ls()
## character(0)
rm(list=ls())
BigDiamonds <- read.csv("C:/Users/dell/Desktop/BigDiamonds.csv")
memory.size() #how much memory I am taking
## [1] 110.43
memory.limit() #how much memory I am have
## [1] 1535
gc() #garbage collection
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 534481 14.3 1770749 47.3 1135222 30.4
## Vcells 7311563 55.8 13597805 103.8 13533015 103.3
memory.size()
## [1] 74.32
ls()
## [1] "BigDiamonds"
library(data.table)
newDiamonds <- fread("C:/Users/dell/Desktop/BigDiamonds.csv")
##
Read 36.8% of 598024 rows
Read 55.2% of 598024 rows
Read 66.9% of 598024 rows
Read 76.9% of 598024 rows
Read 88.6% of 598024 rows
Read 598024 rows and 13 (of 13) columns from 0.049 GB file in 00:00:08
getwd()
## [1] "C:/Users/dell/Desktop"
setwd("C:/Users/dell/Desktop")
library(microbenchmark)
microbenchmark(read.csv("BigDiamonds.csv"),fread("BigDiamonds.csv"),times=2)
##
Read 40.1% of 598024 rows
Read 53.5% of 598024 rows
Read 63.5% of 598024 rows
Read 73.6% of 598024 rows
Read 97.0% of 598024 rows
Read 598024 rows and 13 (of 13) columns from 0.049 GB file in 00:00:07
##
Read 35.1% of 598024 rows
Read 46.8% of 598024 rows
Read 58.5% of 598024 rows
Read 80.3% of 598024 rows
Read 598024 rows and 13 (of 13) columns from 0.049 GB file in 00:00:07
## Unit: seconds
## expr min lq mean median
## read.csv("BigDiamonds.csv") 26.244123 26.244123 27.031471 27.031471
## fread("BigDiamonds.csv") 6.320733 6.320733 6.449165 6.449165
## uq max neval cld
## 27.818819 27.818819 2 b
## 6.577597 6.577597 2 a
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1356868 36.3 2164898 57.9 1786574 47.8
## Vcells 13740515 104.9 28933293 220.8 28927379 220.7
library(readr)
microbenchmark(
read.csv("BigDiamonds.csv"),
fread("BigDiamonds.csv"),
read_csv("BigDiamonds.csv"),
times=1)
## Warning: 597311 problems parsing 'BigDiamonds.csv'. See problems(...) for
## more details.
##
Read 23.4% of 598024 rows
Read 46.8% of 598024 rows
Read 65.2% of 598024 rows
Read 76.9% of 598024 rows
Read 88.6% of 598024 rows
Read 598024 rows and 13 (of 13) columns from 0.049 GB file in 00:00:07
## Unit: seconds
## expr min lq mean median
## read.csv("BigDiamonds.csv") 24.508083 24.508083 24.508083 24.508083
## fread("BigDiamonds.csv") 6.982418 6.982418 6.982418 6.982418
## read_csv("BigDiamonds.csv") 5.780868 5.780868 5.780868 5.780868
## uq max neval
## 24.508083 24.508083 1
## 6.982418 6.982418 1
## 5.780868 5.780868 1