vinsula_mask" "resampled_vinsula_mask" ...
##  $ values      : num [1:72] -1.531 -0.128 -1.377 0.128 0.119 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data <- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_V_Insula <- inner_join(V_Insula.data, B.data, by = "participants")
combined_V_Insula <- combined_V_Insula %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_V_Insula)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 1 2 3 4 1 2 3 4 1 2 ...
##  $ mask        : Factor w/ 1 level "resampled_vinsula_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] -1.531 -0.128 -1.377 0.128 0.119 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Cued") 

subset_1_V_Insula <- subset_1_V_Insula[, c("values", "B_CuedS2")]
shapiro.test(subset_1_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_V_Insula$values
## W = 0.92962, p-value = 0.1912
shapiro.test(subset_1_V_Insula$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_V_Insula$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_V_Insulacorr <- corr.test(subset_1_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_1_V_Insulacorr
## Call:corr.test(x = subset_1_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.23
## B_CuedS2   0.23     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.36
## B_CuedS2   0.36     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_V_Insula, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued", ylab = "B_CuedS2")

sp.subset_1_V_Insulacorr <- corr.test(subset_1_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_V_Insulacorr
## Call:corr.test(x = subset_1_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.26
## B_CuedS2   0.26     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.29
## B_CuedS2   0.29     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Uncued") 

subset_2_V_Insula <- subset_2_V_Insula[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_V_Insula$values
## W = 0.97524, p-value = 0.8884
shapiro.test(subset_2_V_Insula$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_V_Insula$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_V_Insulacorr <- corr.test(subset_2_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_2_V_Insulacorr
## Call:corr.test(x = subset_2_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.06
## B_Uncued_S2   0.06        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values         0.0         0.8
## B_Uncued_S2    0.8         0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_V_Insula, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_V_Insulacorr <- corr.test(subset_2_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_V_Insulacorr
## Call:corr.test(x = subset_2_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00       -0.05
## B_Uncued_S2  -0.05        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.83
## B_Uncued_S2   0.83        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Cued-Uncued") 

subset_3_V_Insula <- subset_3_V_Insula[, c("values", "B_diffS2")]
shapiro.test(subset_3_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_V_Insula$values
## W = 0.9763, p-value = 0.9041
shapiro.test(subset_3_V_Insula$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_V_Insula$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_V_Insulacorr <- corr.test(subset_3_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_3_V_Insulacorr
## Call:corr.test(x = subset_3_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.36
## B_diffS2   0.36     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.15
## B_diffS2   0.15     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_3_V_Insula, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_V_Insulacorr <- corr.test(subset_3_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_V_Insulacorr
## Call:corr.test(x = subset_3_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.06
## B_diffS2   0.06     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.81
## B_diffS2   0.81     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.VInsula <- c(round(subset_1_V_Insulacorr$p[2], 2),
                          round(subset_2_V_Insulacorr$p[2], 2),
                          round(subset_3_V_Insulacorr$p[2], 2))
all_p_values.VInsula
## [1] 0.36 0.80 0.15
# Apply FDR correction to combined all p-values
adjusted_p_VInsula<- p.adjust(all_p_values.VInsula, method = "fdr")
adjusted_p_VInsula
## [1] 0.54 0.80 0.45

resampled_vorbitofrontal_mask.nii.gz

OFC <- read_csv("resampled_vorbitofrontal_mask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(OFC)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/resampled_vorbitofrontal_mask" "masks/resampled_vorbitofrontal_mask" "masks/resampled_vorbitofrontal_mask" "masks/resampled_vorbitofrontal_mask" ...
##  $ values      : num [1:72] 0.5316 -0.5316 -0.6531 0.0598 0.2876 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data<- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_OFC <- inner_join(OFC, B.data, by = "participants")
combined_OFC <- combined_OFC %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_OFC)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "masks/resampled_vorbitofrontal_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 0.5316 -0.5316 -0.6531 0.0598 0.2876 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Cued") 

subset_1_OFC <- subset_1_OFC[, c("values", "B_CuedS2")]
shapiro.test(subset_1_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC$values
## W = 0.92555, p-value = 0.1621
shapiro.test(subset_1_OFC$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_OFCcorr <- corr.test(subset_1_OFC, use = "pairwise",method="pearson",adjust="none")
subset_1_OFCcorr
## Call:corr.test(x = subset_1_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.18
## B_CuedS2   0.18     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.49
## B_CuedS2   0.49     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_OFC, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_OFCcorr <- corr.test(subset_1_OFC, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_OFCcorr
## Call:corr.test(x = subset_1_OFC, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.16
## B_CuedS2   0.16     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.53
## B_CuedS2   0.53     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Uncued") 
subset_2_OFC
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued masks/re…  0.0598      2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued masks/re…  0.242       3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued masks/re…  0.297       3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued masks/re… -0.0818      2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued masks/re…  0.952       4           4.12  -0.125 
##  6 sub-07       contrast-Uncued masks/re… -0.0677      2.75        3     -0.25  
##  7 sub-08       contrast-Uncued masks/re… -0.00503     3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued masks/re…  0.0526      2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued masks/re…  0.138       4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued masks/re…  0.491       2.42        2.42   0     
## 11 sub-14       contrast-Uncued masks/re… -0.187       2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued masks/re…  0.0259      2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued masks/re…  0.219       3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued masks/re… -0.161       3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued masks/re… -0.133       2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued masks/re… -0.769       3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued masks/re…  0.615       1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued masks/re… -0.140       1.46        1.83  -0.375
subset_2_OFC <- subset_2_OFC[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC$values
## W = 0.9376, p-value = 0.2635
shapiro.test(subset_2_OFC$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_OFCcorr <- corr.test(subset_2_OFC, use = "pairwise",method="pearson",adjust="none")
subset_2_OFCcorr
## Call:corr.test(x = subset_2_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.15
## B_Uncued_S2   0.15        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.56
## B_Uncued_S2   0.56        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_OFC, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_OFCcorr <- corr.test(subset_2_OFC, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_OFCcorr
## Call:corr.test(x = subset_2_OFC, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.13
## B_Uncued_S2   0.13        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.62
## B_Uncued_S2   0.62        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_OFC
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask… -0.532      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask…  0.0368     3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask… -0.343      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask… -0.540      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask… -0.582      4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask…  0.291      2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask…  0.0159     3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask…  0.191      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask… -0.359      4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask… -0.112      2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask… -0.521      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask…  0.0541     2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask… -0.457      3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask…  0.266      3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask… -0.0594     2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask…  0.0552     3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask… -0.639      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask… -0.178      1.46        1.83  -0.375
subset_3_OFC <- subset_3_OFC[, c("values", "B_diffS2")]
shapiro.test(subset_3_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC$values
## W = 0.92178, p-value = 0.139
shapiro.test(subset_3_OFC$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_OFCcorr <- corr.test(subset_3_OFC, use = "pairwise",method="pearson",adjust="none")
subset_3_OFCcorr
## Call:corr.test(x = subset_3_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.21
## B_diffS2   0.21     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values      0.0      0.4
## B_diffS2    0.4      0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_OFC, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

all_p_values.OFC <- c(round(subset_1_OFCcorr$p[2], 2),
                          round(subset_2_OFCcorr$p[2], 2),
                          round(subset_3_OFCcorr$p[2], 2))
all_p_values.OFC
## [1] 0.49 0.56 0.40
# Apply FDR correction to combined all p-values
adjusted_p_OFC<- p.adjust(all_p_values.OFC, method = "fdr")
adjusted_p_OFC
## [1] 0.56 0.56 0.56

resampled_vamygdala_mask.nii.gz

No sign correlations

amy <- read_csv("vamygdalamask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(amy)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/resampled_vamygdala_mask" "masks/resampled_vamygdala_mask" "masks/resampled_vamygdala_mask" "masks/resampled_vamygdala_mask" ...
##  $ values      : num [1:72] 0.366 -0.366 -1.009 -0.529 0.577 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data<- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_amy <- inner_join(amy, B.data, by = "participants")
combined_amy <- combined_amy %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_amy)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "masks/resampled_vamygdala_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 0.366 -0.366 -1.009 -0.529 0.577 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_amy <- combined_amy %>%
  filter(contrast == "contrast-Cued") 
subset_1_amy
## # A tibble: 18 × 7
##    participants contrast      mask          values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>         <fct>          <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued masks/resa… -1.01        2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued masks/resa…  0.577       3.96        3.5    0.458 
##  3 sub-03       contrast-Cued masks/resa…  0.0491      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued masks/resa… -0.630       2.71        2.42   0.292 
##  5 sub-05       contrast-Cued masks/resa…  0.896       4           4.12  -0.125 
##  6 sub-07       contrast-Cued masks/resa…  0.473       2.75        3     -0.25  
##  7 sub-08       contrast-Cued masks/resa…  0.726       3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued masks/resa…  1.09        2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued masks/resa…  0.573       4.29        4.12   0.167 
## 10 sub-13       contrast-Cued masks/resa…  1.49        2.42        2.42   0     
## 11 sub-14       contrast-Cued masks/resa… -1.96        2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued masks/resa…  1.38        2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued masks/resa…  0.371       3.17        3.04   0.125 
## 14 sub-18       contrast-Cued masks/resa…  0.245       3.67        3.5    0.167 
## 15 sub-19       contrast-Cued masks/resa…  0.919       2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued masks/resa… -0.239       3.38        3.36   0.0114
## 17 sub-21       contrast-Cued masks/resa…  0.00246     1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued masks/resa…  0.492       1.46        1.83  -0.375
subset_1_amy <- subset_1_amy[, c("values", "B_CuedS2")]
shapiro.test(subset_1_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_amy$values
## W = 0.92494, p-value = 0.1581
shapiro.test(subset_1_amy$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_amy$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_amycorr <- corr.test(subset_1_amy, use = "pairwise",method="pearson",adjust="none")
subset_1_amycorr
## Call:corr.test(x = subset_1_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values      1.0      0.1
## B_CuedS2    0.1      1.0
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values      0.0      0.7
## B_CuedS2    0.7      0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_amy, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_amycorr <- corr.test(subset_1_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_amycorr
## Call:corr.test(x = subset_1_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.09
## B_CuedS2   0.09     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.72
## B_CuedS2   0.72     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_amy <- combined_amy %>%
  filter(contrast == "contrast-Uncued") 
subset_2_amy
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued masks/res… -0.529      2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued masks/res…  0.0126     3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued masks/res…  1.16       3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued masks/res…  0.100      2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued masks/res…  2.74       4           4.12  -0.125 
##  6 sub-07       contrast-Uncued masks/res…  0.485      2.75        3     -0.25  
##  7 sub-08       contrast-Uncued masks/res…  1.45       3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued masks/res…  1.06       2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued masks/res…  0.587      4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued masks/res…  0.641      2.42        2.42   0     
## 11 sub-14       contrast-Uncued masks/res… -1.45       2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued masks/res…  0.724      2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued masks/res…  0.387      3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued masks/res…  0.155      3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued masks/res… -0.242      2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued masks/res…  0.180      3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued masks/res…  1.38       1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued masks/res… -0.342      1.46        1.83  -0.375
subset_2_amy <- subset_2_amy[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_amy$values
## W = 0.96934, p-value = 0.7851
shapiro.test(subset_2_amy$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_amy$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_amycorr <- corr.test(subset_2_amy, use = "pairwise",method="pearson",adjust="none")
subset_2_amycorr
## Call:corr.test(x = subset_2_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.38
## B_Uncued_S2   0.38        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.12
## B_Uncued_S2   0.12        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_amy, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_amycorr <- corr.test(subset_2_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_amycorr
## Call:corr.test(x = subset_2_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.18
## B_Uncued_S2   0.18        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.46
## B_Uncued_S2   0.46        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_amy <- combined_amy %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_amy
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask… -0.366      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask…  0.433      3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask… -0.839      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask… -0.545      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask… -1.36       4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask… -0.0391     2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask… -0.531      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask…  0.0149     2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask… -0.0102     4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask…  0.629      2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask… -0.369      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask…  0.497      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask… -0.0127     3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask…  0.0639     3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask…  0.884      2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask… -0.311      3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask… -0.961      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask…  0.616      1.46        1.83  -0.375
subset_3_amy <- subset_3_amy[, c("values", "B_diffS2")]
shapiro.test(subset_3_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_amy$values
## W = 0.97449, p-value = 0.8766
shapiro.test(subset_3_amy$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_amy$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_amycorr <- corr.test(subset_3_amy, use = "pairwise",method="pearson",adjust="none")
subset_3_amycorr
## Call:corr.test(x = subset_3_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.18
## B_diffS2   0.18     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.49
## B_diffS2   0.49     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_amy, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_amycorr <- corr.test(subset_3_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_amycorr
## Call:corr.test(x = subset_3_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.06
## B_diffS2   0.06     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.81
## B_diffS2   0.81     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.amy <- c(round(subset_1_amycorr$p[2], 2),
                      round(subset_2_amycorr$p[2], 2),
                      round(subset_3_amycorr$p[2], 2))
all_p_values.amy
## [1] 0.70 0.12 0.49
# Apply FDR correction to combined all p-values
adjusted_p_amy<- p.adjust(all_p_values.amy, method = "fdr")
adjusted_p_amy
## [1] 0.70 0.36 0.70

resampled_vsgcv2_mask.nii.gz

No sign correlations after correction

sgacc <- read_csv("resampled_vsgcv2_mask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(sgacc)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/resampled_vsgcv2_mask" "masks/resampled_vsgcv2_mask" "masks/resampled_vsgcv2_mask" "masks/resampled_vsgcv2_mask" ...
##  $ values      : num [1:72] 0.4961 -0.4961 -0.7038 -0.0491 -0.4051 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data <- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_sgacc <- inner_join(sgacc, B.data, by = "participants")
combined_sgacc <- combined_sgacc %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_sgacc)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "masks/resampled_vsgcv2_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 0.4961 -0.4961 -0.7038 -0.0491 -0.4051 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Cued") 
subset_1_sgacc
## # A tibble: 18 × 7
##    participants contrast      mask          values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>         <fct>          <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued masks/resa… -0.704       2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued masks/resa… -0.405       3.96        3.5    0.458 
##  3 sub-03       contrast-Cued masks/resa… -1.06        3.21        3.12   0.0833
##  4 sub-04       contrast-Cued masks/resa… -0.621       2.71        2.42   0.292 
##  5 sub-05       contrast-Cued masks/resa… -1.04        4           4.12  -0.125 
##  6 sub-07       contrast-Cued masks/resa… -0.609       2.75        3     -0.25  
##  7 sub-08       contrast-Cued masks/resa… -0.409       3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued masks/resa… -0.294       2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued masks/resa… -0.00377     4.29        4.12   0.167 
## 10 sub-13       contrast-Cued masks/resa… -1.58        2.42        2.42   0     
## 11 sub-14       contrast-Cued masks/resa…  0.371       2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued masks/resa… -0.882       2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued masks/resa… -0.831       3.17        3.04   0.125 
## 14 sub-18       contrast-Cued masks/resa… -0.181       3.67        3.5    0.167 
## 15 sub-19       contrast-Cued masks/resa… -1.23        2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued masks/resa… -1.22        3.38        3.36   0.0114
## 17 sub-21       contrast-Cued masks/resa… -0.444       1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued masks/resa… -0.215       1.46        1.83  -0.375
subset_1_sgacc <- subset_1_sgacc[, c("values", "B_CuedS2")]
shapiro.test(subset_1_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_sgacc$values
## W = 0.99051, p-value = 0.9991
shapiro.test(subset_1_sgacc$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_sgacc$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_sgacccorr <- corr.test(subset_1_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_1_sgacccorr
## Call:corr.test(x = subset_1_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00    -0.01
## B_CuedS2  -0.01     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.97
## B_CuedS2   0.97     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_sgacc, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_sgacccorr <- corr.test(subset_1_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_sgacccorr
## Call:corr.test(x = subset_1_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.01
## B_CuedS2   0.01     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.98
## B_CuedS2   0.98     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Uncued") 
subset_2_sgacc
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued masks/res… -0.0491     2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued masks/res… -0.396      3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued masks/res… -0.390      3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued masks/res… -0.170      2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued masks/res… -0.851      4           4.12  -0.125 
##  6 sub-07       contrast-Uncued masks/res… -0.185      2.75        3     -0.25  
##  7 sub-08       contrast-Uncued masks/res…  0.411      3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued masks/res… -0.778      2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued masks/res…  0.142      4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued masks/res… -1.02       2.42        2.42   0     
## 11 sub-14       contrast-Uncued masks/res…  0.138      2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued masks/res…  0.356      2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued masks/res… -0.277      3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued masks/res… -0.976      3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued masks/res… -0.907      2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued masks/res… -0.853      3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued masks/res…  0.115      1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued masks/res… -0.0515     1.46        1.83  -0.375
subset_2_sgacc <- subset_2_sgacc[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_sgacc$values
## W = 0.92287, p-value = 0.1453
shapiro.test(subset_2_sgacc$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_sgacc$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_sgacccorr <- corr.test(subset_2_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_2_sgacccorr
## Call:corr.test(x = subset_2_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values         1.0        -0.2
## B_Uncued_S2   -0.2         1.0
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.44
## B_Uncued_S2   0.44        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_sgacc, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_sgacccorr <- corr.test(subset_2_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_sgacccorr
## Call:corr.test(x = subset_2_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00       -0.15
## B_Uncued_S2  -0.15        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.56
## B_Uncued_S2   0.56        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_sgacc
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask… -0.496      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask… -0.0129     3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask… -0.494      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask… -0.336      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask… -0.148      4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask… -0.284      2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask… -0.616      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask…  0.370      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask… -0.109      4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask… -0.401      2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask…  0.168      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask… -0.969      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask… -0.413      3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask…  0.596      3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask… -0.288      2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask… -0.262      3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask… -0.441      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask… -0.124      1.46        1.83  -0.375
subset_3_sgacc <- subset_3_sgacc[, c("values", "B_diffS2")]
shapiro.test(subset_3_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_sgacc$values
## W = 0.95719, p-value = 0.5483
shapiro.test(subset_3_sgacc$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_sgacc$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_sgacccorr <- corr.test(subset_3_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_3_sgacccorr
## Call:corr.test(x = subset_3_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.22
## B_diffS2   0.22     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.37
## B_diffS2   0.37     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_sgacc, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_sgacccorr <- corr.test(subset_3_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_sgacccorr
## Call:corr.test(x = subset_3_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.27
## B_diffS2   0.27     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.29
## B_diffS2   0.29     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.sgacc <- c(round(subset_1_sgacccorr$p[2], 2),
                      round(subset_2_sgacccorr$p[2], 2),
                      round(subset_3_sgacccorr$p[2], 2))
all_p_values.sgacc
## [1] 0.97 0.44 0.37
# Apply FDR correction to combined all p-values
adjusted_p_sgacc<- p.adjust(all_p_values.sgacc, method = "fdr")
adjusted_p_sgacc
## [1] 0.97 0.66 0.66

b_gray_thresholded.nii.gz

No sign correlations after correction

Grey <- read_csv("greyMask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(Grey)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/b_gray_thresholded" "masks/b_gray_thresholded" "masks/b_gray_thresholded" "masks/b_gray_thresholded" ...
##  $ values      : num [1:72] 0.7962 -0.7962 -1.1649 -0.0846 0.4954 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data <- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_Grey <- inner_join(Grey, B.data, by = "participants")
combined_Grey <- combined_Grey %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_Grey)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "masks/b_gray_thresholded": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 0.7962 -0.7962 -1.1649 -0.0846 0.4954 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Cued") 
subset_1_Grey
## # A tibble: 18 × 7
##    participants contrast      mask          values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>         <fct>          <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued masks/b_gra… -1.16       2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued masks/b_gra…  0.495      3.96        3.5    0.458 
##  3 sub-03       contrast-Cued masks/b_gra…  0.0364     3.21        3.12   0.0833
##  4 sub-04       contrast-Cued masks/b_gra…  0.140      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued masks/b_gra…  0.817      4           4.12  -0.125 
##  6 sub-07       contrast-Cued masks/b_gra…  1.09       2.75        3     -0.25  
##  7 sub-08       contrast-Cued masks/b_gra… -0.182      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued masks/b_gra…  1.28       2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued masks/b_gra…  0.179      4.29        4.12   0.167 
## 10 sub-13       contrast-Cued masks/b_gra…  0.939      2.42        2.42   0     
## 11 sub-14       contrast-Cued masks/b_gra… -1.31       2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued masks/b_gra…  0.709      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued masks/b_gra… -0.0362     3.17        3.04   0.125 
## 14 sub-18       contrast-Cued masks/b_gra…  1.55       3.67        3.5    0.167 
## 15 sub-19       contrast-Cued masks/b_gra…  0.107      2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued masks/b_gra… -0.301      3.38        3.36   0.0114
## 17 sub-21       contrast-Cued masks/b_gra…  0.0182     1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued masks/b_gra… -0.114      1.46        1.83  -0.375
subset_1_Grey <- subset_1_Grey[, c("values", "B_CuedS2")]
shapiro.test(subset_1_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey$values
## W = 0.95546, p-value = 0.5169
shapiro.test(subset_1_Grey$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_Greycorr <- corr.test(subset_1_Grey, use = "pairwise",method="pearson",adjust="none")
subset_1_Greycorr
## Call:corr.test(x = subset_1_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.16
## B_CuedS2   0.16     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.52
## B_CuedS2   0.52     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_Grey, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_Greycorr <- corr.test(subset_1_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_Greycorr
## Call:corr.test(x = subset_1_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.16
## B_CuedS2   0.16     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.53
## B_CuedS2   0.53     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Uncued") 
subset_2_Grey
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued masks/b_g… -0.0846     2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued masks/b_g…  0.0962     3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued masks/b_g…  0.950      3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued masks/b_g…  0.948      2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued masks/b_g…  1.30       4           4.12  -0.125 
##  6 sub-07       contrast-Uncued masks/b_g…  0.873      2.75        3     -0.25  
##  7 sub-08       contrast-Uncued masks/b_g…  0.0310     3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued masks/b_g…  0.922      2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued masks/b_g…  0.158      4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued masks/b_g…  0.897      2.42        2.42   0     
## 11 sub-14       contrast-Uncued masks/b_g… -0.476      2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued masks/b_g…  0.883      2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued masks/b_g…  1.40       3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued masks/b_g…  0.907      3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued masks/b_g… -0.181      2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued masks/b_g… -0.323      3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued masks/b_g…  0.644      1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued masks/b_g…  0.214      1.46        1.83  -0.375
subset_2_Grey <- subset_2_Grey[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey$values
## W = 0.91582, p-value = 0.109
shapiro.test(subset_2_Grey$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_Greycorr <- corr.test(subset_2_Grey, use = "pairwise",method="pearson",adjust="none")
subset_2_Greycorr
## Call:corr.test(x = subset_2_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00       -0.09
## B_Uncued_S2  -0.09        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.73
## B_Uncued_S2   0.73        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_Grey, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_Greycorr <- corr.test(subset_2_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_Greycorr
## Call:corr.test(x = subset_2_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00       -0.14
## B_Uncued_S2  -0.14        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.58
## B_Uncued_S2   0.58        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_Grey
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask… -0.796      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask…  0.298      3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask… -0.681      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask… -0.597      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask… -0.351      4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask…  0.0975     2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask… -0.157      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask…  0.251      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask…  0.0159     4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask…  0.0207     2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask… -0.613      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask… -0.142      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask… -1.06       3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask…  0.464      3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask…  0.214      2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask…  0.0198     3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask… -0.434      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask… -0.239      1.46        1.83  -0.375
subset_3_Grey <- subset_3_Grey[, c("values", "B_diffS2")]
shapiro.test(subset_3_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey$values
## W = 0.96882, p-value = 0.7753
shapiro.test(subset_3_Grey$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_Greycorr <- corr.test(subset_3_Grey, use = "pairwise",method="pearson",adjust="none")
subset_3_Greycorr
## Call:corr.test(x = subset_3_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.17
## B_diffS2   0.17     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.51
## B_diffS2   0.51     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_Grey, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_Greycorr <- corr.test(subset_3_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_Greycorr
## Call:corr.test(x = subset_3_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values      1.0      0.2
## B_diffS2    0.2      1.0
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.42
## B_diffS2   0.42     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.Grey <- c(round(subset_1_Greycorr$p[2], 2),
                      round(subset_2_Greycorr$p[2], 2),
                      round(subset_3_Greycorr$p[2], 2))
all_p_values.Grey
## [1] 0.52 0.73 0.51
# Apply FDR correction to combined all p-values
adjusted_p_Grey<- p.adjust(all_p_values.Grey, method = "fdr")
adjusted_p_Grey
## [1] 0.73 0.73 0.73

mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz

insula2 <- read_csv("Vinsula_onsesamp.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(insula2)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" ...
##  $ values      : num [1:72] 0.673 -0.673 -1.761 -0.862 -0.855 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data <- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_insula2 <- inner_join(insula2, B.data, by = "participants")
combined_insula2 <- combined_insula2 %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_insula2)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 0.673 -0.673 -1.761 -0.862 -0.855 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Cued") 
subset_1_insula2
## # A tibble: 18 × 7
##    participants contrast      mask          values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>         <fct>          <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued mask-resampl… -1.76      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued mask-resampl… -0.855     3.96        3.5    0.458 
##  3 sub-03       contrast-Cued mask-resampl… -1.03      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued mask-resampl… -1.70      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued mask-resampl…  1.64      4           4.12  -0.125 
##  6 sub-07       contrast-Cued mask-resampl…  2.29      2.75        3     -0.25  
##  7 sub-08       contrast-Cued mask-resampl… -1.43      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued mask-resampl…  4.30      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued mask-resampl…  0.516     4.29        4.12   0.167 
## 10 sub-13       contrast-Cued mask-resampl… -0.901     2.42        2.42   0     
## 11 sub-14       contrast-Cued mask-resampl… -2.36      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued mask-resampl…  1.86      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued mask-resampl… -0.787     3.17        3.04   0.125 
## 14 sub-18       contrast-Cued mask-resampl…  5.10      3.67        3.5    0.167 
## 15 sub-19       contrast-Cued mask-resampl…  0.800     2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued mask-resampl… -1.84      3.38        3.36   0.0114
## 17 sub-21       contrast-Cued mask-resampl… -1.31      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued mask-resampl… -2.81      1.46        1.83  -0.375
subset_1_insula2 <- subset_1_insula2[, c("values", "B_CuedS2")]
shapiro.test(subset_1_insula2$values) 
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_insula2$values
## W = 0.89045, p-value = 0.03928
shapiro.test(subset_1_insula2$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_insula2$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_insula2corr <- corr.test(subset_1_insula2, use = "pairwise",method="pearson",adjust="none")
subset_1_insula2corr
## Call:corr.test(x = subset_1_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.27
## B_CuedS2   0.27     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.28
## B_CuedS2   0.28     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_insula2, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_insula2corr <- corr.test(subset_1_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_insula2corr
## Call:corr.test(x = subset_1_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.31
## B_CuedS2   0.31     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.21
## B_CuedS2   0.21     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Uncued") 
subset_2_insula2
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued mask-res… -0.862       2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued mask-res…  0.298       3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued mask-res…  0.598       3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued mask-res… -0.0950      2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued mask-res…  2.62        4           4.12  -0.125 
##  6 sub-07       contrast-Uncued mask-res…  3.43        2.75        3     -0.25  
##  7 sub-08       contrast-Uncued mask-res…  0.124       3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued mask-res…  4.44        2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued mask-res… -0.00447     4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued mask-res… -0.259       2.42        2.42   0     
## 11 sub-14       contrast-Uncued mask-res… -1.62        2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued mask-res…  3.61        2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued mask-res… -0.112       3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued mask-res…  5.37        3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued mask-res…  1.72        2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued mask-res…  0.595       3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued mask-res…  2.17        1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued mask-res… -2.08        1.46        1.83  -0.375
subset_2_insula2 <- subset_2_insula2[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_insula2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_insula2$values
## W = 0.94359, p-value = 0.3334
shapiro.test(subset_2_insula2$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_insula2$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_insula2corr <- corr.test(subset_2_insula2, use = "pairwise",method="pearson",adjust="none")
subset_2_insula2corr
## Call:corr.test(x = subset_2_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.18
## B_Uncued_S2   0.18        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.48
## B_Uncued_S2   0.48        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_insula2, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_insula2corr <- corr.test(subset_2_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_insula2corr
## Call:corr.test(x = subset_2_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.22
## B_Uncued_S2   0.22        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.39
## B_Uncued_S2   0.39        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_insula2
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask-… -0.673     2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask-… -0.864     3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask-… -1.21      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask-… -1.18      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask-… -0.714     4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask-… -1.02      2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask-… -1.15      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask-… -0.159     2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask-…  0.388     4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask-… -0.479     2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask-… -0.540     2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask-… -1.43      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask-… -0.496     3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask-… -0.254     3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask-… -0.640     2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask-… -1.77      3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask-… -2.57      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask-… -0.586     1.46        1.83  -0.375
subset_3_insula2 <- subset_3_insula2[, c("values", "B_diffS2")]
shapiro.test(subset_3_insula2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_insula2$values
## W = 0.94868, p-value = 0.4047
shapiro.test(subset_3_insula2$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_insula2$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_insula2corr <- corr.test(subset_3_insula2, use = "pairwise",method="pearson",adjust="none")
subset_3_insula2corr
## Call:corr.test(x = subset_3_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.43
## B_diffS2   0.43     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.07
## B_diffS2   0.07     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_insula2, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_insula2corr <- corr.test(subset_3_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_insula2corr
## Call:corr.test(x = subset_3_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.18
## B_diffS2   0.18     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.48
## B_diffS2   0.48     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
all_p_values.insula2 <- c(round(subset_1_insula2corr$p[2], 2),
                      round(subset_2_insula2corr$p[2], 2),
                      round(subset_3_insula2corr$p[2], 2))
all_p_values.insula2
## [1] 0.28 0.48 0.07
# Apply FDR correction to combined all p-values
adjusted_p_insula2<- p.adjust(all_p_values.insula2, method = "fdr")
adjusted_p_insula2
## [1] 0.42 0.48 0.21

mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz

no sign corr

OFC2 <- read_csv("vorbitofrontal_mask_onesamp.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(OFC2)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" ...
##  $ values      : num [1:72] 1.124 -1.124 -0.691 0.842 0.784 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data <- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_OFC2 <- inner_join(OFC2, B.data, by = "participants")
combined_OFC2 <- combined_OFC2 %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_OFC2)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 1.124 -1.124 -0.691 0.842 0.784 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Cued") 
subset_1_OFC2
## # A tibble: 18 × 7
##    participants contrast      mask          values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>         <fct>          <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued mask-resamp… -0.691      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued mask-resamp…  0.784      3.96        3.5    0.458 
##  3 sub-03       contrast-Cued mask-resamp… -0.199      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued mask-resamp… -1.54       2.71        2.42   0.292 
##  5 sub-05       contrast-Cued mask-resamp…  0.853      4           4.12  -0.125 
##  6 sub-07       contrast-Cued mask-resamp… -1.31       2.75        3     -0.25  
##  7 sub-08       contrast-Cued mask-resamp… -1.01       3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued mask-resamp…  0.511      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued mask-resamp… -2.01       4.29        4.12   0.167 
## 10 sub-13       contrast-Cued mask-resamp…  0.350      2.42        2.42   0     
## 11 sub-14       contrast-Cued mask-resamp… -2.45       2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued mask-resamp… -1.98       2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued mask-resamp… -2.47       3.17        3.04   0.125 
## 14 sub-18       contrast-Cued mask-resamp… -1.24       3.67        3.5    0.167 
## 15 sub-19       contrast-Cued mask-resamp… -2.06       2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued mask-resamp… -2.11       3.38        3.36   0.0114
## 17 sub-21       contrast-Cued mask-resamp… -0.0457     1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued mask-resamp… -2.38       1.46        1.83  -0.375
subset_1_OFC2 <- subset_1_OFC2[, c("values", "B_CuedS2")]
shapiro.test(subset_1_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC2$values
## W = 0.90315, p-value = 0.06521
shapiro.test(subset_1_OFC2$B_CuedS2 ) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC2$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_OFC2corr <- corr.test(subset_1_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_1_OFC2corr
## Call:corr.test(x = subset_1_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.21
## B_CuedS2   0.21     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values      0.0      0.4
## B_CuedS2    0.4      0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_OFC2, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_OFC2corr <- corr.test(subset_1_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_OFC2corr
## Call:corr.test(x = subset_1_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.23
## B_CuedS2   0.23     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.35
## B_CuedS2   0.35     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Uncued") 
subset_2_OFC2
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued mask-resa…  0.842      2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued mask-resa…  2.54       3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued mask-resa…  0.824      3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued mask-resa… -0.813      2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued mask-resa…  2.03       4           4.12  -0.125 
##  6 sub-07       contrast-Uncued mask-resa… -0.923      2.75        3     -0.25  
##  7 sub-08       contrast-Uncued mask-resa… -0.942      3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued mask-resa…  1.04       2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued mask-resa… -1.16       4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued mask-resa…  0.399      2.42        2.42   0     
## 11 sub-14       contrast-Uncued mask-resa… -1.14       2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued mask-resa… -0.0297     2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued mask-resa… -0.608      3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued mask-resa… -1.25       3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued mask-resa… -1.68       2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued mask-resa… -1.38       3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued mask-resa…  1.18       1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued mask-resa… -1.65       1.46        1.83  -0.375
subset_2_OFC2 <- subset_2_OFC2[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC2$values
## W = 0.90506, p-value = 0.07042
shapiro.test(subset_2_OFC2$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC2$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_OFC2corr <- corr.test(subset_2_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_2_OFC2corr
## Call:corr.test(x = subset_2_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.16
## B_Uncued_S2   0.16        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.52
## B_Uncued_S2   0.52        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_OFC2, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_OFC2corr <- corr.test(subset_2_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_OFC2corr
## Call:corr.test(x = subset_2_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00        0.01
## B_Uncued_S2   0.01        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.96
## B_Uncued_S2   0.96        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
subset_3_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_OFC2
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask… -1.12       2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask… -1.29       3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask… -0.771      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask… -0.533      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask… -0.863      4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask… -0.214      2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask… -0.0613     3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask… -0.403      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask… -0.632      4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask… -0.0423     2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask… -0.968      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask… -1.50       2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask… -1.34       3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask…  0.0203     3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask… -0.362      2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask… -0.509      3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask… -0.872      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask… -0.564      1.46        1.83  -0.375
subset_3_OFC2 <- subset_3_OFC2[, c("values", "B_diffS2")]
shapiro.test(subset_3_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC2$values
## W = 0.96458, p-value = 0.6918
shapiro.test(subset_3_OFC2$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC2$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_OFC2corr <- corr.test(subset_3_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_3_OFC2corr
## Call:corr.test(x = subset_3_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00    -0.04
## B_diffS2  -0.04     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.88
## B_diffS2   0.88     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_OFC2, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_OFC2corr <- corr.test(subset_3_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_OFC2corr
## Call:corr.test(x = subset_3_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00    -0.01
## B_diffS2  -0.01     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.98
## B_diffS2   0.98     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.OFC2 <- c(round(subset_1_OFC2corr$p[2], 2),
                      round(subset_2_OFC2corr$p[2], 2),
                      round(subset_3_OFC2corr$p[2], 2))
all_p_values.OFC2
## [1] 0.40 0.52 0.88
# Apply FDR correction to combined all p-values
adjusted_p_OFC2<- p.adjust(all_p_values.OFC2, method = "fdr")
adjusted_p_OFC2
## [1] 0.78 0.78 0.88

mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz

No sign corr

Grey2 <- read_csv("gray_thresholded_onesamp.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(Grey2)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" ...
##  $ values      : num [1:72] 0.8388 -0.8388 -1.1594 -0.0213 0.1929 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
B.data <- read_csv("behavData.csv")
## Rows: 18 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (3): B_CuedS2, B_Uncued_S2, B_diffS2
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(B.data)
## spc_tbl_ [18 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ B_CuedS2    : num [1:18] 2.92 3.96 3.21 2.71 4 ...
##  $ B_Uncued_S2 : num [1:18] 3.21 3.5 3.12 2.42 4.12 ...
##  $ B_diffS2    : num [1:18] -0.2917 0.4583 0.0833 0.2917 -0.125 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   B_CuedS2 = col_double(),
##   ..   B_Uncued_S2 = col_double(),
##   ..   B_diffS2 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_Grey2 <- inner_join(Grey2, B.data, by = "participants")
combined_Grey2 <- combined_Grey2 %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_Grey2)
## tibble [72 × 7] (S3: tbl_df/tbl/data.frame)
##  $ participants: Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast    : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask        : Factor w/ 1 level "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values      : num [1:72] 0.8388 -0.8388 -1.1594 -0.0213 0.1929 ...
##  $ B_CuedS2    : num [1:72] 2.92 2.92 2.92 2.92 3.96 ...
##  $ B_Uncued_S2 : num [1:72] 3.21 3.21 3.21 3.21 3.5 ...
##  $ B_diffS2    : num [1:72] -0.292 -0.292 -0.292 -0.292 0.458 ...
#
subset_1_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Cued") 
subset_1_Grey2
## # A tibble: 18 × 7
##    participants contrast      mask          values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>         <fct>          <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued mask-b_gray_… -1.16      2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued mask-b_gray_…  0.193     3.96        3.5    0.458 
##  3 sub-03       contrast-Cued mask-b_gray_… -1.10      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued mask-b_gray_… -1.98      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued mask-b_gray_… -1.06      4           4.12  -0.125 
##  6 sub-07       contrast-Cued mask-b_gray_… -0.918     2.75        3     -0.25  
##  7 sub-08       contrast-Cued mask-b_gray_… -1.71      3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued mask-b_gray_… -1.84      2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued mask-b_gray_… -2.32      4.29        4.12   0.167 
## 10 sub-13       contrast-Cued mask-b_gray_… -3.31      2.42        2.42   0     
## 11 sub-14       contrast-Cued mask-b_gray_… -1.42      2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued mask-b_gray_… -1.49      2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued mask-b_gray_… -1.76      3.17        3.04   0.125 
## 14 sub-18       contrast-Cued mask-b_gray_… -1.44      3.67        3.5    0.167 
## 15 sub-19       contrast-Cued mask-b_gray_… -1.25      2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued mask-b_gray_… -0.726     3.38        3.36   0.0114
## 17 sub-21       contrast-Cued mask-b_gray_… -0.873     1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued mask-b_gray_… -1.30      1.46        1.83  -0.375
subset_1_Grey2 <- subset_1_Grey2[, c("values", "B_CuedS2")]
shapiro.test(subset_1_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey2$values
## W = 0.94316, p-value = 0.3279
shapiro.test(subset_1_Grey2$B_CuedS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey2$B_CuedS2
## W = 0.9774, p-value = 0.9193
subset_1_Grey2corr <- corr.test(subset_1_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_1_Grey2corr
## Call:corr.test(x = subset_1_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.12
## B_CuedS2   0.12     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.64
## B_CuedS2   0.64     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_Grey2, x = "values", y = "B_CuedS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_CuedS2")

sp.subset_1_Grey2corr <- corr.test(subset_1_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_Grey2corr
## Call:corr.test(x = subset_1_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_CuedS2
## values     1.00     0.11
## B_CuedS2   0.11     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_CuedS2
## values     0.00     0.65
## B_CuedS2   0.65     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Uncued") 
subset_2_Grey2
## # A tibble: 18 × 7
##    participants contrast        mask        values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>           <fct>        <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Uncued mask-b_g… -0.0213      2.92        3.21  -0.292 
##  2 sub-02       contrast-Uncued mask-b_g…  0.973       3.96        3.5    0.458 
##  3 sub-03       contrast-Uncued mask-b_g…  0.448       3.21        3.12   0.0833
##  4 sub-04       contrast-Uncued mask-b_g…  0.00778     2.71        2.42   0.292 
##  5 sub-05       contrast-Uncued mask-b_g… -0.374       4           4.12  -0.125 
##  6 sub-07       contrast-Uncued mask-b_g…  0.275       2.75        3     -0.25  
##  7 sub-08       contrast-Uncued mask-b_g… -0.885       3.67        3.83  -0.159 
##  8 sub-11       contrast-Uncued mask-b_g… -2.11        2.75        2.88  -0.125 
##  9 sub-12       contrast-Uncued mask-b_g… -1.02        4.29        4.12   0.167 
## 10 sub-13       contrast-Uncued mask-b_g… -1.49        2.42        2.42   0     
## 11 sub-14       contrast-Uncued mask-b_g… -0.539       2.38        2.58  -0.208 
## 12 sub-16       contrast-Uncued mask-b_g… -0.429       2.04        2.17  -0.125 
## 13 sub-17       contrast-Uncued mask-b_g… -0.970       3.17        3.04   0.125 
## 14 sub-18       contrast-Uncued mask-b_g… -0.893       3.67        3.5    0.167 
## 15 sub-19       contrast-Uncued mask-b_g… -0.156       2.96        3.21  -0.25  
## 16 sub-20       contrast-Uncued mask-b_g… -0.0622      3.38        3.36   0.0114
## 17 sub-21       contrast-Uncued mask-b_g…  0.656       1.67        2.48  -0.812 
## 18 sub-23       contrast-Uncued mask-b_g… -0.300       1.46        1.83  -0.375
subset_2_Grey2 <- subset_2_Grey2[, c("values", "B_Uncued_S2")]
shapiro.test(subset_2_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey2$values
## W = 0.98277, p-value = 0.974
shapiro.test(subset_2_Grey2$B_Uncued_S2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey2$B_Uncued_S2
## W = 0.97342, p-value = 0.859
subset_2_Grey2corr <- corr.test(subset_2_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_2_Grey2corr
## Call:corr.test(x = subset_2_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00       -0.03
## B_Uncued_S2  -0.03        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values         0.0         0.9
## B_Uncued_S2    0.9         0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_Grey2, x = "values", y = "B_Uncued_S2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_Uncued_S2")

sp.subset_2_Grey2corr <- corr.test(subset_2_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_Grey2corr
## Call:corr.test(x = subset_2_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##             values B_Uncued_S2
## values        1.00       -0.04
## B_Uncued_S2  -0.04        1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##             values B_Uncued_S2
## values        0.00        0.86
## B_Uncued_S2   0.86        0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_Grey2
## # A tibble: 18 × 7
##    participants contrast             mask   values B_CuedS2 B_Uncued_S2 B_diffS2
##    <fct>        <fct>                <fct>   <dbl>    <dbl>       <dbl>    <dbl>
##  1 sub-01       contrast-Cued-Uncued mask-… -0.839     2.92        3.21  -0.292 
##  2 sub-02       contrast-Cued-Uncued mask-… -0.572     3.96        3.5    0.458 
##  3 sub-03       contrast-Cued-Uncued mask-… -1.14      3.21        3.12   0.0833
##  4 sub-04       contrast-Cued-Uncued mask-… -1.44      2.71        2.42   0.292 
##  5 sub-05       contrast-Cued-Uncued mask-… -0.511     4           4.12  -0.125 
##  6 sub-07       contrast-Cued-Uncued mask-… -0.844     2.75        3     -0.25  
##  7 sub-08       contrast-Cued-Uncued mask-… -0.608     3.67        3.83  -0.159 
##  8 sub-11       contrast-Cued-Uncued mask-…  0.220     2.75        2.88  -0.125 
##  9 sub-12       contrast-Cued-Uncued mask-… -0.968     4.29        4.12   0.167 
## 10 sub-13       contrast-Cued-Uncued mask-… -1.34      2.42        2.42   0     
## 11 sub-14       contrast-Cued-Uncued mask-… -0.642     2.38        2.58  -0.208 
## 12 sub-16       contrast-Cued-Uncued mask-… -0.816     2.04        2.17  -0.125 
## 13 sub-17       contrast-Cued-Uncued mask-… -0.572     3.17        3.04   0.125 
## 14 sub-18       contrast-Cued-Uncued mask-… -0.393     3.67        3.5    0.167 
## 15 sub-19       contrast-Cued-Uncued mask-… -0.842     2.96        3.21  -0.25  
## 16 sub-20       contrast-Cued-Uncued mask-… -0.475     3.38        3.36   0.0114
## 17 sub-21       contrast-Cued-Uncued mask-… -1.16      1.67        2.48  -0.812 
## 18 sub-23       contrast-Cued-Uncued mask-… -0.734     1.46        1.83  -0.375
subset_3_Grey2 <- subset_3_Grey2[, c("values", "B_diffS2")]
shapiro.test(subset_3_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey2$values
## W = 0.95173, p-value = 0.4527
shapiro.test(subset_3_Grey2$B_diffS2) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey2$B_diffS2
## W = 0.95985, p-value = 0.5987
subset_3_Grey2corr <- corr.test(subset_3_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_3_Grey2corr
## Call:corr.test(x = subset_3_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.05
## B_diffS2   0.05     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.84
## B_diffS2   0.84     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_Grey2, x = "values", y = "B_diffS2", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "B_diffS2")

sp.subset_3_Grey2corr <- corr.test(subset_3_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_Grey2corr
## Call:corr.test(x = subset_3_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values B_diffS2
## values     1.00     0.14
## B_diffS2   0.14     1.00
## Sample Size 
## [1] 18
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values B_diffS2
## values     0.00     0.58
## B_diffS2   0.58     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.Grey2 <- c(round(subset_1_Grey2corr$p[2], 2),
                      round(subset_2_Grey2corr$p[2], 2),
                      round(subset_3_Grey2corr$p[2], 2))
all_p_values.Grey2
## [1] 0.64 0.90 0.84
# Apply FDR correction to combined all p-values
adjusted_p_Grey2<- p.adjust(all_p_values.Grey2, method = "fdr")
adjusted_p_Grey2
## [1] 0.9 0.9 0.9