bold betas for cued and uncued

All <- read_csv("correlations/task-arousal_maskedMeanEff.csv")
## New names:
## Rows: 1872 Columns: 4
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): zmap, mask dbl (2): ...1, meanEffEstimate
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
str(All)
## spc_tbl_ [1,872 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ ...1           : num [1:1872] 0 1 2 3 4 5 6 7 8 9 ...
##  $ zmap           : chr [1:1872] "/cubric/collab/424_eegfmri/univariate/univariate/first_level/18/shifted-True/nm-bwc0_mmh_mod-none/sub-011220213"| __truncated__ "/cubric/collab/424_eegfmri/univariate/univariate/first_level/18/shifted-True/nm-bwc0_mmh_mod-none/sub-011220213"| __truncated__ "/cubric/collab/424_eegfmri/univariate/univariate/first_level/18/shifted-True/nm-bwc0_mmh_mod-none/sub-211020213"| __truncated__ "/cubric/collab/424_eegfmri/univariate/univariate/first_level/18/shifted-True/nm-bwc0_mmh_mod-none/sub-141020213"| __truncated__ ...
##  $ mask           : chr [1:1872] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_insular_cortex_mask.nii.gz" "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_insular_cortex_mask.nii.gz" "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_insular_cortex_mask.nii.gz" "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_insular_cortex_mask.nii.gz" ...
##  $ meanEffEstimate: num [1:1872] 2.6089 -0.7037 -0.1266 1.0023 -0.0321 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   ...1 = col_double(),
##   ..   zmap = col_character(),
##   ..   mask = col_character(),
##   ..   meanEffEstimate = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
All$zmap = as.factor(All$zmap)
All$mask = as.factor(All$mask)
all_levels <- levels(All$mask)
print(all_levels)
##  [1] "/cubric/collab/424_eegfmri/univariate/univariate/masks/b_amygdala_thresholded.nii.gz"                            
##  [2] "/cubric/collab/424_eegfmri/univariate/univariate/masks/b_gray_thresholded.nii.gz"                                
##  [3] "/cubric/collab/424_eegfmri/univariate/univariate/masks/b_hipp_thresholded.nii.gz"                                
##  [4] "/cubric/collab/424_eegfmri/univariate/univariate/masks/b_mofc_thresholded.nii.gz"                                
##  [5] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_bilateral_amygdala_mask.nii.gz"                 
##  [6] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_bilateral_hippocampus_mask.nii.gz"              
##  [7] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_cingulate_gyrus,_anterior_division_mask.nii.gz" 
##  [8] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_cingulate_gyrus,_posterior_division_mask.nii.gz"
##  [9] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_frontal_orbital_cortex_mask.nii.gz"             
## [10] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_insular_cortex_mask.nii.gz"                     
## [11] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_left_amygdala_mask.nii.gz"                      
## [12] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_left_hippocampus_mask.nii.gz"                   
## [13] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_paracingulate_gyrus_mask.nii.gz"                
## [14] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_right_amygdala_mask.nii.gz"                     
## [15] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_right_hippocampus_mask.nii.gz"                  
## [16] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_sgc_mask.nii.gz"                                
## [17] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_vamygdala_mask.nii.gz"                          
## [18] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_vinsula_mask.nii.gz"                            
## [19] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_vorbitofrontal_mask.nii.gz"                     
## [20] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_vsgc_mask.nii.gz"                               
## [21] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_vsgcv2_mask.nii.gz"                             
## [22] "/cubric/collab/424_eegfmri/univariate/univariate/masks/resampled_vtsgc_mask.nii.gz"                              
## [23] "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz"                
## [24] "mask-b_hipp_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz"                
## [25] "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz"            
## [26] "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz"
library(stringr)
# Replace multiple strings at a time
sub_number_replacements = c("06102021301" = "01", "06102021302" = "02", 
                             "07102021301" = "03", "13102021301" = "04", 
                             "14102021301" = "05", "20102021304" = "07", "21102021301" = "08",
                             "28102021301" = "11", "28102021302" = "12", "03112021304" = "13",
                             "24112021302" = "14", "01122021301" = "16", "08122021301" = "17",
                             "12012022302" = "18", "12012022301" = "19", "19012022302" = "20", 
                             "19012022303" = "21", "26012022301" = "23")
All$zmap <- str_replace_all(All$zmap, sub_number_replacements)
All
## # A tibble: 1,872 × 4
##     ...1 zmap                                              mask  meanEffEstimate
##    <dbl> <chr>                                             <fct>           <dbl>
##  1     0 /cubric/collab/424_eegfmri/univariate/univariate… /cub…          2.61  
##  2     1 /cubric/collab/424_eegfmri/univariate/univariate… /cub…         -0.704 
##  3     2 /cubric/collab/424_eegfmri/univariate/univariate… /cub…         -0.127 
##  4     3 /cubric/collab/424_eegfmri/univariate/univariate… /cub…          1.00  
##  5     4 /cubric/collab/424_eegfmri/univariate/univariate… /cub…         -0.0321
##  6     5 /cubric/collab/424_eegfmri/univariate/univariate… /cub…          0.558 
##  7     6 /cubric/collab/424_eegfmri/univariate/univariate… /cub…          0.216 
##  8     7 /cubric/collab/424_eegfmri/univariate/univariate… /cub…          0.364 
##  9     8 /cubric/collab/424_eegfmri/univariate/univariate… /cub…         -0.254 
## 10     9 /cubric/collab/424_eegfmri/univariate/univariate… /cub…          0.485 
## # ℹ 1,862 more rows
rep2 = c("/cubric/collab/424_eegfmri/univariate/univariate/first_level/18/shifted-True/nm-bwc0_mmh_mod-none/" = "", "_zmap.nii.gz" = "")
All$zmap <- str_replace_all(All$zmap, rep2)
All
## # A tibble: 1,872 × 4
##     ...1 zmap                                     mask           meanEffEstimate
##    <dbl> <chr>                                    <fct>                    <dbl>
##  1     0 sub-16_task-arousal_contrast-Uncued      /cubric/colla…          2.61  
##  2     1 sub-16_task-arousal_contrast-Cued-Uncued /cubric/colla…         -0.704 
##  3     2 sub-08_task-arousal_contrast-Cued-Uncued /cubric/colla…         -0.127 
##  4     3 sub-05_task-arousal_contrast-Uncued-Cued /cubric/colla…          1.00  
##  5     4 sub-07_task-arousal_contrast-Cued-Uncued /cubric/colla…         -0.0321
##  6     5 sub-04_task-arousal_contrast-Uncued-Cued /cubric/colla…          0.558 
##  7     6 sub-02_task-arousal_contrast-Cued        /cubric/colla…          0.216 
##  8     7 sub-07_task-arousal_contrast-Cued        /cubric/colla…          0.364 
##  9     8 sub-13_task-arousal_contrast-Uncued-Cued /cubric/colla…         -0.254 
## 10     9 sub-12_task-arousal_contrast-Cued        /cubric/colla…          0.485 
## # ℹ 1,862 more rows
rep3 = c("/cubric/collab/424_eegfmri/univariate/univariate/" = "", ".nii.gz" ="")
All$mask <- str_replace_all(All$mask, rep3)
All
## # A tibble: 1,872 × 4
##     ...1 zmap                                     mask           meanEffEstimate
##    <dbl> <chr>                                    <chr>                    <dbl>
##  1     0 sub-16_task-arousal_contrast-Uncued      masks/resampl…          2.61  
##  2     1 sub-16_task-arousal_contrast-Cued-Uncued masks/resampl…         -0.704 
##  3     2 sub-08_task-arousal_contrast-Cued-Uncued masks/resampl…         -0.127 
##  4     3 sub-05_task-arousal_contrast-Uncued-Cued masks/resampl…          1.00  
##  5     4 sub-07_task-arousal_contrast-Cued-Uncued masks/resampl…         -0.0321
##  6     5 sub-04_task-arousal_contrast-Uncued-Cued masks/resampl…          0.558 
##  7     6 sub-02_task-arousal_contrast-Cued        masks/resampl…          0.216 
##  8     7 sub-07_task-arousal_contrast-Cued        masks/resampl…          0.364 
##  9     8 sub-13_task-arousal_contrast-Uncued-Cued masks/resampl…         -0.254 
## 10     9 sub-12_task-arousal_contrast-Cued        masks/resampl…          0.485 
## # ℹ 1,862 more rows
All <- All %>%
  mutate(participants = substr(zmap, 1, 6))

# Save the dataframe as a CSV file
write.csv(All, "All_subnames.csv", row.names = FALSE)

resampled_vinsula_mask.nii.gz

No significant correlations after correcting for FDR

V_Insula.data <- read_csv("correlations/Vinsula_Bold_HRD.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(V_Insula.data)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Cued" "contrast-Cued-Uncued" "contrast-Uncued" "contrast-Uncued-Cued" ...
##  $ mask        : chr [1:72] "resampled_vinsula_mask" "resampled_vinsula_mask" "resampled_vinsula_mask" "resampled_vinsula_mask" ...
##  $ values      : num [1:72] -1.531 -0.128 -1.377 0.128 0.119 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_V_Insula <- inner_join(V_Insula.data, HRD.data, by = "participants")
combined_V_Insula <- combined_V_Insula %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_V_Insula)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 1 2 3 4 1 2 3 4 1 2 ...
##  $ mask           : Factor w/ 1 level "resampled_vinsula_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] -1.531 -0.128 -1.377 0.128 0.119 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Cued") 

subset_1_V_Insula <- subset_1_V_Insula[, c("values", "HRD_Cued")]
shapiro.test(subset_1_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_V_Insula$values
## W = 0.92962, p-value = 0.1912
shapiro.test(subset_1_V_Insula$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_V_Insula$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_V_Insulacorr <- corr.test(subset_1_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_1_V_Insulacorr
## Call:corr.test(x = subset_1_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.09
## HRD_Cued  -0.09     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.75
## HRD_Cued   0.75     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_V_Insula, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_V_Insulacorr <- corr.test(subset_1_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_V_Insulacorr
## Call:corr.test(x = subset_1_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.13
## HRD_Cued  -0.13     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.67
## HRD_Cued   0.67     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Uncued") 

subset_2_V_Insula <- subset_2_V_Insula[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_V_Insula$values
## W = 0.97524, p-value = 0.8884
shapiro.test(subset_2_V_Insula$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_V_Insula$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_V_Insulacorr <- corr.test(subset_2_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_2_V_Insulacorr
## Call:corr.test(x = subset_2_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.33
## HRD_Uncued   0.33       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.25
## HRD_Uncued   0.25       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_V_Insula, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_V_Insulacorr <- corr.test(subset_2_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_V_Insulacorr
## Call:corr.test(x = subset_2_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.25
## HRD_Uncued   0.25       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.38
## HRD_Uncued   0.38       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Cued-Uncued") 

subset_3_V_Insula <- subset_3_V_Insula[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_V_Insula$values
## W = 0.9763, p-value = 0.9041
shapiro.test(subset_3_V_Insula$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_V_Insula$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_V_Insulacorr <- corr.test(subset_3_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_3_V_Insulacorr
## Call:corr.test(x = subset_3_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.53
## HRD_Cued_Uncued  -0.53            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.05
## HRD_Cued_Uncued   0.05            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_3_V_Insula, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_V_Insulacorr <- corr.test(subset_3_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_V_Insulacorr
## Call:corr.test(x = subset_3_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.49
## HRD_Cued_Uncued  -0.49            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.08
## HRD_Cued_Uncued   0.08            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_V_Insula <- combined_V_Insula %>%
  filter(contrast == "contrast-Uncued-Cued") 

subset_4_V_Insula <- subset_4_V_Insula[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_V_Insula$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_V_Insula$values
## W = 0.9763, p-value = 0.9041
shapiro.test(subset_4_V_Insula$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_V_Insula$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_V_Insulacorr <- corr.test(subset_4_V_Insula, use = "pairwise",method="pearson",adjust="none")
subset_4_V_Insulacorr
## Call:corr.test(x = subset_4_V_Insula, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.53
## HRD_Uncued_Cued  -0.53            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.05
## HRD_Uncued_Cued   0.05            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_V_Insula, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_V_Insulacorr <- corr.test(subset_4_V_Insula, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_V_Insulacorr
## Call:corr.test(x = subset_4_V_Insula, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.49
## HRD_Uncued_Cued  -0.49            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.08
## HRD_Uncued_Cued   0.08            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.VInsula <- c(round(subset_1_V_Insulacorr$p[2], 2),
                          round(subset_2_V_Insulacorr$p[2], 2),
                          round(subset_3_V_Insulacorr$p[2], 2),
                          round(subset_4_V_Insulacorr$p[2], 2))
all_p_values.VInsula
## [1] 0.75 0.25 0.05 0.05
# Apply FDR correction to combined all p-values
adjusted_p_VInsula<- p.adjust(all_p_values.VInsula, method = "fdr")
adjusted_p_VInsula
## [1] 0.7500000 0.3333333 0.1000000 0.1000000

resampled_vorbitofrontal_mask.nii.gz

OFC <- read_csv("correlations/resampled_vorbitofrontal_mask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(OFC)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/resampled_vorbitofrontal_mask" "masks/resampled_vorbitofrontal_mask" "masks/resampled_vorbitofrontal_mask" "masks/resampled_vorbitofrontal_mask" ...
##  $ values      : num [1:72] 0.5316 -0.5316 -0.6531 0.0598 0.2876 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_OFC <- inner_join(OFC, HRD.data, by = "participants")
combined_OFC <- combined_OFC %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_OFC)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "masks/resampled_vorbitofrontal_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 0.5316 -0.5316 -0.6531 0.0598 0.2876 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Cued") 

subset_1_OFC <- subset_1_OFC[, c("values", "HRD_Cued")]
shapiro.test(subset_1_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC$values
## W = 0.92555, p-value = 0.1621
shapiro.test(subset_1_OFC$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_OFCcorr <- corr.test(subset_1_OFC, use = "pairwise",method="pearson",adjust="none")
subset_1_OFCcorr
## Call:corr.test(x = subset_1_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.25
## HRD_Cued  -0.25     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.38
## HRD_Cued   0.38     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_OFC, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_OFCcorr <- corr.test(subset_1_OFC, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_OFCcorr
## Call:corr.test(x = subset_1_OFC, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.43
## HRD_Cued  -0.43     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.12
## HRD_Cued   0.12     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Uncued") 
subset_2_OFC
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Unc… mask…  0.0598     -1.88      -4.05            2.17
##  2 sub-02       contrast-Unc… mask…  0.242      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Unc… mask…  0.297      -3.84      -6.72            2.88
##  4 sub-04       contrast-Unc… mask… -0.0818     -2.39      -3.42            1.03
##  5 sub-05       contrast-Unc… mask…  0.952      -3.16      -3.9             0.74
##  6 sub-07       contrast-Unc… mask… -0.0677     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Unc… mask… -0.00503    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Unc… mask…  0.0526     -4.81      -6.3             1.49
##  9 sub-12       contrast-Unc… mask…  0.138      -4.26      -5.2             0.94
## 10 sub-13       contrast-Unc… mask…  0.491      NA         NA              NA   
## 11 sub-14       contrast-Unc… mask… -0.187      -9.91     -10.0             0.14
## 12 sub-16       contrast-Unc… mask…  0.0259     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Unc… mask…  0.219      -2.06      -2.97            0.91
## 14 sub-18       contrast-Unc… mask… -0.161     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Unc… mask… -0.133      NA         NA              NA   
## 16 sub-20       contrast-Unc… mask… -0.769      -4.26      -5.74            1.48
## 17 sub-21       contrast-Unc… mask…  0.615      NA         NA              NA   
## 18 sub-23       contrast-Unc… mask… -0.140      NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_OFC <- subset_2_OFC[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC$values
## W = 0.9376, p-value = 0.2635
shapiro.test(subset_2_OFC$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_OFCcorr <- corr.test(subset_2_OFC, use = "pairwise",method="pearson",adjust="none")
subset_2_OFCcorr
## Call:corr.test(x = subset_2_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.36
## HRD_Uncued   0.36       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values        0.0        0.2
## HRD_Uncued    0.2        0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_OFC, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_OFCcorr <- corr.test(subset_2_OFC, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_OFCcorr
## Call:corr.test(x = subset_2_OFC, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values        1.0        0.4
## HRD_Uncued    0.4        1.0
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.15
## HRD_Uncued   0.15       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_OFC
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued… mask… -0.532     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued… mask…  0.0368    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued… mask… -0.343     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued… mask… -0.540     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued… mask… -0.582     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued… mask…  0.291     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued… mask…  0.0159    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued… mask…  0.191     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued… mask… -0.359     -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued… mask… -0.112     NA         NA              NA   
## 11 sub-14       contrast-Cued… mask… -0.521     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued… mask…  0.0541    -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued… mask… -0.457     -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued… mask…  0.266    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued… mask… -0.0594    NA         NA              NA   
## 16 sub-20       contrast-Cued… mask…  0.0552    -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued… mask… -0.639     NA         NA              NA   
## 18 sub-23       contrast-Cued… mask… -0.178     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_OFC <- subset_3_OFC[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC$values
## W = 0.92178, p-value = 0.139
shapiro.test(subset_3_OFC$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_OFCcorr <- corr.test(subset_3_OFC, use = "pairwise",method="pearson",adjust="none")
subset_3_OFCcorr
## Call:corr.test(x = subset_3_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.45
## HRD_Cued_Uncued  -0.45            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.11
## HRD_Cued_Uncued   0.11            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_OFC, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

#
subset_4_OFC <- combined_OFC %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_OFC
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask…  0.532     -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask… -0.0368    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.343     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.540     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  0.582     -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask… -0.291     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask… -0.0159    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask… -0.191     -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.359     -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask…  0.112     NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask…  0.521     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask… -0.0541    -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  0.457     -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -0.266    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask…  0.0594    NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask… -0.0552    -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.639     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask…  0.178     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_OFC <- subset_4_OFC[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_OFC$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_OFC$values
## W = 0.92178, p-value = 0.139
shapiro.test(subset_4_OFC$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_OFC$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_OFCcorr <- corr.test(subset_4_OFC, use = "pairwise",method="pearson",adjust="none")
subset_4_OFCcorr
## Call:corr.test(x = subset_4_OFC, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.45
## HRD_Uncued_Cued  -0.45            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.11
## HRD_Uncued_Cued   0.11            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_OFC, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_OFCcorr <- corr.test(subset_2_OFC, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_OFCcorr
## Call:corr.test(x = subset_2_OFC, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values        1.0        0.4
## HRD_Uncued    0.4        1.0
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.15
## HRD_Uncued   0.15       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.OFC <- c(round(subset_1_OFCcorr$p[2], 2),
                          round(subset_2_OFCcorr$p[2], 2),
                          round(subset_3_OFCcorr$p[2], 2),
                          round(subset_4_OFCcorr$p[2], 2))
all_p_values.OFC
## [1] 0.38 0.20 0.11 0.11
# Apply FDR correction to combined all p-values
adjusted_p_OFC<- p.adjust(all_p_values.OFC, method = "fdr")
adjusted_p_OFC
## [1] 0.3800000 0.2666667 0.2200000 0.2200000

resampled_vamygdala_mask.nii.gz

No sign correlations

amy <- read_csv("correlations/vamygdalamask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(amy)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/resampled_vamygdala_mask" "masks/resampled_vamygdala_mask" "masks/resampled_vamygdala_mask" "masks/resampled_vamygdala_mask" ...
##  $ values      : num [1:72] 0.366 -0.366 -1.009 -0.529 0.577 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_amy <- inner_join(amy, HRD.data, by = "participants")
combined_amy <- combined_amy %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_amy)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "masks/resampled_vamygdala_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 0.366 -0.366 -1.009 -0.529 0.577 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_amy <- combined_amy %>%
  filter(contrast == "contrast-Cued") 
subset_1_amy
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued mask… -1.01       -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued mask…  0.577      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued mask…  0.0491     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued mask… -0.630      -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued mask…  0.896      -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued mask…  0.473      -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued mask…  0.726      -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued mask…  1.09       -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued mask…  0.573      -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued mask…  1.49       NA         NA              NA   
## 11 sub-14       contrast-Cued mask… -1.96       -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued mask…  1.38       -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued mask…  0.371      -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued mask…  0.245     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued mask…  0.919      NA         NA              NA   
## 16 sub-20       contrast-Cued mask… -0.239      -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued mask…  0.00246    NA         NA              NA   
## 18 sub-23       contrast-Cued mask…  0.492      NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_1_amy <- subset_1_amy[, c("values", "HRD_Cued")]
shapiro.test(subset_1_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_amy$values
## W = 0.92494, p-value = 0.1581
shapiro.test(subset_1_amy$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_amy$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_amycorr <- corr.test(subset_1_amy, use = "pairwise",method="pearson",adjust="none")
subset_1_amycorr
## Call:corr.test(x = subset_1_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00     0.14
## HRD_Cued   0.14     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.63
## HRD_Cued   0.63     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_amy, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_amycorr <- corr.test(subset_1_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_amycorr
## Call:corr.test(x = subset_1_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.17
## HRD_Cued  -0.17     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.57
## HRD_Cued   0.57     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_amy <- combined_amy %>%
  filter(contrast == "contrast-Uncued") 
subset_2_amy
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask… -0.529     -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask…  0.0126    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  1.16      -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.100     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  2.74      -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask…  0.485     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  1.45      -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask…  1.06      -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.587     -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask…  0.641     NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask… -1.45      -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask…  0.724     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  0.387     -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask…  0.155    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask… -0.242     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask…  0.180     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  1.38      NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask… -0.342     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_amy <- subset_2_amy[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_amy$values
## W = 0.96934, p-value = 0.7851
shapiro.test(subset_2_amy$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_amy$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_amycorr <- corr.test(subset_2_amy, use = "pairwise",method="pearson",adjust="none")
subset_2_amycorr
## Call:corr.test(x = subset_2_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.39
## HRD_Uncued   0.39       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.17
## HRD_Uncued   0.17       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_amy, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_amycorr <- corr.test(subset_2_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_amycorr
## Call:corr.test(x = subset_2_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.12
## HRD_Uncued   0.12       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.69
## HRD_Uncued   0.69       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_amy <- combined_amy %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_amy
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued… mask… -0.366     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued… mask…  0.433     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued… mask… -0.839     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued… mask… -0.545     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued… mask… -1.36      -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued… mask… -0.0391    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued… mask… -0.531     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued… mask…  0.0149    -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued… mask… -0.0102    -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued… mask…  0.629     NA         NA              NA   
## 11 sub-14       contrast-Cued… mask… -0.369     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued… mask…  0.497     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued… mask… -0.0127    -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued… mask…  0.0639   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued… mask…  0.884     NA         NA              NA   
## 16 sub-20       contrast-Cued… mask… -0.311     -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued… mask… -0.961     NA         NA              NA   
## 18 sub-23       contrast-Cued… mask…  0.616     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_amy <- subset_3_amy[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_amy$values
## W = 0.97449, p-value = 0.8766
shapiro.test(subset_3_amy$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_amy$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_amycorr <- corr.test(subset_3_amy, use = "pairwise",method="pearson",adjust="none")
subset_3_amycorr
## Call:corr.test(x = subset_3_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.48
## HRD_Cued_Uncued  -0.48            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.08
## HRD_Cued_Uncued   0.08            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_amy, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_amycorr <- corr.test(subset_3_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_amycorr
## Call:corr.test(x = subset_3_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.41
## HRD_Cued_Uncued  -0.41            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.15
## HRD_Cued_Uncued   0.15            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_amy <- combined_amy %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_amy
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask…  0.366     -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask… -0.433     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.839     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.545     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  1.36      -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask…  0.0391    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  0.531     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask… -0.0149    -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.0102    -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask… -0.629     NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask…  0.369     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask… -0.497     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  0.0127    -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -0.0639   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask… -0.884     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask…  0.311     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.961     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask… -0.616     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_amy <- subset_4_amy[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_amy$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_amy$values
## W = 0.97449, p-value = 0.8766
shapiro.test(subset_4_amy$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_amy$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_amycorr <- corr.test(subset_4_amy, use = "pairwise",method="pearson",adjust="none")
subset_4_amycorr
## Call:corr.test(x = subset_4_amy, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.48
## HRD_Uncued_Cued  -0.48            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.08
## HRD_Uncued_Cued   0.08            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_amy, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_amycorr <- corr.test(subset_4_amy, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_amycorr
## Call:corr.test(x = subset_4_amy, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.41
## HRD_Uncued_Cued  -0.41            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.15
## HRD_Uncued_Cued   0.15            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.amy <- c(round(subset_1_amycorr$p[2], 2),
                      round(subset_2_amycorr$p[2], 2),
                      round(subset_3_amycorr$p[2], 2),
                      round(subset_4_amycorr$p[2], 2))
all_p_values.amy
## [1] 0.63 0.17 0.08 0.08
# Apply FDR correction to combined all p-values
adjusted_p_amy<- p.adjust(all_p_values.amy, method = "fdr")
adjusted_p_amy
## [1] 0.6300000 0.2266667 0.1600000 0.1600000

resampled_vsgcv2_mask.nii.gz

No sign correlations after correction

sgacc <- read_csv("correlations/resampled_vsgcv2_mask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(sgacc)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/resampled_vsgcv2_mask" "masks/resampled_vsgcv2_mask" "masks/resampled_vsgcv2_mask" "masks/resampled_vsgcv2_mask" ...
##  $ values      : num [1:72] 0.4961 -0.4961 -0.7038 -0.0491 -0.4051 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_sgacc <- inner_join(sgacc, HRD.data, by = "participants")
combined_sgacc <- combined_sgacc %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_sgacc)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "masks/resampled_vsgcv2_mask": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 0.4961 -0.4961 -0.7038 -0.0491 -0.4051 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Cued") 
subset_1_sgacc
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued mask… -0.704      -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued mask… -0.405      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued mask… -1.06       -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued mask… -0.621      -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued mask… -1.04       -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued mask… -0.609      -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued mask… -0.409      -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued mask… -0.294      -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued mask… -0.00377    -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued mask… -1.58       NA         NA              NA   
## 11 sub-14       contrast-Cued mask…  0.371      -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued mask… -0.882      -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued mask… -0.831      -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued mask… -0.181     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued mask… -1.23       NA         NA              NA   
## 16 sub-20       contrast-Cued mask… -1.22       -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued mask… -0.444      NA         NA              NA   
## 18 sub-23       contrast-Cued mask… -0.215      NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_1_sgacc <- subset_1_sgacc[, c("values", "HRD_Cued")]
shapiro.test(subset_1_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_sgacc$values
## W = 0.99051, p-value = 0.9991
shapiro.test(subset_1_sgacc$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_sgacc$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_sgacccorr <- corr.test(subset_1_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_1_sgacccorr
## Call:corr.test(x = subset_1_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.63
## HRD_Cued  -0.63     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.02
## HRD_Cued   0.02     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_sgacc, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_sgacccorr <- corr.test(subset_1_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_sgacccorr
## Call:corr.test(x = subset_1_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.58
## HRD_Cued  -0.58     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.03
## HRD_Cued   0.03     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Uncued") 
subset_2_sgacc
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask… -0.0491    -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask… -0.396     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask… -0.390     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask… -0.170     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask… -0.851     -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask… -0.185     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  0.411     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask… -0.778     -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.142     -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask… -1.02      NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask…  0.138     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask…  0.356     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask… -0.277     -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -0.976    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask… -0.907     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask… -0.853     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.115     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask… -0.0515    NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_sgacc <- subset_2_sgacc[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_sgacc$values
## W = 0.92287, p-value = 0.1453
shapiro.test(subset_2_sgacc$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_sgacc$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_sgacccorr <- corr.test(subset_2_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_2_sgacccorr
## Call:corr.test(x = subset_2_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.15
## HRD_Uncued   0.15       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.62
## HRD_Uncued   0.62       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_sgacc, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_sgacccorr <- corr.test(subset_2_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_sgacccorr
## Call:corr.test(x = subset_2_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.28
## HRD_Uncued   0.28       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.33
## HRD_Uncued   0.33       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_sgacc
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued… mask… -0.496     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued… mask… -0.0129    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued… mask… -0.494     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued… mask… -0.336     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued… mask… -0.148     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued… mask… -0.284     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued… mask… -0.616     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued… mask…  0.370     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued… mask… -0.109     -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued… mask… -0.401     NA         NA              NA   
## 11 sub-14       contrast-Cued… mask…  0.168     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued… mask… -0.969     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued… mask… -0.413     -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued… mask…  0.596    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued… mask… -0.288     NA         NA              NA   
## 16 sub-20       contrast-Cued… mask… -0.262     -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued… mask… -0.441     NA         NA              NA   
## 18 sub-23       contrast-Cued… mask… -0.124     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_sgacc <- subset_3_sgacc[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_sgacc$values
## W = 0.95719, p-value = 0.5483
shapiro.test(subset_3_sgacc$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_sgacc$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_sgacccorr <- corr.test(subset_3_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_3_sgacccorr
## Call:corr.test(x = subset_3_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.17
## HRD_Cued_Uncued  -0.17            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.57
## HRD_Cued_Uncued   0.57            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_sgacc, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_sgacccorr <- corr.test(subset_3_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_sgacccorr
## Call:corr.test(x = subset_3_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values             1.0            -0.2
## HRD_Cued_Uncued   -0.2             1.0
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.49
## HRD_Cued_Uncued   0.49            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_sgacc <- combined_sgacc %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_sgacc
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask…  0.496     -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask…  0.0129    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.494     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.336     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  0.148     -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask…  0.284     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  0.616     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask… -0.370     -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.109     -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask…  0.401     NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask… -0.168     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask…  0.969     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  0.413     -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -0.596    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask…  0.288     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask…  0.262     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.441     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask…  0.124     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_sgacc <- subset_4_sgacc[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_sgacc$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_sgacc$values
## W = 0.95719, p-value = 0.5483
shapiro.test(subset_4_sgacc$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_sgacc$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_sgacccorr <- corr.test(subset_4_sgacc, use = "pairwise",method="pearson",adjust="none")
subset_4_sgacccorr
## Call:corr.test(x = subset_4_sgacc, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.17
## HRD_Uncued_Cued  -0.17            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.57
## HRD_Uncued_Cued   0.57            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_sgacc, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_sgacccorr <- corr.test(subset_4_sgacc, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_sgacccorr
## Call:corr.test(x = subset_4_sgacc, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values             1.0            -0.2
## HRD_Uncued_Cued   -0.2             1.0
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.49
## HRD_Uncued_Cued   0.49            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.sgacc <- c(round(subset_1_sgacccorr$p[2], 2),
                      round(subset_2_sgacccorr$p[2], 2),
                      round(subset_3_sgacccorr$p[2], 2),
                      round(subset_4_sgacccorr$p[2], 2))
all_p_values.sgacc
## [1] 0.02 0.62 0.57 0.57
# Apply FDR correction to combined all p-values
adjusted_p_sgacc<- p.adjust(all_p_values.sgacc, method = "fdr")
adjusted_p_sgacc
## [1] 0.08 0.62 0.62 0.62

b_gray_thresholded.nii.gz

No sign correlations after correction

Grey <- read_csv("correlations/greyMask.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(Grey)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "masks/b_gray_thresholded" "masks/b_gray_thresholded" "masks/b_gray_thresholded" "masks/b_gray_thresholded" ...
##  $ values      : num [1:72] 0.7962 -0.7962 -1.1649 -0.0846 0.4954 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_Grey <- inner_join(Grey, HRD.data, by = "participants")
combined_Grey <- combined_Grey %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_Grey)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "masks/b_gray_thresholded": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 0.7962 -0.7962 -1.1649 -0.0846 0.4954 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Cued") 
subset_1_Grey
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued masks… -1.16      -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued masks…  0.495     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued masks…  0.0364    -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued masks…  0.140     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued masks…  0.817     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued masks…  1.09      -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued masks… -0.182     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued masks…  1.28      -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued masks…  0.179     -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued masks…  0.939     NA         NA              NA   
## 11 sub-14       contrast-Cued masks… -1.31      -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued masks…  0.709     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued masks… -0.0362    -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued masks…  1.55     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued masks…  0.107     NA         NA              NA   
## 16 sub-20       contrast-Cued masks… -0.301     -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued masks…  0.0182    NA         NA              NA   
## 18 sub-23       contrast-Cued masks… -0.114     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_1_Grey <- subset_1_Grey[, c("values", "HRD_Cued")]
shapiro.test(subset_1_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey$values
## W = 0.95546, p-value = 0.5169
shapiro.test(subset_1_Grey$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_Greycorr <- corr.test(subset_1_Grey, use = "pairwise",method="pearson",adjust="none")
subset_1_Greycorr
## Call:corr.test(x = subset_1_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.21
## HRD_Cued  -0.21     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.47
## HRD_Cued   0.47     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_Grey, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_Greycorr <- corr.test(subset_1_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_Greycorr
## Call:corr.test(x = subset_1_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.34
## HRD_Cued  -0.34     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.24
## HRD_Cued   0.24     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Uncued") 
subset_2_Grey
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask… -0.0846    -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask…  0.0962    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.950     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.948     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  1.30      -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask…  0.873     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  0.0310    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask…  0.922     -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.158     -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask…  0.897     NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask… -0.476     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask…  0.883     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  1.40      -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask…  0.907    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask… -0.181     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask… -0.323     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.644     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask…  0.214     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_Grey <- subset_2_Grey[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey$values
## W = 0.91582, p-value = 0.109
shapiro.test(subset_2_Grey$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_Greycorr <- corr.test(subset_2_Grey, use = "pairwise",method="pearson",adjust="none")
subset_2_Greycorr
## Call:corr.test(x = subset_2_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values        1.0        0.3
## HRD_Uncued    0.3        1.0
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.29
## HRD_Uncued   0.29       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_Grey, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_Greycorr <- corr.test(subset_2_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_Greycorr
## Call:corr.test(x = subset_2_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.32
## HRD_Uncued   0.32       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.27
## HRD_Uncued   0.27       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_Grey
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued… mask… -0.796     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued… mask…  0.298     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued… mask… -0.681     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued… mask… -0.597     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued… mask… -0.351     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued… mask…  0.0975    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued… mask… -0.157     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued… mask…  0.251     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued… mask…  0.0159    -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued… mask…  0.0207    NA         NA              NA   
## 11 sub-14       contrast-Cued… mask… -0.613     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued… mask… -0.142     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued… mask… -1.06      -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued… mask…  0.464    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued… mask…  0.214     NA         NA              NA   
## 16 sub-20       contrast-Cued… mask…  0.0198    -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued… mask… -0.434     NA         NA              NA   
## 18 sub-23       contrast-Cued… mask… -0.239     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_Grey <- subset_3_Grey[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey$values
## W = 0.96882, p-value = 0.7753
shapiro.test(subset_3_Grey$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_Greycorr <- corr.test(subset_3_Grey, use = "pairwise",method="pearson",adjust="none")
subset_3_Greycorr
## Call:corr.test(x = subset_3_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.51
## HRD_Cued_Uncued  -0.51            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.06
## HRD_Cued_Uncued   0.06            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_Grey, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_Greycorr <- corr.test(subset_3_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_Greycorr
## Call:corr.test(x = subset_3_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values             1.0            -0.5
## HRD_Cued_Uncued   -0.5             1.0
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.07
## HRD_Cued_Uncued   0.07            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_Grey <- combined_Grey %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_Grey
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask…  0.796     -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask… -0.298     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.681     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.597     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  0.351     -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask… -0.0975    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  0.157     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask… -0.251     -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask… -0.0159    -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask… -0.0207    NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask…  0.613     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask…  0.142     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  1.06      -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -0.464    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask… -0.214     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask… -0.0198    -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.434     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask…  0.239     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_Grey <- subset_4_Grey[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_Grey$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_Grey$values
## W = 0.96882, p-value = 0.7753
shapiro.test(subset_4_Grey$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_Grey$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_Greycorr <- corr.test(subset_4_Grey, use = "pairwise",method="pearson",adjust="none")
subset_4_Greycorr
## Call:corr.test(x = subset_4_Grey, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.51
## HRD_Uncued_Cued  -0.51            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.06
## HRD_Uncued_Cued   0.06            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_Grey, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_Greycorr <- corr.test(subset_4_Grey, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_Greycorr
## Call:corr.test(x = subset_4_Grey, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values             1.0            -0.5
## HRD_Uncued_Cued   -0.5             1.0
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.07
## HRD_Uncued_Cued   0.07            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.Grey <- c(round(subset_1_Greycorr$p[2], 2),
                      round(subset_2_Greycorr$p[2], 2),
                      round(subset_3_Greycorr$p[2], 2),
                      round(subset_4_Greycorr$p[2], 2))
all_p_values.Grey
## [1] 0.47 0.29 0.06 0.06
# Apply FDR correction to combined all p-values
adjusted_p_Grey<- p.adjust(all_p_values.Grey, method = "fdr")
adjusted_p_Grey
## [1] 0.4700000 0.3866667 0.1200000 0.1200000

mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz

insula2 <- read_csv("correlations/Vinsula_onsesamp.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(insula2)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" ...
##  $ values      : num [1:72] 0.673 -0.673 -1.761 -0.862 -0.855 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_insula2 <- inner_join(insula2, HRD.data, by = "participants")
combined_insula2 <- combined_insula2 %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_insula2)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "mask-resampled_vinsula_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 0.673 -0.673 -1.761 -0.862 -0.855 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Cued") 
subset_1_insula2
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued mask-r… -1.76     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued mask-r… -0.855    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued mask-r… -1.03     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued mask-r… -1.70     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued mask-r…  1.64     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued mask-r…  2.29     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued mask-r… -1.43     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued mask-r…  4.30     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued mask-r…  0.516    -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued mask-r… -0.901    NA         NA              NA   
## 11 sub-14       contrast-Cued mask-r… -2.36     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued mask-r…  1.86     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued mask-r… -0.787    -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued mask-r…  5.10    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued mask-r…  0.800    NA         NA              NA   
## 16 sub-20       contrast-Cued mask-r… -1.84     -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued mask-r… -1.31     NA         NA              NA   
## 18 sub-23       contrast-Cued mask-r… -2.81     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_1_insula2 <- subset_1_insula2[, c("values", "HRD_Cued")]
shapiro.test(subset_1_insula2$values) 
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_insula2$values
## W = 0.89045, p-value = 0.03928
shapiro.test(subset_1_insula2$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_insula2$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_insula2corr <- corr.test(subset_1_insula2, use = "pairwise",method="pearson",adjust="none")
subset_1_insula2corr
## Call:corr.test(x = subset_1_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.35
## HRD_Cued  -0.35     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.21
## HRD_Cued   0.21     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_insula2, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_insula2corr <- corr.test(subset_1_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_insula2corr
## Call:corr.test(x = subset_1_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values      1.0     -0.3
## HRD_Cued   -0.3      1.0
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values      0.0      0.3
## HRD_Cued    0.3      0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Uncued") 
subset_2_insula2
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Unc… mask… -0.862      -1.88      -4.05            2.17
##  2 sub-02       contrast-Unc… mask…  0.298      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Unc… mask…  0.598      -3.84      -6.72            2.88
##  4 sub-04       contrast-Unc… mask… -0.0950     -2.39      -3.42            1.03
##  5 sub-05       contrast-Unc… mask…  2.62       -3.16      -3.9             0.74
##  6 sub-07       contrast-Unc… mask…  3.43       -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Unc… mask…  0.124      -5.6       -5.37           -0.23
##  8 sub-11       contrast-Unc… mask…  4.44       -4.81      -6.3             1.49
##  9 sub-12       contrast-Unc… mask… -0.00447    -4.26      -5.2             0.94
## 10 sub-13       contrast-Unc… mask… -0.259      NA         NA              NA   
## 11 sub-14       contrast-Unc… mask… -1.62       -9.91     -10.0             0.14
## 12 sub-16       contrast-Unc… mask…  3.61       -5.53      -5.4            -0.13
## 13 sub-17       contrast-Unc… mask… -0.112      -2.06      -2.97            0.91
## 14 sub-18       contrast-Unc… mask…  5.37      -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Unc… mask…  1.72       NA         NA              NA   
## 16 sub-20       contrast-Unc… mask…  0.595      -4.26      -5.74            1.48
## 17 sub-21       contrast-Unc… mask…  2.17       NA         NA              NA   
## 18 sub-23       contrast-Unc… mask… -2.08       NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_insula2 <- subset_2_insula2[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_insula2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_insula2$values
## W = 0.94359, p-value = 0.3334
shapiro.test(subset_2_insula2$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_insula2$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_insula2corr <- corr.test(subset_2_insula2, use = "pairwise",method="pearson",adjust="none")
subset_2_insula2corr
## Call:corr.test(x = subset_2_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00      -0.28
## HRD_Uncued  -0.28       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.33
## HRD_Uncued   0.33       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_insula2, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_insula2corr <- corr.test(subset_2_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_insula2corr
## Call:corr.test(x = subset_2_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00      -0.45
## HRD_Uncued  -0.45       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.11
## HRD_Uncued   0.11       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_insula2
## # A tibble: 18 × 8
##    participants contrast        mask  values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>           <fct>  <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued-… mask… -0.673    -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued-… mask… -0.864    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued-… mask… -1.21     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued-… mask… -1.18     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued-… mask… -0.714    -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued-… mask… -1.02     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued-… mask… -1.15     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued-… mask… -0.159    -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued-… mask…  0.388    -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued-… mask… -0.479    NA         NA              NA   
## 11 sub-14       contrast-Cued-… mask… -0.540    -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued-… mask… -1.43     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued-… mask… -0.496    -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued-… mask… -0.254   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued-… mask… -0.640    NA         NA              NA   
## 16 sub-20       contrast-Cued-… mask… -1.77     -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued-… mask… -2.57     NA         NA              NA   
## 18 sub-23       contrast-Cued-… mask… -0.586    NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_insula2 <- subset_3_insula2[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_insula2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_insula2$values
## W = 0.94868, p-value = 0.4047
shapiro.test(subset_3_insula2$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_insula2$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_insula2corr <- corr.test(subset_3_insula2, use = "pairwise",method="pearson",adjust="none")
subset_3_insula2corr
## Call:corr.test(x = subset_3_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.03
## HRD_Cued_Uncued  -0.03            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.91
## HRD_Cued_Uncued   0.91            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_insula2, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_insula2corr <- corr.test(subset_3_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_insula2corr
## Call:corr.test(x = subset_3_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.05
## HRD_Cued_Uncued  -0.05            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.86
## HRD_Cued_Uncued   0.86            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_insula2 <- combined_insula2 %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_insula2
## # A tibble: 18 × 8
##    participants contrast        mask  values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>           <fct>  <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncue… mask…  0.673    -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncue… mask…  0.864    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncue… mask…  1.21     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncue… mask…  1.18     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncue… mask…  0.714    -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncue… mask…  1.02     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncue… mask…  1.15     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncue… mask…  0.159    -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncue… mask… -0.388    -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncue… mask…  0.479    NA         NA              NA   
## 11 sub-14       contrast-Uncue… mask…  0.540    -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncue… mask…  1.43     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncue… mask…  0.496    -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncue… mask…  0.254   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncue… mask…  0.640    NA         NA              NA   
## 16 sub-20       contrast-Uncue… mask…  1.77     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncue… mask…  2.57     NA         NA              NA   
## 18 sub-23       contrast-Uncue… mask…  0.586    NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_insula2 <- subset_4_insula2[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_insula2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_insula2$values
## W = 0.94868, p-value = 0.4047
shapiro.test(subset_4_insula2$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_insula2$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_insula2corr <- corr.test(subset_4_insula2, use = "pairwise",method="pearson",adjust="none")
subset_4_insula2corr
## Call:corr.test(x = subset_4_insula2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.03
## HRD_Uncued_Cued  -0.03            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.91
## HRD_Uncued_Cued   0.91            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_insula2, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_insula2corr <- corr.test(subset_4_insula2, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_insula2corr
## Call:corr.test(x = subset_4_insula2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.05
## HRD_Uncued_Cued  -0.05            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.86
## HRD_Uncued_Cued   0.86            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.insula2 <- c(round(subset_1_insula2corr$p[2], 2),
                      round(subset_2_insula2corr$p[2], 2),
                      round(subset_3_insula2corr$p[2], 2),
                      round(subset_4_insula2corr$p[2], 2))
all_p_values.insula2
## [1] 0.21 0.33 0.91 0.91
# Apply FDR correction to combined all p-values
adjusted_p_insula2<- p.adjust(all_p_values.insula2, method = "fdr")
adjusted_p_insula2
## [1] 0.66 0.66 0.91 0.91

mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz

no sign corr

OFC2 <- read_csv("correlations/vorbitofrontal_mask_onesamp.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(OFC2)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" ...
##  $ values      : num [1:72] 1.124 -1.124 -0.691 0.842 0.784 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_OFC2 <- inner_join(OFC2, HRD.data, by = "participants")
combined_OFC2 <- combined_OFC2 %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_OFC2)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "mask-resampled_vorbitofrontal_mask_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 1.124 -1.124 -0.691 0.842 0.784 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Cued") 
subset_1_OFC2
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued mask-… -0.691     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued mask-…  0.784     -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued mask-… -0.199     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued mask-… -1.54      -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued mask-…  0.853     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued mask-… -1.31      -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued mask-… -1.01      -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued mask-…  0.511     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued mask-… -2.01      -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued mask-…  0.350     NA         NA              NA   
## 11 sub-14       contrast-Cued mask-… -2.45      -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued mask-… -1.98      -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued mask-… -2.47      -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued mask-… -1.24     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued mask-… -2.06      NA         NA              NA   
## 16 sub-20       contrast-Cued mask-… -2.11      -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued mask-… -0.0457    NA         NA              NA   
## 18 sub-23       contrast-Cued mask-… -2.38      NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_1_OFC2 <- subset_1_OFC2[, c("values", "HRD_Cued")]
shapiro.test(subset_1_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC2$values
## W = 0.90315, p-value = 0.06521
shapiro.test(subset_1_OFC2$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_OFC2$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_OFC2corr <- corr.test(subset_1_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_1_OFC2corr
## Call:corr.test(x = subset_1_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00     0.13
## HRD_Cued   0.13     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.65
## HRD_Cued   0.65     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_OFC2, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_OFC2corr <- corr.test(subset_1_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_OFC2corr
## Call:corr.test(x = subset_1_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00     0.02
## HRD_Cued   0.02     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.94
## HRD_Cued   0.94     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Uncued") 
subset_2_OFC2
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask…  0.842     -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask…  2.54      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.824     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask… -0.813     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  2.03      -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask… -0.923     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask… -0.942     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask…  1.04      -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask… -1.16      -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask…  0.399     NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask… -1.14      -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask… -0.0297    -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask… -0.608     -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -1.25     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask… -1.68      NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask… -1.38      -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  1.18      NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask… -1.65      NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_OFC2 <- subset_2_OFC2[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC2$values
## W = 0.90506, p-value = 0.07042
shapiro.test(subset_2_OFC2$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_OFC2$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_OFC2corr <- corr.test(subset_2_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_2_OFC2corr
## Call:corr.test(x = subset_2_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values        1.0        0.3
## HRD_Uncued    0.3        1.0
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.29
## HRD_Uncued   0.29       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_OFC2, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_OFC2corr <- corr.test(subset_2_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_OFC2corr
## Call:corr.test(x = subset_2_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values        1.0        0.3
## HRD_Uncued    0.3        1.0
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values        0.0        0.3
## HRD_Uncued    0.3        0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_OFC2
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued… mask… -1.12      -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued… mask… -1.29      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued… mask… -0.771     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued… mask… -0.533     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued… mask… -0.863     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued… mask… -0.214     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued… mask… -0.0613    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued… mask… -0.403     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued… mask… -0.632     -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued… mask… -0.0423    NA         NA              NA   
## 11 sub-14       contrast-Cued… mask… -0.968     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued… mask… -1.50      -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued… mask… -1.34      -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued… mask…  0.0203   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued… mask… -0.362     NA         NA              NA   
## 16 sub-20       contrast-Cued… mask… -0.509     -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued… mask… -0.872     NA         NA              NA   
## 18 sub-23       contrast-Cued… mask… -0.564     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_OFC2 <- subset_3_OFC2[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC2$values
## W = 0.96458, p-value = 0.6918
shapiro.test(subset_3_OFC2$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_OFC2$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_OFC2corr <- corr.test(subset_3_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_3_OFC2corr
## Call:corr.test(x = subset_3_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.06
## HRD_Cued_Uncued  -0.06            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.83
## HRD_Cued_Uncued   0.83            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_OFC2, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_OFC2corr <- corr.test(subset_3_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_OFC2corr
## Call:corr.test(x = subset_3_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values             1.0            -0.1
## HRD_Cued_Uncued   -0.1             1.0
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.74
## HRD_Cued_Uncued   0.74            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_OFC2 <- combined_OFC2 %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_OFC2
## # A tibble: 18 × 8
##    participants contrast       mask   values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>          <fct>   <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncu… mask…  1.12      -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncu… mask…  1.29      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncu… mask…  0.771     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncu… mask…  0.533     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncu… mask…  0.863     -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncu… mask…  0.214     -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncu… mask…  0.0613    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncu… mask…  0.403     -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncu… mask…  0.632     -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncu… mask…  0.0423    NA         NA              NA   
## 11 sub-14       contrast-Uncu… mask…  0.968     -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncu… mask…  1.50      -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncu… mask…  1.34      -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncu… mask… -0.0203   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncu… mask…  0.362     NA         NA              NA   
## 16 sub-20       contrast-Uncu… mask…  0.509     -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncu… mask…  0.872     NA         NA              NA   
## 18 sub-23       contrast-Uncu… mask…  0.564     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_OFC2 <- subset_4_OFC2[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_OFC2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_OFC2$values
## W = 0.96458, p-value = 0.6918
shapiro.test(subset_4_OFC2$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_OFC2$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_OFC2corr <- corr.test(subset_4_OFC2, use = "pairwise",method="pearson",adjust="none")
subset_4_OFC2corr
## Call:corr.test(x = subset_4_OFC2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.06
## HRD_Uncued_Cued  -0.06            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.83
## HRD_Uncued_Cued   0.83            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_OFC2, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_OFC2corr <- corr.test(subset_4_OFC2, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_OFC2corr
## Call:corr.test(x = subset_4_OFC2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values             1.0            -0.1
## HRD_Uncued_Cued   -0.1             1.0
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.74
## HRD_Uncued_Cued   0.74            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.OFC2 <- c(round(subset_1_OFC2corr$p[2], 2),
                      round(subset_2_OFC2corr$p[2], 2),
                      round(subset_3_OFC2corr$p[2], 2),
                      round(subset_4_OFC2corr$p[2], 2))
all_p_values.OFC2
## [1] 0.65 0.29 0.83 0.83
# Apply FDR correction to combined all p-values
adjusted_p_OFC2<- p.adjust(all_p_values.OFC2, method = "fdr")
adjusted_p_OFC2
## [1] 0.83 0.83 0.83 0.83

mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster.nii.gz

No sign corr

Grey2 <- read_csv("correlations/gray_thresholded_onesamp.csv")
## Rows: 72 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): participants, contrast, mask
## dbl (1): values
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(Grey2)
## spc_tbl_ [72 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants: chr [1:72] "sub-01" "sub-01" "sub-01" "sub-01" ...
##  $ contrast    : chr [1:72] "contrast-Uncued-Cued" "contrast-Cued-Uncued" "contrast-Cued" "contrast-Uncued" ...
##  $ mask        : chr [1:72] "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster" ...
##  $ values      : num [1:72] 0.8388 -0.8388 -1.1594 -0.0213 0.1929 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   contrast = col_character(),
##   ..   mask = col_character(),
##   ..   values = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
HRD.data <- read_csv("correlations/HRDdata.csv")
## Rows: 18 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): participants
## dbl (4): HRD_Cued, HRD_Uncued, HRD_Cued_Uncued, HRD_Uncued_Cued
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(HRD.data)
## spc_tbl_ [18 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ participants   : chr [1:18] "sub-01" "sub-02" "sub-03" "sub-04" ...
##  $ HRD_Cued       : num [1:18] -1.88 -6.37 -3.84 -2.39 -3.16 -6.58 -5.6 -4.81 -4.26 NA ...
##  $ HRD_Uncued     : num [1:18] -4.05 -5.43 -6.72 -3.42 -3.9 -6.38 -5.37 -6.3 -5.2 NA ...
##  $ HRD_Cued_Uncued: num [1:18] 2.17 -0.94 2.88 1.03 0.74 -0.2 -0.23 1.49 0.94 NA ...
##  $ HRD_Uncued_Cued: num [1:18] -2.17 0.94 -2.88 -1.03 -0.74 0.2 0.23 -1.49 -0.94 NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   participants = col_character(),
##   ..   HRD_Cued = col_double(),
##   ..   HRD_Uncued = col_double(),
##   ..   HRD_Cued_Uncued = col_double(),
##   ..   HRD_Uncued_Cued = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
combined_Grey2 <- inner_join(Grey2, HRD.data, by = "participants")
combined_Grey2 <- combined_Grey2 %>%
  mutate(across(c(participants, contrast, mask), as.factor))
str(combined_Grey2)
## tibble [72 × 8] (S3: tbl_df/tbl/data.frame)
##  $ participants   : Factor w/ 18 levels "sub-01","sub-02",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ contrast       : Factor w/ 4 levels "contrast-Cued",..: 4 2 1 3 1 4 2 3 4 2 ...
##  $ mask           : Factor w/ 1 level "mask-b_gray_thresholded_onesamp_ttest_results_ClusterEffEst_p-0.001_desc-binarizedCluster": 1 1 1 1 1 1 1 1 1 1 ...
##  $ values         : num [1:72] 0.8388 -0.8388 -1.1594 -0.0213 0.1929 ...
##  $ HRD_Cued       : num [1:72] -1.88 -1.88 -1.88 -1.88 -6.37 -6.37 -6.37 -6.37 -3.84 -3.84 ...
##  $ HRD_Uncued     : num [1:72] -4.05 -4.05 -4.05 -4.05 -5.43 -5.43 -5.43 -5.43 -6.72 -6.72 ...
##  $ HRD_Cued_Uncued: num [1:72] 2.17 2.17 2.17 2.17 -0.94 -0.94 -0.94 -0.94 2.88 2.88 ...
##  $ HRD_Uncued_Cued: num [1:72] -2.17 -2.17 -2.17 -2.17 0.94 0.94 0.94 0.94 -2.88 -2.88 ...
#
subset_1_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Cued") 
subset_1_Grey2
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued mask-b… -1.16     -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued mask-b…  0.193    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued mask-b… -1.10     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued mask-b… -1.98     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued mask-b… -1.06     -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued mask-b… -0.918    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued mask-b… -1.71     -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued mask-b… -1.84     -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued mask-b… -2.32     -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued mask-b… -3.31     NA         NA              NA   
## 11 sub-14       contrast-Cued mask-b… -1.42     -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued mask-b… -1.49     -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued mask-b… -1.76     -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued mask-b… -1.44    -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued mask-b… -1.25     NA         NA              NA   
## 16 sub-20       contrast-Cued mask-b… -0.726    -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued mask-b… -0.873    NA         NA              NA   
## 18 sub-23       contrast-Cued mask-b… -1.30     NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_1_Grey2 <- subset_1_Grey2[, c("values", "HRD_Cued")]
shapiro.test(subset_1_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey2$values
## W = 0.94316, p-value = 0.3279
shapiro.test(subset_1_Grey2$HRD_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_1_Grey2$HRD_Cued
## W = 0.90975, p-value = 0.1563
subset_1_Grey2corr <- corr.test(subset_1_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_1_Grey2corr
## Call:corr.test(x = subset_1_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.16
## HRD_Cued  -0.16     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.58
## HRD_Cued   0.58     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_1_Grey2, x = "values", y = "HRD_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_1_Grey2corr <- corr.test(subset_1_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_1_Grey2corr
## Call:corr.test(x = subset_1_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##          values HRD_Cued
## values     1.00    -0.21
## HRD_Cued  -0.21     1.00
## Sample Size 
##          values HRD_Cued
## values       18       14
## HRD_Cued     14       14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##          values HRD_Cued
## values     0.00     0.46
## HRD_Cued   0.46     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_2_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Uncued") 
subset_2_Grey2
## # A tibble: 18 × 8
##    participants contrast      mask    values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>         <fct>    <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Unc… mask… -0.0213     -1.88      -4.05            2.17
##  2 sub-02       contrast-Unc… mask…  0.973      -6.37      -5.43           -0.94
##  3 sub-03       contrast-Unc… mask…  0.448      -3.84      -6.72            2.88
##  4 sub-04       contrast-Unc… mask…  0.00778    -2.39      -3.42            1.03
##  5 sub-05       contrast-Unc… mask… -0.374      -3.16      -3.9             0.74
##  6 sub-07       contrast-Unc… mask…  0.275      -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Unc… mask… -0.885      -5.6       -5.37           -0.23
##  8 sub-11       contrast-Unc… mask… -2.11       -4.81      -6.3             1.49
##  9 sub-12       contrast-Unc… mask… -1.02       -4.26      -5.2             0.94
## 10 sub-13       contrast-Unc… mask… -1.49       NA         NA              NA   
## 11 sub-14       contrast-Unc… mask… -0.539      -9.91     -10.0             0.14
## 12 sub-16       contrast-Unc… mask… -0.429      -5.53      -5.4            -0.13
## 13 sub-17       contrast-Unc… mask… -0.970      -2.06      -2.97            0.91
## 14 sub-18       contrast-Unc… mask… -0.893     -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Unc… mask… -0.156      NA         NA              NA   
## 16 sub-20       contrast-Unc… mask… -0.0622     -4.26      -5.74            1.48
## 17 sub-21       contrast-Unc… mask…  0.656      NA         NA              NA   
## 18 sub-23       contrast-Unc… mask… -0.300      NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_2_Grey2 <- subset_2_Grey2[, c("values", "HRD_Uncued")]
shapiro.test(subset_2_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey2$values
## W = 0.98277, p-value = 0.974
shapiro.test(subset_2_Grey2$HRD_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_2_Grey2$HRD_Uncued
## W = 0.8813, p-value = 0.06065
subset_2_Grey2corr <- corr.test(subset_2_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_2_Grey2corr
## Call:corr.test(x = subset_2_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00       0.11
## HRD_Uncued   0.11       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values        0.0        0.7
## HRD_Uncued    0.7        0.0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_2_Grey2, x = "values", y = "HRD_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_2_Grey2corr <- corr.test(subset_2_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_2_Grey2corr
## Call:corr.test(x = subset_2_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##            values HRD_Uncued
## values       1.00      -0.07
## HRD_Uncued  -0.07       1.00
## Sample Size 
##            values HRD_Uncued
## values         18         14
## HRD_Uncued     14         14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            values HRD_Uncued
## values       0.00       0.82
## HRD_Uncued   0.82       0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_3_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Cued-Uncued") 
subset_3_Grey2
## # A tibble: 18 × 8
##    participants contrast        mask  values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>           <fct>  <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Cued-… mask… -0.839    -1.88      -4.05            2.17
##  2 sub-02       contrast-Cued-… mask… -0.572    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Cued-… mask… -1.14     -3.84      -6.72            2.88
##  4 sub-04       contrast-Cued-… mask… -1.44     -2.39      -3.42            1.03
##  5 sub-05       contrast-Cued-… mask… -0.511    -3.16      -3.9             0.74
##  6 sub-07       contrast-Cued-… mask… -0.844    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Cued-… mask… -0.608    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Cued-… mask…  0.220    -4.81      -6.3             1.49
##  9 sub-12       contrast-Cued-… mask… -0.968    -4.26      -5.2             0.94
## 10 sub-13       contrast-Cued-… mask… -1.34     NA         NA              NA   
## 11 sub-14       contrast-Cued-… mask… -0.642    -9.91     -10.0             0.14
## 12 sub-16       contrast-Cued-… mask… -0.816    -5.53      -5.4            -0.13
## 13 sub-17       contrast-Cued-… mask… -0.572    -2.06      -2.97            0.91
## 14 sub-18       contrast-Cued-… mask… -0.393   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Cued-… mask… -0.842    NA         NA              NA   
## 16 sub-20       contrast-Cued-… mask… -0.475    -4.26      -5.74            1.48
## 17 sub-21       contrast-Cued-… mask… -1.16     NA         NA              NA   
## 18 sub-23       contrast-Cued-… mask… -0.734    NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_3_Grey2 <- subset_3_Grey2[, c("values", "HRD_Cued_Uncued")]
shapiro.test(subset_3_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey2$values
## W = 0.95173, p-value = 0.4527
shapiro.test(subset_3_Grey2$HRD_Cued_Uncued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_3_Grey2$HRD_Cued_Uncued
## W = 0.95893, p-value = 0.7054
subset_3_Grey2corr <- corr.test(subset_3_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_3_Grey2corr
## Call:corr.test(x = subset_3_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.18
## HRD_Cued_Uncued  -0.18            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.54
## HRD_Cued_Uncued   0.54            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#library("ggpubr")
ggscatter(subset_3_Grey2, x = "values", y = "HRD_Cued_Uncued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Cued_Uncued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_3_Grey2corr <- corr.test(subset_3_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_3_Grey2corr
## Call:corr.test(x = subset_3_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Cued_Uncued
## values            1.00           -0.27
## HRD_Cued_Uncued  -0.27            1.00
## Sample Size 
##                 values HRD_Cued_Uncued
## values              18              14
## HRD_Cued_Uncued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Cued_Uncued
## values            0.00            0.36
## HRD_Cued_Uncued   0.36            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#
subset_4_Grey2 <- combined_Grey2 %>%
  filter(contrast == "contrast-Uncued-Cued") 
subset_4_Grey2
## # A tibble: 18 × 8
##    participants contrast        mask  values HRD_Cued HRD_Uncued HRD_Cued_Uncued
##    <fct>        <fct>           <fct>  <dbl>    <dbl>      <dbl>           <dbl>
##  1 sub-01       contrast-Uncue… mask…  0.839    -1.88      -4.05            2.17
##  2 sub-02       contrast-Uncue… mask…  0.572    -6.37      -5.43           -0.94
##  3 sub-03       contrast-Uncue… mask…  1.14     -3.84      -6.72            2.88
##  4 sub-04       contrast-Uncue… mask…  1.44     -2.39      -3.42            1.03
##  5 sub-05       contrast-Uncue… mask…  0.511    -3.16      -3.9             0.74
##  6 sub-07       contrast-Uncue… mask…  0.844    -6.58      -6.38           -0.2 
##  7 sub-08       contrast-Uncue… mask…  0.608    -5.6       -5.37           -0.23
##  8 sub-11       contrast-Uncue… mask… -0.220    -4.81      -6.3             1.49
##  9 sub-12       contrast-Uncue… mask…  0.968    -4.26      -5.2             0.94
## 10 sub-13       contrast-Uncue… mask…  1.34     NA         NA              NA   
## 11 sub-14       contrast-Uncue… mask…  0.642    -9.91     -10.0             0.14
## 12 sub-16       contrast-Uncue… mask…  0.816    -5.53      -5.4            -0.13
## 13 sub-17       contrast-Uncue… mask…  0.572    -2.06      -2.97            0.91
## 14 sub-18       contrast-Uncue… mask…  0.393   -10.4      -10.1            -0.3 
## 15 sub-19       contrast-Uncue… mask…  0.842    NA         NA              NA   
## 16 sub-20       contrast-Uncue… mask…  0.475    -4.26      -5.74            1.48
## 17 sub-21       contrast-Uncue… mask…  1.16     NA         NA              NA   
## 18 sub-23       contrast-Uncue… mask…  0.734    NA         NA              NA   
## # ℹ 1 more variable: HRD_Uncued_Cued <dbl>
subset_4_Grey2 <- subset_4_Grey2[, c("values", "HRD_Uncued_Cued")]
shapiro.test(subset_4_Grey2$values) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_Grey2$values
## W = 0.95173, p-value = 0.4527
shapiro.test(subset_4_Grey2$HRD_Uncued_Cued) #normal
## 
##  Shapiro-Wilk normality test
## 
## data:  subset_4_Grey2$HRD_Uncued_Cued
## W = 0.95893, p-value = 0.7054
subset_4_Grey2corr <- corr.test(subset_4_Grey2, use = "pairwise",method="pearson",adjust="none")
subset_4_Grey2corr
## Call:corr.test(x = subset_4_Grey2, use = "pairwise", method = "pearson", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.18
## HRD_Uncued_Cued  -0.18            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.54
## HRD_Uncued_Cued   0.54            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
ggscatter(subset_4_Grey2, x = "values", y = "HRD_Uncued_Cued", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Bold Cued_Uncued", ylab = "HRD_Uncued_Cued")
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

sp.subset_4_Grey2corr <- corr.test(subset_4_Grey2, use = "pairwise",method="spearman",adjust="none")
sp.subset_4_Grey2corr
## Call:corr.test(x = subset_4_Grey2, use = "pairwise", method = "spearman", 
##     adjust = "none")
## Correlation matrix 
##                 values HRD_Uncued_Cued
## values            1.00           -0.27
## HRD_Uncued_Cued  -0.27            1.00
## Sample Size 
##                 values HRD_Uncued_Cued
## values              18              14
## HRD_Uncued_Cued     14              14
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                 values HRD_Uncued_Cued
## values            0.00            0.36
## HRD_Uncued_Cued   0.36            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
all_p_values.Grey2 <- c(round(subset_1_Grey2corr$p[2], 2),
                      round(subset_2_Grey2corr$p[2], 2),
                      round(subset_3_Grey2corr$p[2], 2),
                      round(subset_4_Grey2corr$p[2], 2))
all_p_values.Grey2
## [1] 0.58 0.70 0.54 0.54
# Apply FDR correction to combined all p-values
adjusted_p_Grey2<- p.adjust(all_p_values.Grey2, method = "fdr")
adjusted_p_Grey2
## [1] 0.7 0.7 0.7 0.7