Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(here) 
## here() starts at /Users/sarahdaniels/Desktop/Total_Analyses
library(janitor) 
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(haven) 
library(naniar) 
library(ggpubr) 
library(report) 
library(ggplot2)
library(reshape2)
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(sjPlot)
library(parameters)
library(mediation)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
library(lavaan)
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step

Set up

Reading the full data (intervention group, psychoeducation control group, and EC group) and calculating total scores

Full_data_all_t <- read_csv("MI_Data_B1W1M1.csv") %>% 
  rowwise() %>%
  mutate(A_PRE_IUS_total = sum(B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5, B_IUS_6, B_IUS_7, B_IUS_8, B_IUS_9, B_IUS_10, B_IUS_11, B_IUS_12, na.rm = TRUE)) %>%
  mutate(A_PRE_FI_total = sum(B_FI_friends, B_FI_strangers, B_FI_work, B_FI_education, B_FI_hobbies, na.rm = TRUE)) %>% 
  mutate(A_PRE_RTQ_total = sum(B_RTQ_1, B_RTQ_2, B_RTQ_3, B_RTQ_4, B_RTQ_5, B_RTQ_6, B_RTQ_7, B_RTQ_8, B_RTQ_9, B_RTQ_10, na.rm = TRUE)) %>% 
  mutate(A_PRE_ERQ_Rtotal = sum(B_ERQ_1, B_ERQ_3, B_ERQ_5, B_ERQ_7, B_ERQ_8, B_ERQ_10, na.rm = TRUE)) %>% 
  mutate(A_PRE_PHQ_total = sum(B_PHQ_1, B_PHQ_2, B_PHQ_3, B_PHQ_4, B_PHQ_5, B_PHQ_6, B_PHQ_7, B_PHQ_8, na.rm = TRUE)) %>% 
  mutate(A_PRE_GAD_total = sum(B_GAD_1, B_GAD_2, B_GAD_3, B_GAD_4, B_GAD_5, B_GAD_6, B_GAD_7, na.rm = TRUE)) %>% 
  mutate(B_POST_IUS_total = sum(POST_IUS_1, POST_IUS_2, POST_IUS_3, POST_IUS_4, POST_IUS_5, POST_IUS_6, POST_IUS_7, POST_IUS_8, POST_IUS_9, POST_IUS_10, POST_IUS_11, POST_IUS_12, na.rm = TRUE)) %>%
  mutate(C_W1_IUS_total = sum(W1_IUS_1, W1_IUS_2, W1_IUS_3, W1_IUS_4, W1_IUS_5, W1_IUS_6, W1_IUS_7, W1_IUS_8, W1_IUS_9, W1_IUS_10, W1_IUS_11, W1_IUS_12, na.rm = TRUE)) %>%
  mutate(C_W1_FI_total = sum(W1_FI_friends, W1_FI_strangers, W1_FI_work, W1_FI_education, W1_FI_hobbies, na.rm = TRUE)) %>% 
  mutate(C_W1_RTQ_total = sum(W1_RTQ_1, W1_RTQ_2, W1_RTQ_3, W1_RTQ_4, W1_RTQ_5, W1_RTQ_6, W1_RTQ_7, W1_RTQ_8, W1_RTQ_9, W1_RTQ_10, na.rm = TRUE)) %>% 
  mutate(C_W1_ERQ_Rtotal = sum(W1_ERQ_1, W1_ERQ_3, W1_ERQ_5, W1_ERQ_7, W1_ERQ_8, W1_ERQ_10, na.rm = TRUE)) %>% 
  mutate(C_W1_PHQ_total = sum(W1_PHQ_1, W1_PHQ_2, W1_PHQ_3, W1_PHQ_4, W1_PHQ_5, W1_PHQ_6, W1_PHQ_7, W1_PHQ_8, na.rm = TRUE)) %>% 
  mutate(C_W1_GAD_total = sum(W1_GAD_1, W1_GAD_2, W1_GAD_3, W1_GAD_4, W1_GAD_5, W1_GAD_6, W1_GAD_7, na.rm = TRUE)) %>% 
  mutate(D_M1_IUS_total = sum(M1_IUS_1, M1_IUS_2, M1_IUS_3, M1_IUS_4, M1_IUS_5, M1_IUS_6, M1_IUS_7, M1_IUS_8, M1_IUS_9, M1_IUS_10, M1_IUS_11, M1_IUS_12, na.rm = TRUE)) %>%
  mutate(D_M1_FI_total = sum(M1_FI_friends, M1_FI_strangers, M1_FI_work, M1_FI_education, M1_FI_hobbies, na.rm = TRUE)) %>% 
  mutate(D_M1_RTQ_total = sum(M1_RTQ_1, M1_RTQ_2, M1_RTQ_3, M1_RTQ_4, M1_RTQ_5, M1_RTQ_6, M1_RTQ_7, M1_RTQ_8, M1_RTQ_9, M1_RTQ_10, na.rm = TRUE)) %>% 
  mutate(D_M1_ERQ_Rtotal = sum(M1_ERQ_1, M1_ERQ_3, M1_ERQ_5, M1_ERQ_7, M1_ERQ_8, M1_ERQ_10, na.rm = TRUE)) %>% 
  mutate(D_M1_PHQ_total = sum(M1_PHQ_1, M1_PHQ_2, M1_PHQ_3, M1_PHQ_4, M1_PHQ_5, M1_PHQ_6, M1_PHQ_7, M1_PHQ_8, na.rm = TRUE)) %>% 
  mutate(D_M1_GAD_total = sum(M1_GAD_1, M1_GAD_2, M1_GAD_3, M1_GAD_4, M1_GAD_5, M1_GAD_6, M1_GAD_7, na.rm = TRUE)) %>% 
  ungroup()
## New names:
## Rows: 259 Columns: 207
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): Prolific_ID, Group dbl (205): ...1, ID, B_IUS_1, B_IUS_2, B_IUS_3,
## B_IUS_4, B_IUS_5, B_IUS_6, B...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

Calculating mood means

Full_data_all <- mutate(Full_data_all_t, A_PRE_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(B_distressed_pleasant, B_anxious_relaxed)), na.rm = TRUE)) %>% 
  mutate(Full_data_all_t, B_POST_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(POST_distressed_pleasant, POST_anxious_relaxed)), na.rm = TRUE)) %>%
  mutate(Full_data_all_t, C_W1_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(W1_distressed_pleasant, W1_anxious_relaxed)), na.rm = TRUE)) %>% 
 mutate(Full_data_all_t, D_M1_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(M1_distressed_pleasant, M1_anxious_relaxed)), na.rm = TRUE))

Hypothesis 1

H1a: IUS and Mood association at PRE

#Distressed
PRE_IUS_Distress_lm <- lm(A_PRE_IUS_total ~ B_distressed_pleasant, data = Full_data_all)
summary(PRE_IUS_Distress_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_distressed_pleasant, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.8365  -5.8426   0.4123   6.3128  20.1076 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            44.3702     0.7218  61.471  < 2e-16 ***
## B_distressed_pleasant  -0.0559     0.0129  -4.334 2.11e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.571 on 257 degrees of freedom
## Multiple R-squared:  0.0681, Adjusted R-squared:  0.06448 
## F-statistic: 18.78 on 1 and 257 DF,  p-value: 2.105e-05
anova(PRE_IUS_Distress_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                        Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_distressed_pleasant   1  1379.6 1379.58  18.781 2.105e-05 ***
## Residuals             257 18878.1   73.46                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Anxious
PRE_IUS_Anxiety_lm <- lm(A_PRE_IUS_total ~ B_anxious_relaxed, data = Full_data_all)
summary(PRE_IUS_Anxiety_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_anxious_relaxed, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.2289  -5.7679   0.5456   5.9105  20.4901 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       44.00514    0.61670  71.355  < 2e-16 ***
## B_anxious_relaxed -0.05551    0.01021  -5.437 1.26e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.416 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1035, Adjusted R-squared:    0.1 
## F-statistic: 29.56 on 1 and 256 DF,  p-value: 1.262e-07
anova(PRE_IUS_Anxiety_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                    Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_anxious_relaxed   1  2093.8 2093.83  29.564 1.262e-07 ***
## Residuals         256 18130.7   70.82                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Combined
PRE_IUS_mood_lm <- lm(A_PRE_IUS_total ~ A_PRE_mood_mean, data = Full_data_all)
summary(PRE_IUS_mood_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_mood_mean, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.2840  -6.0303   0.1752   6.0332  20.9727 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     44.57405    0.67547  65.989  < 2e-16 ***
## A_PRE_mood_mean -0.06646    0.01228  -5.412 1.43e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.412 on 257 degrees of freedom
## Multiple R-squared:  0.1023, Adjusted R-squared:  0.0988 
## F-statistic: 29.29 on 1 and 257 DF,  p-value: 1.431e-07
anova(PRE_IUS_mood_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_mood_mean   1  2072.2 2072.24  29.285 1.431e-07 ***
## Residuals       257 18185.4   70.76                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H1a: IUS and mental health association at PRE

#Depression
PRE_IUS_PHQ_lm <- lm(A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
summary(PRE_IUS_PHQ_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.943  -4.553   0.081   4.910  22.117 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      30.1756     1.5954  18.914  < 2e-16 ***
## A_PRE_PHQ_total   0.6707     0.0842   7.965 5.36e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.951 on 257 degrees of freedom
## Multiple R-squared:  0.198,  Adjusted R-squared:  0.1949 
## F-statistic: 63.44 on 1 and 257 DF,  p-value: 5.356e-14
anova(PRE_IUS_PHQ_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_PHQ_total   1  4010.8  4010.8  63.444 5.356e-14 ***
## Residuals       257 16246.9    63.2                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Anxiety
PRE_IUS_GAD_lm <- lm(A_PRE_IUS_total ~ A_PRE_GAD_total,  data = Full_data_all)
summary(PRE_IUS_GAD_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GAD_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.3319  -4.8319   0.7045   4.1681  20.6317 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     29.26836    1.43778  20.357   <2e-16 ***
## A_PRE_GAD_total  0.82727    0.08645   9.569   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.623 on 257 degrees of freedom
## Multiple R-squared:  0.2627, Adjusted R-squared:  0.2598 
## F-statistic: 91.57 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_GAD_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_GAD_total   1  5321.7  5321.7   91.57 < 2.2e-16 ***
## Residuals       257 14935.9    58.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H1b: IUS and BT at PRE

Hypothesis 2

H2a: difference in change in cognitive IUS over time between groups

IUS_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total")
## Formatting table as needed
IUS_alltimepoints_long <- IUS_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_alltimepoints_long, REML = TRUE)
summary(IUS_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_alltimepoints_long
## 
## REML criterion at convergence: 7807.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4802 -0.3254  0.0609  0.4737  2.3749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 72.64    8.523   
##  Residual             77.08    8.779   
## Number of obs: 1036, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             42.0283     1.1885 600.1493  35.363
## GroupECs                                -0.9483     2.0993 600.1493  -0.452
## GroupIntervention                        1.0397     1.6929 600.1493   0.614
## TimeB_POST_IUS_total                    -3.8679     1.2059 768.0000  -3.207
## TimeC_W1_IUS_total                      -2.5472     1.2059 768.0000  -2.112
## TimeD_M1_IUS_total                      -6.1415     1.2059 768.0000  -5.093
## GroupECs:TimeB_POST_IUS_total            3.5879     2.1301 768.0000   1.684
## GroupIntervention:TimeB_POST_IUS_total  -3.1321     1.7178 768.0000  -1.823
## GroupECs:TimeC_W1_IUS_total              1.8272     2.1301 768.0000   0.858
## GroupIntervention:TimeC_W1_IUS_total    -2.8606     1.7178 768.0000  -1.665
## GroupECs:TimeD_M1_IUS_total              3.2415     2.1301 768.0000   1.522
## GroupIntervention:TimeD_M1_IUS_total    -3.0138     1.7178 768.0000  -1.754
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupECs                                0.65162    
## GroupIntervention                       0.53937    
## TimeB_POST_IUS_total                    0.00139 ** 
## TimeC_W1_IUS_total                      0.03499 *  
## TimeD_M1_IUS_total                     4.44e-07 ***
## GroupECs:TimeB_POST_IUS_total           0.09251 .  
## GroupIntervention:TimeB_POST_IUS_total  0.06865 .  
## GroupECs:TimeC_W1_IUS_total             0.39128    
## GroupIntervention:TimeC_W1_IUS_total    0.09627 .  
## GroupECs:TimeD_M1_IUS_total             0.12848    
## GroupIntervention:TimeD_M1_IUS_total    0.07975 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TB_POS TC_W1_ TD_M1_ GEC:TB GI:TB_ GEC:TC
## GroupECs    -0.566                                                        
## GrpIntrvntn -0.702  0.397                                                 
## TB_POST_IUS -0.507  0.287  0.356                                          
## TmC_W1_IUS_ -0.507  0.287  0.356  0.500                                   
## TmD_M1_IUS_ -0.507  0.287  0.356  0.500  0.500                            
## GEC:TB_POST  0.287 -0.507 -0.202 -0.566 -0.283 -0.283                     
## GI:TB_POST_  0.356 -0.202 -0.507 -0.702 -0.351 -0.351  0.397              
## GEC:TC_W1_I  0.287 -0.507 -0.202 -0.283 -0.566 -0.283  0.500  0.199       
## GI:TC_W1_IU  0.356 -0.202 -0.507 -0.351 -0.702 -0.351  0.199  0.500  0.397
## GEC:TD_M1_I  0.287 -0.507 -0.202 -0.283 -0.283 -0.566  0.500  0.199  0.500
## GI:TD_M1_IU  0.356 -0.202 -0.507 -0.351 -0.351 -0.702  0.199  0.500  0.199
##             GI:TC_ GEC:TD
## GroupECs                 
## GrpIntrvntn              
## TB_POST_IUS              
## TmC_W1_IUS_              
## TmD_M1_IUS_              
## GEC:TB_POST              
## GI:TB_POST_              
## GEC:TC_W1_I              
## GI:TC_W1_IU              
## GEC:TD_M1_I  0.199       
## GI:TD_M1_IU  0.500  0.397
anova  (IUS_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group       175.6   87.79     2   256  1.1390   0.32176    
## Time       4324.7 1441.58     3   768 18.7032 1.022e-11 ***
## Group:Time 1012.0  168.66     6   768  2.1882   0.04221 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM)
  IUS Score
Predictors Estimates CI p
(Intercept) 42.03 39.70 – 44.36 <0.001
Group [ECs] -0.95 -5.07 – 3.17 0.652
Group [Intervention] 1.04 -2.28 – 4.36 0.539
Time [B_POST_IUS_total] -3.87 -6.23 – -1.50 0.001
Time [C_W1_IUS_total] -2.55 -4.91 – -0.18 0.035
Time [D_M1_IUS_total] -6.14 -8.51 – -3.78 <0.001
Group [ECs] × Time
[B_POST_IUS_total]
3.59 -0.59 – 7.77 0.092
Group [Intervention] ×
Time [B_POST_IUS_total]
-3.13 -6.50 – 0.24 0.069
Group [ECs] × Time
[C_W1_IUS_total]
1.83 -2.35 – 6.01 0.391
Group [Intervention] ×
Time [C_W1_IUS_total]
-2.86 -6.23 – 0.51 0.096
Group [ECs] × Time
[D_M1_IUS_total]
3.24 -0.94 – 7.42 0.128
Group [Intervention] ×
Time [D_M1_IUS_total]
-3.01 -6.38 – 0.36 0.080
Random Effects
σ2 77.08
τ00 ID 72.64
ICC 0.49
N ID 259
Observations 1036
Marginal R2 / Conditional R2 0.049 / 0.510
parameters::standardise_parameters(IUS_MEM)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.27 | [ 0.08,  0.46]
## GroupECs                               |      -0.08 | [-0.41,  0.25]
## GroupIntervention                      |       0.08 | [-0.18,  0.35]
## TimeB_POST_IUS_total                   |      -0.31 | [-0.50, -0.12]
## TimeC_W1_IUS_total                     |      -0.20 | [-0.39, -0.01]
## TimeD_M1_IUS_total                     |      -0.49 | [-0.68, -0.30]
## GroupECs:TimeB_POST_IUS_total          |       0.29 | [-0.05,  0.62]
## GroupIntervention:TimeB_POST_IUS_total |      -0.25 | [-0.52,  0.02]
## GroupECs:TimeC_W1_IUS_total            |       0.15 | [-0.19,  0.48]
## GroupIntervention:TimeC_W1_IUS_total   |      -0.23 | [-0.50,  0.04]
## GroupECs:TimeD_M1_IUS_total            |       0.26 | [-0.08,  0.59]
## GroupIntervention:TimeD_M1_IUS_total   |      -0.24 | [-0.51,  0.03]

Baseline to post

IUS_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total")
## Formatting table as needed
IUS_BP_long <- IUS_BP %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_BP <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long, REML = TRUE)
summary(IUS_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_BP_long
## 
## REML criterion at convergence: 3656.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2320 -0.4094  0.0034  0.4135  3.2300 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 71.59    8.461   
##  Residual             28.73    5.360   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             42.0283     0.9728 339.2570  43.202
## GroupECs                                -0.9483     1.7184 339.2570  -0.552
## GroupIntervention                        1.0397     1.3858 339.2570   0.750
## TimeB_POST_IUS_total                    -3.8679     0.7363 256.0000  -5.253
## GroupECs:TimeB_POST_IUS_total            3.5879     1.3006 256.0000   2.759
## GroupIntervention:TimeB_POST_IUS_total  -3.1321     1.0489 256.0000  -2.986
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupECs                                0.58141    
## GroupIntervention                       0.45364    
## TimeB_POST_IUS_total                   3.15e-07 ***
## GroupECs:TimeB_POST_IUS_total           0.00622 ** 
## GroupIntervention:TimeB_POST_IUS_total  0.00310 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TB_POS GEC:TB
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TB_POST_IUS -0.378  0.214  0.266              
## GEC:TB_POST  0.214 -0.378 -0.150 -0.566       
## GI:TB_POST_  0.266 -0.150 -0.378 -0.702  0.397
anova  (IUS_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        21.31   10.66     2   256  0.3708    0.6905    
## Time       1587.48 1587.48     1   256 55.2457 1.595e-12 ***
## Group:Time  787.45  393.72     2   256 13.7020 2.222e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_BP)
  IUS Score
Predictors Estimates CI p
(Intercept) 42.03 40.12 – 43.94 <0.001
Group [ECs] -0.95 -4.32 – 2.43 0.581
Group [Intervention] 1.04 -1.68 – 3.76 0.453
Time [B_POST_IUS_total] -3.87 -5.31 – -2.42 <0.001
Group [ECs] × Time
[B_POST_IUS_total]
3.59 1.03 – 6.14 0.006
Group [Intervention] ×
Time [B_POST_IUS_total]
-3.13 -5.19 – -1.07 0.003
Random Effects
σ2 28.73
τ00 ID 71.59
ICC 0.71
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.062 / 0.731
parameters::standardise_parameters(IUS_MEM_BP)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.19 | [ 0.01,  0.38]
## GroupECs                               |      -0.09 | [-0.42,  0.24]
## GroupIntervention                      |       0.10 | [-0.16,  0.37]
## TimeB_POST_IUS_total                   |      -0.38 | [-0.52, -0.24]
## GroupECs:TimeB_POST_IUS_total          |       0.35 | [ 0.10,  0.60]
## GroupIntervention:TimeB_POST_IUS_total |      -0.30 | [-0.50, -0.10]
plot_model(IUS_MEM_BP, type = "int")

Baseline to 1W

IUS_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total")
## Formatting table as needed
IUS_B1W_long <- IUS_B1W %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_B1W <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1W_long, REML = TRUE)
summary(IUS_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1W_long
## 
## REML criterion at convergence: 3746.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9845 -0.3439  0.0235  0.4237  2.5991 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 69.60    8.342   
##  Residual             39.31    6.270   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           42.0283     1.0136 363.5479  41.463
## GroupECs                              -0.9483     1.7904 363.5479  -0.530
## GroupIntervention                      1.0397     1.4439 363.5479   0.720
## TimeC_W1_IUS_total                    -2.5472     0.8613 256.0000  -2.957
## GroupECs:TimeC_W1_IUS_total            1.8272     1.5213 256.0000   1.201
## GroupIntervention:TimeC_W1_IUS_total  -2.8606     1.2269 256.0000  -2.332
##                                      Pr(>|t|)    
## (Intercept)                           < 2e-16 ***
## GroupECs                              0.59668    
## GroupIntervention                     0.47197    
## TimeC_W1_IUS_total                    0.00339 ** 
## GroupECs:TimeC_W1_IUS_total           0.23084    
## GroupIntervention:TimeC_W1_IUS_total  0.02050 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ GEC:TC
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmC_W1_IUS_ -0.425  0.241  0.298              
## GEC:TC_W1_I  0.241 -0.425 -0.169 -0.566       
## GI:TC_W1_IU  0.298 -0.169 -0.425 -0.702  0.397
anova  (IUS_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        3.95    1.98     2   256  0.0503  0.950967    
## Time       961.28  961.28     1   256 24.4509 1.381e-06 ***
## Group:Time 425.11  212.56     2   256  5.4065  0.005014 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_B1W)
  IUS Score
Predictors Estimates CI p
(Intercept) 42.03 40.04 – 44.02 <0.001
Group [ECs] -0.95 -4.47 – 2.57 0.597
Group [Intervention] 1.04 -1.80 – 3.88 0.472
Time [C_W1_IUS_total] -2.55 -4.24 – -0.86 0.003
Group [ECs] × Time
[C_W1_IUS_total]
1.83 -1.16 – 4.82 0.230
Group [Intervention] ×
Time [C_W1_IUS_total]
-2.86 -5.27 – -0.45 0.020
Random Effects
σ2 39.31
τ00 ID 69.60
ICC 0.64
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.032 / 0.651
parameters::standardise_parameters(IUS_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.14 | [-0.05,  0.32]
## GroupECs                             |      -0.09 | [-0.42,  0.24]
## GroupIntervention                    |       0.10 | [-0.17,  0.37]
## TimeC_W1_IUS_total                   |      -0.24 | [-0.40, -0.08]
## GroupECs:TimeC_W1_IUS_total          |       0.17 | [-0.11,  0.46]
## GroupIntervention:TimeC_W1_IUS_total |      -0.27 | [-0.50, -0.04]
plot_model(IUS_MEM_B1W, type = "int")

Baseline to 1M

IUS_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total")
## Formatting table as needed
IUS_B1M_long <- IUS_B1M %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_B1M <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1M_long, REML = TRUE)
summary(IUS_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1M_long
## 
## REML criterion at convergence: 4070.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.92417 -0.36721  0.08337  0.54180  1.88810 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  59.84    7.735  
##  Residual             108.95   10.438  
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           42.0283     1.2619 454.8351  33.307
## GroupECs                              -0.9483     2.2289 454.8351  -0.425
## GroupIntervention                      1.0397     1.7975 454.8351   0.578
## TimeD_M1_IUS_total                    -6.1415     1.4337 256.0000  -4.284
## GroupECs:TimeD_M1_IUS_total            3.2415     2.5325 256.0000   1.280
## GroupIntervention:TimeD_M1_IUS_total  -3.0138     2.0423 256.0000  -1.476
##                                      Pr(>|t|)    
## (Intercept)                           < 2e-16 ***
## GroupECs                                0.671    
## GroupIntervention                       0.563    
## TimeD_M1_IUS_total                    2.6e-05 ***
## GroupECs:TimeD_M1_IUS_total             0.202    
## GroupIntervention:TimeD_M1_IUS_total    0.141    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TD_M1_ GEC:TD
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmD_M1_IUS_ -0.568  0.322  0.399              
## GEC:TD_M1_I  0.322 -0.568 -0.226 -0.566       
## GI:TD_M1_IU  0.399 -0.226 -0.568 -0.702  0.397
anova  (IUS_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        42.2    21.1     2   256  0.1937    0.8240    
## Time       4229.7  4229.7     1   256 38.8236 1.896e-09 ***
## Group:Time  688.0   344.0     2   256  3.1574    0.0442 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_B1M)
  IUS Score
Predictors Estimates CI p
(Intercept) 42.03 39.55 – 44.51 <0.001
Group [ECs] -0.95 -5.33 – 3.43 0.671
Group [Intervention] 1.04 -2.49 – 4.57 0.563
Time [D_M1_IUS_total] -6.14 -8.96 – -3.32 <0.001
Group [ECs] × Time
[D_M1_IUS_total]
3.24 -1.73 – 8.22 0.201
Group [Intervention] ×
Time [D_M1_IUS_total]
-3.01 -7.03 – 1.00 0.141
Random Effects
σ2 108.95
τ00 ID 59.84
ICC 0.35
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.070 / 0.400
parameters::standardise_parameters(IUS_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.23 | [ 0.05,  0.42]
## GroupECs                             |      -0.07 | [-0.40,  0.26]
## GroupIntervention                    |       0.08 | [-0.19,  0.34]
## TimeD_M1_IUS_total                   |      -0.46 | [-0.67, -0.25]
## GroupECs:TimeD_M1_IUS_total          |       0.24 | [-0.13,  0.61]
## GroupIntervention:TimeD_M1_IUS_total |      -0.22 | [-0.52,  0.07]
plot_model(IUS_MEM_B1M, type = "int")

H2a: difference in change in growth mindsets over time between groups

GM_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM")
## Formatting table as needed
GM_alltimepoints_long <- GM_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM, C_W1_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_alltimepoints_long, REML = TRUE)
summary(GM_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_alltimepoints_long
## 
## REML criterion at convergence: 3110.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1305 -0.5023 -0.0609  0.4554  3.6922 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.3098   1.1445  
##  Residual             0.7768   0.8814  
## Number of obs: 996, groups:  ID, 259
## 
## Fixed effects:
##                                 Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                       3.1415     0.1403 463.0767  22.391  < 2e-16
## GroupECs                         -0.4015     0.2478 463.0767  -1.620  0.10589
## GroupIntervention                -0.2386     0.1999 463.0767  -1.194  0.23316
## TimeB_POST_GM                    -0.4906     0.1211 728.1342  -4.052 5.62e-05
## TimeC_W1_GM                      -0.3130     0.1218 729.2028  -2.569  0.01039
## TimeD_M1_GM                      -0.3899     0.1264 733.4076  -3.085  0.00211
## GroupECs:TimeB_POST_GM            0.5306     0.2138 728.1342   2.481  0.01332
## GroupIntervention:TimeB_POST_GM  -0.1807     0.1730 728.5210  -1.044  0.29664
## GroupECs:TimeC_W1_GM              0.2371     0.2162 729.5489   1.097  0.27310
## GroupIntervention:TimeC_W1_GM    -0.2772     0.1739 729.4128  -1.595  0.11122
## GroupECs:TimeD_M1_GM              0.3500     0.2231 733.1339   1.569  0.11704
## GroupIntervention:TimeD_M1_GM    -0.2387     0.1798 733.2890  -1.327  0.18488
##                                    
## (Intercept)                     ***
## GroupECs                           
## GroupIntervention                  
## TimeB_POST_GM                   ***
## TimeC_W1_GM                     *  
## TimeD_M1_GM                     ** 
## GroupECs:TimeB_POST_GM          *  
## GroupIntervention:TimeB_POST_GM    
## GroupECs:TimeC_W1_GM               
## GroupIntervention:TimeC_W1_GM      
## GroupECs:TimeD_M1_GM               
## GroupIntervention:TimeD_M1_GM      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TB_POS TC_W1_ TD_M1_ GEC:TB GI:TB_ GEC:TC
## GroupECs    -0.566                                                        
## GrpIntrvntn -0.702  0.397                                                 
## TmB_POST_GM -0.431  0.244  0.303                                          
## TimeC_W1_GM -0.429  0.243  0.301  0.497                                   
## TimeD_M1_GM -0.413  0.234  0.290  0.479  0.477                            
## GEC:TB_POST  0.244 -0.431 -0.171 -0.566 -0.281 -0.271                     
## GI:TB_POST_  0.302 -0.171 -0.430 -0.700 -0.348 -0.335  0.396              
## GEC:TC_W1_G  0.242 -0.427 -0.170 -0.280 -0.564 -0.269  0.495  0.196       
## GI:TC_W1_GM  0.300 -0.170 -0.428 -0.348 -0.701 -0.335  0.197  0.494  0.395
## GEC:TD_M1_G  0.234 -0.414 -0.164 -0.271 -0.271 -0.567  0.479  0.190  0.474
## GI:TD_M1_GM  0.290 -0.164 -0.414 -0.337 -0.336 -0.703  0.191  0.478  0.189
##             GI:TC_ GEC:TD
## GroupECs                 
## GrpIntrvntn              
## TmB_POST_GM              
## TimeC_W1_GM              
## TimeD_M1_GM              
## GEC:TB_POST              
## GI:TB_POST_              
## GEC:TC_W1_G              
## GI:TC_W1_GM              
## GEC:TD_M1_G  0.190       
## GI:TD_M1_GM  0.477  0.398
anova  (GM_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       4.6999  2.3499     2 256.22  3.0251   0.05029 .  
## Time       21.1646  7.0549     3 731.30  9.0818 6.584e-06 ***
## Group:Time 10.6523  1.7754     6 731.29  2.2855   0.03414 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM)
  GM Score
Predictors Estimates CI p
(Intercept) 3.14 2.87 – 3.42 <0.001
Group [ECs] -0.40 -0.89 – 0.08 0.106
Group [Intervention] -0.24 -0.63 – 0.15 0.233
Time [B_POST_GM] -0.49 -0.73 – -0.25 <0.001
Time [C_W1_GM] -0.31 -0.55 – -0.07 0.010
Time [D_M1_GM] -0.39 -0.64 – -0.14 0.002
Group [ECs] × Time
[B_POST_GM]
0.53 0.11 – 0.95 0.013
Group [Intervention] ×
Time [B_POST_GM]
-0.18 -0.52 – 0.16 0.297
Group [ECs] × Time
[C_W1_GM]
0.24 -0.19 – 0.66 0.273
Group [Intervention] ×
Time [C_W1_GM]
-0.28 -0.62 – 0.06 0.111
Group [ECs] × Time
[D_M1_GM]
0.35 -0.09 – 0.79 0.117
Group [Intervention] ×
Time [D_M1_GM]
-0.24 -0.59 – 0.11 0.185
Random Effects
σ2 0.78
τ00 ID 1.31
ICC 0.63
N ID 259
Observations 996
Marginal R2 / Conditional R2 0.037 / 0.641
parameters::standardise_parameters(GM_MEM)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |       0.33 | [ 0.14,  0.52]
## GroupECs                        |      -0.27 | [-0.61,  0.06]
## GroupIntervention               |      -0.16 | [-0.43,  0.10]
## TimeB_POST_GM                   |      -0.33 | [-0.50, -0.17]
## TimeC_W1_GM                     |      -0.21 | [-0.38, -0.05]
## TimeD_M1_GM                     |      -0.27 | [-0.44, -0.10]
## GroupECs:TimeB_POST_GM          |       0.36 | [ 0.08,  0.65]
## GroupIntervention:TimeB_POST_GM |      -0.12 | [-0.35,  0.11]
## GroupECs:TimeC_W1_GM            |       0.16 | [-0.13,  0.45]
## GroupIntervention:TimeC_W1_GM   |      -0.19 | [-0.42,  0.04]
## GroupECs:TimeD_M1_GM            |       0.24 | [-0.06,  0.54]
## GroupIntervention:TimeD_M1_GM   |      -0.16 | [-0.40,  0.08]

Baseline to post

GM_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM")
## Formatting table as needed
GM_BP_long <- GM_BP %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_BP <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long, REML = TRUE)
summary(GM_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_BP_long
## 
## REML criterion at convergence: 1673.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5473 -0.4356 -0.0320  0.4087  2.9611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.471    1.2128  
##  Residual             0.614    0.7836  
## Number of obs: 516, groups:  ID, 259
## 
## Fixed effects:
##                                 Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                       3.1415     0.1402 341.6190  22.400  < 2e-16
## GroupECs                         -0.4015     0.2477 341.6189  -1.621  0.10599
## GroupIntervention                -0.2386     0.1998 341.6189  -1.194  0.23319
## TimeB_POST_GM                    -0.4906     0.1076 254.5431  -4.558 8.03e-06
## GroupECs:TimeB_POST_GM            0.5306     0.1901 254.5431   2.791  0.00566
## GroupIntervention:TimeB_POST_GM  -0.1932     0.1540 255.1798  -1.255  0.21079
##                                    
## (Intercept)                     ***
## GroupECs                           
## GroupIntervention                  
## TimeB_POST_GM                   ***
## GroupECs:TimeB_POST_GM          ** 
## GroupIntervention:TimeB_POST_GM    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TB_POS GEC:TB
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmB_POST_GM -0.384  0.217  0.269              
## GEC:TB_POST  0.217 -0.384 -0.153 -0.566       
## GI:TB_POST_  0.268 -0.152 -0.382 -0.699  0.396
anova  (GM_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2.0352  1.0176     2 256.34  1.6574 0.1926771    
## Time       16.3667 16.3667     1 254.86 26.6558   4.9e-07 ***
## Group:Time  8.8331  4.4165     2 254.92  7.1931 0.0009142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_BP)
  GM Score
Predictors Estimates CI p
(Intercept) 3.14 2.87 – 3.42 <0.001
Group [ECs] -0.40 -0.89 – 0.09 0.106
Group [Intervention] -0.24 -0.63 – 0.15 0.233
Time [B_POST_GM] -0.49 -0.70 – -0.28 <0.001
Group [ECs] × Time
[B_POST_GM]
0.53 0.16 – 0.90 0.005
Group [Intervention] ×
Time [B_POST_GM]
-0.19 -0.50 – 0.11 0.210
Random Effects
σ2 0.61
τ00 ID 1.47
ICC 0.71
N ID 259
Observations 516
Marginal R2 / Conditional R2 0.043 / 0.718
parameters::standardise_parameters(GM_MEM_BP)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |       0.27 | [ 0.09,  0.46]
## GroupECs                        |      -0.27 | [-0.60,  0.06]
## GroupIntervention               |      -0.16 | [-0.43,  0.10]
## TimeB_POST_GM                   |      -0.33 | [-0.48, -0.19]
## GroupECs:TimeB_POST_GM          |       0.36 | [ 0.11,  0.61]
## GroupIntervention:TimeB_POST_GM |      -0.13 | [-0.34,  0.07]
plot_model(GM_MEM_BP, type = "int")

Baseline to 1W

GM_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM")
## Formatting table as needed
GM_B1W_long <- GM_B1W %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_B1W <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1W_long, REML = TRUE)
summary(GM_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1W_long
## 
## REML criterion at convergence: 1747.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2664 -0.5109 -0.1518  0.4940  2.7870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.038    1.019   
##  Residual             1.010    1.005   
## Number of obs: 511, groups:  ID, 259
## 
## Fixed effects:
##                               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                     3.1415     0.1390 403.7332  22.603   <2e-16 ***
## GroupECs                       -0.4015     0.2455 403.7332  -1.635   0.1027    
## GroupIntervention              -0.2386     0.1980 403.7332  -1.205   0.2289    
## TimeC_W1_GM                    -0.3160     0.1390 251.9742  -2.273   0.0239 *  
## GroupECs:TimeC_W1_GM            0.2376     0.2470 253.3522   0.962   0.3370    
## GroupIntervention:TimeC_W1_GM  -0.2757     0.1985 252.4706  -1.389   0.1659    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ GEC:TC
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TimeC_W1_GM -0.493  0.279  0.346              
## GEC:TC_W1_G  0.278 -0.490 -0.195 -0.563       
## GI:TC_W1_GM  0.345 -0.196 -0.492 -0.701  0.394
anova  (GM_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       5.0659  2.5329     2 256.72  2.5080 0.0834210 .  
## Time       12.1159 12.1159     1 253.25 11.9969 0.0006256 ***
## Group:Time  4.6763  2.3381     2 253.08  2.3152 0.1008383    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_B1W)
  GM Score
Predictors Estimates CI p
(Intercept) 3.14 2.87 – 3.41 <0.001
Group [ECs] -0.40 -0.88 – 0.08 0.103
Group [Intervention] -0.24 -0.63 – 0.15 0.229
Time [C_W1_GM] -0.32 -0.59 – -0.04 0.023
Group [ECs] × Time
[C_W1_GM]
0.24 -0.25 – 0.72 0.337
Group [Intervention] ×
Time [C_W1_GM]
-0.28 -0.67 – 0.11 0.165
Random Effects
σ2 1.01
τ00 ID 1.04
ICC 0.51
N ID 259
Observations 511
Marginal R2 / Conditional R2 0.035 / 0.524
parameters::standardise_parameters(GM_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                     | Std. Coef. |         95% CI
## -----------------------------------------------------------
## (Intercept)                   |       0.24 | [ 0.06,  0.43]
## GroupECs                      |      -0.28 | [-0.61,  0.06]
## GroupIntervention             |      -0.16 | [-0.43,  0.10]
## TimeC_W1_GM                   |      -0.22 | [-0.41, -0.03]
## GroupECs:TimeC_W1_GM          |       0.16 | [-0.17,  0.50]
## GroupIntervention:TimeC_W1_GM |      -0.19 | [-0.46,  0.08]
plot_model(GM_MEM_B1W, type = "int")

Baseline to 1M

GM_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM")
## Formatting table as needed
GM_B1M_long <- GM_B1M %>%
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_B1M <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1M_long, REML = TRUE)
summary(GM_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1M_long
## 
## REML criterion at convergence: 1639.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3875 -0.5367 -0.1142  0.4999  2.8661 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.0920   1.0450  
##  Residual             0.8918   0.9444  
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                     3.1415     0.1368 375.5454  22.964   <2e-16 ***
## GroupECs                       -0.4015     0.2416 375.5454  -1.662   0.0974 .  
## GroupIntervention              -0.2386     0.1949 375.5454  -1.224   0.2216    
## TimeD_M1_GM                    -0.3459     0.1366 235.6703  -2.533   0.0120 *  
## GroupECs:TimeD_M1_GM            0.3073     0.2410 235.5102   1.275   0.2036    
## GroupIntervention:TimeD_M1_GM  -0.2840     0.1943 235.3935  -1.462   0.1451    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TD_M1_ GEC:TD
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TimeD_M1_GM -0.450  0.255  0.316              
## GEC:TD_M1_G  0.255 -0.451 -0.179 -0.567       
## GI:TD_M1_GM  0.317 -0.179 -0.451 -0.703  0.398
anova  (GM_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Group       4.3400  2.1700     2 254.05  2.4332 0.089803 .  
## Time       11.8930 11.8930     1 235.41 13.3353 0.000321 ***
## Group:Time  5.5615  2.7807     2 235.41  3.1180 0.046079 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_B1M)
  GM Score
Predictors Estimates CI p
(Intercept) 3.14 2.87 – 3.41 <0.001
Group [ECs] -0.40 -0.88 – 0.07 0.097
Group [Intervention] -0.24 -0.62 – 0.14 0.221
Time [D_M1_GM] -0.35 -0.61 – -0.08 0.012
Group [ECs] × Time
[D_M1_GM]
0.31 -0.17 – 0.78 0.203
Group [Intervention] ×
Time [D_M1_GM]
-0.28 -0.67 – 0.10 0.144
Random Effects
σ2 0.89
τ00 ID 1.09
ICC 0.55
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.039 / 0.568
parameters::standardise_parameters(GM_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                     | Std. Coef. |         95% CI
## -----------------------------------------------------------
## (Intercept)                   |       0.26 | [ 0.07,  0.44]
## GroupECs                      |      -0.28 | [-0.61,  0.05]
## GroupIntervention             |      -0.17 | [-0.43,  0.10]
## TimeD_M1_GM                   |      -0.24 | [-0.43, -0.05]
## GroupECs:TimeD_M1_GM          |       0.21 | [-0.12,  0.55]
## GroupIntervention:TimeD_M1_GM |      -0.20 | [-0.47,  0.07]
plot_model(GM_MEM_B1M, type = "int")

H2b: difference in change in PHQ over time between groups

PHQ_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total")
## Formatting table as needed
PHQ_alltimepoints_long <- PHQ_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_alltimepoints_long, REML = TRUE)
summary(PHQ_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_alltimepoints_long
## 
## REML criterion at convergence: 5050.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2687 -0.4532 -0.0281  0.4903  2.4898 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 20.66    4.545   
##  Residual             26.75    5.172   
## Number of obs: 777, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           17.4245     0.6687 556.5908  26.056
## GroupECs                               0.5355     1.1812 556.5908   0.453
## GroupIntervention                      1.2260     0.9526 556.5908   1.287
## TimeC_W1_PHQ_total                    -1.3302     0.7104 512.0000  -1.872
## TimeD_M1_PHQ_total                    -3.1226     0.7104 512.0000  -4.396
## GroupECs:TimeC_W1_PHQ_total            0.5702     1.2548 512.0000   0.454
## GroupIntervention:TimeC_W1_PHQ_total  -0.6504     1.0119 512.0000  -0.643
## GroupECs:TimeD_M1_PHQ_total            0.9426     1.2548 512.0000   0.751
## GroupIntervention:TimeD_M1_PHQ_total  -1.0910     1.0119 512.0000  -1.078
##                                      Pr(>|t|)    
## (Intercept)                           < 2e-16 ***
## GroupECs                               0.6505    
## GroupIntervention                      0.1986    
## TimeC_W1_PHQ_total                     0.0617 .  
## TimeD_M1_PHQ_total                   1.34e-05 ***
## GroupECs:TimeC_W1_PHQ_total            0.6497    
## GroupIntervention:TimeC_W1_PHQ_total   0.5207    
## GroupECs:TimeD_M1_PHQ_total            0.4529    
## GroupIntervention:TimeD_M1_PHQ_total   0.2815    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ TD_M1_ GEC:TC GI:TC_ GEC:TD
## GroupECs    -0.566                                                 
## GrpIntrvntn -0.702  0.397                                          
## TmC_W1_PHQ_ -0.531  0.301  0.373                                   
## TmD_M1_PHQ_ -0.531  0.301  0.373  0.500                            
## GEC:TC_W1_P  0.301 -0.531 -0.211 -0.566 -0.283                     
## GI:TC_W1_PH  0.373 -0.211 -0.531 -0.702 -0.351  0.397              
## GEC:TD_M1_P  0.301 -0.531 -0.211 -0.283 -0.566  0.500  0.199       
## GI:TD_M1_PH  0.373 -0.211 -0.531 -0.351 -0.702  0.199  0.500  0.397
anova  (PHQ_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        38.69   19.34     2   256  0.7232    0.4862    
## Time       1164.82  582.41     2   512 21.7752 8.392e-10 ***
## Group:Time   76.29   19.07     4   512  0.7130    0.5833    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM)
  PHQ Score
Predictors Estimates CI p
(Intercept) 17.42 16.11 – 18.74 <0.001
Group [ECs] 0.54 -1.78 – 2.85 0.650
Group [Intervention] 1.23 -0.64 – 3.10 0.199
Time [C_W1_PHQ_total] -1.33 -2.72 – 0.06 0.062
Time [D_M1_PHQ_total] -3.12 -4.52 – -1.73 <0.001
Group [ECs] × Time
[C_W1_PHQ_total]
0.57 -1.89 – 3.03 0.650
Group [Intervention] ×
Time [C_W1_PHQ_total]
-0.65 -2.64 – 1.34 0.521
Group [ECs] × Time
[D_M1_PHQ_total]
0.94 -1.52 – 3.41 0.453
Group [Intervention] ×
Time [D_M1_PHQ_total]
-1.09 -3.08 – 0.90 0.281
Random Effects
σ2 26.75
τ00 ID 20.66
ICC 0.44
N ID 259
Observations 777
Marginal R2 / Conditional R2 0.044 / 0.461
parameters::standardise_parameters(PHQ_MEM)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.15 | [-0.04,  0.33]
## GroupECs                             |       0.08 | [-0.25,  0.41]
## GroupIntervention                    |       0.17 | [-0.09,  0.44]
## TimeC_W1_PHQ_total                   |      -0.19 | [-0.39,  0.01]
## TimeD_M1_PHQ_total                   |      -0.45 | [-0.64, -0.25]
## GroupECs:TimeC_W1_PHQ_total          |       0.08 | [-0.27,  0.43]
## GroupIntervention:TimeC_W1_PHQ_total |      -0.09 | [-0.38,  0.19]
## GroupECs:TimeD_M1_PHQ_total          |       0.13 | [-0.22,  0.49]
## GroupIntervention:TimeD_M1_PHQ_total |      -0.16 | [-0.44,  0.13]

Baseline to 1W

PHQ_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total")
## Formatting table as needed
PHQ_B1W_long <- PHQ_B1W %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_B1W <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1W_long, REML = TRUE)
summary(PHQ_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1W_long
## 
## REML criterion at convergence: 3213.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09297 -0.46311 -0.00509  0.43990  2.68855 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 25.22    5.022   
##  Residual             13.65    3.695   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           17.4245     0.6056 360.3455  28.775
## GroupECs                               0.5355     1.0696 360.3455   0.501
## GroupIntervention                      1.2260     0.8626 360.3455   1.421
## TimeC_W1_PHQ_total                    -1.3302     0.5076 256.0000  -2.621
## GroupECs:TimeC_W1_PHQ_total            0.5702     0.8965 256.0000   0.636
## GroupIntervention:TimeC_W1_PHQ_total  -0.6504     0.7230 256.0000  -0.900
##                                      Pr(>|t|)    
## (Intercept)                            <2e-16 ***
## GroupECs                               0.6169    
## GroupIntervention                      0.1561    
## TimeC_W1_PHQ_total                     0.0093 ** 
## GroupECs:TimeC_W1_PHQ_total            0.5253    
## GroupIntervention:TimeC_W1_PHQ_total   0.3692    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ GEC:TC
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmC_W1_PHQ_ -0.419  0.237  0.294              
## GEC:TC_W1_P  0.237 -0.419 -0.167 -0.566       
## GI:TC_W1_PH  0.294 -0.167 -0.419 -0.702  0.397
anova  (PHQ_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group       20.499  10.250     2   256  0.7507 0.4730687    
## Time       211.676 211.676     1   256 15.5036 0.0001062 ***
## Group:Time  27.054  13.527     2   256  0.9908 0.3727148    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_B1W)
  PHQ Score
Predictors Estimates CI p
(Intercept) 17.42 16.23 – 18.61 <0.001
Group [ECs] 0.54 -1.57 – 2.64 0.617
Group [Intervention] 1.23 -0.47 – 2.92 0.156
Time [C_W1_PHQ_total] -1.33 -2.33 – -0.33 0.009
Group [ECs] × Time
[C_W1_PHQ_total]
0.57 -1.19 – 2.33 0.525
Group [Intervention] ×
Time [C_W1_PHQ_total]
-0.65 -2.07 – 0.77 0.369
Random Effects
σ2 13.65
τ00 ID 25.22
ICC 0.65
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.020 / 0.656
parameters::standardise_parameters(PHQ_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.02 | [-0.17,  0.21]
## GroupECs                             |       0.09 | [-0.25,  0.42]
## GroupIntervention                    |       0.20 | [-0.07,  0.47]
## TimeC_W1_PHQ_total                   |      -0.21 | [-0.37, -0.05]
## GroupECs:TimeC_W1_PHQ_total          |       0.09 | [-0.19,  0.37]
## GroupIntervention:TimeC_W1_PHQ_total |      -0.10 | [-0.33,  0.12]
plot_model(PHQ_MEM_B1W, type = "int")

Baseline to 1M

PHQ_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total")
## Formatting table as needed
PHQ_B1M_long <- PHQ_B1M %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_B1M <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long, REML = TRUE)
summary(PHQ_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1M_long
## 
## REML criterion at convergence: 3443.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.38575 -0.50846 -0.02286  0.56387  2.22387 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 17.49    4.182   
##  Residual             32.01    5.658   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           17.4245     0.6834 455.1887  25.499
## GroupECs                               0.5355     1.2070 455.1887   0.444
## GroupIntervention                      1.2260     0.9734 455.1887   1.259
## TimeD_M1_PHQ_total                    -3.1226     0.7772 256.0000  -4.018
## GroupECs:TimeD_M1_PHQ_total            0.9426     1.3728 256.0000   0.687
## GroupIntervention:TimeD_M1_PHQ_total  -1.0910     1.1071 256.0000  -0.985
##                                      Pr(>|t|)    
## (Intercept)                           < 2e-16 ***
## GroupECs                                0.658    
## GroupIntervention                       0.209    
## TimeD_M1_PHQ_total                   7.72e-05 ***
## GroupECs:TimeD_M1_PHQ_total             0.493    
## GroupIntervention:TimeD_M1_PHQ_total    0.325    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TD_M1_ GEC:TD
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmD_M1_PHQ_ -0.569  0.322  0.399              
## GEC:TD_M1_P  0.322 -0.569 -0.226 -0.566       
## GI:TD_M1_PH  0.399 -0.226 -0.569 -0.702  0.397
anova  (PHQ_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        40.51   20.25     2   256  0.6327    0.5320    
## Time       1156.78 1156.78     1   256 36.1358 6.308e-09 ***
## Group:Time   75.29   37.65     2   256  1.1760    0.3102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_B1M)
  PHQ Score
Predictors Estimates CI p
(Intercept) 17.42 16.08 – 18.77 <0.001
Group [ECs] 0.54 -1.84 – 2.91 0.658
Group [Intervention] 1.23 -0.69 – 3.14 0.208
Time [D_M1_PHQ_total] -3.12 -4.65 – -1.60 <0.001
Group [ECs] × Time
[D_M1_PHQ_total]
0.94 -1.75 – 3.64 0.493
Group [Intervention] ×
Time [D_M1_PHQ_total]
-1.09 -3.27 – 1.08 0.325
Random Effects
σ2 32.01
τ00 ID 17.49
ICC 0.35
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.060 / 0.392
parameters::standardise_parameters(PHQ_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.15 | [-0.03,  0.34]
## GroupECs                             |       0.07 | [-0.25,  0.40]
## GroupIntervention                    |       0.17 | [-0.10,  0.43]
## TimeD_M1_PHQ_total                   |      -0.43 | [-0.64, -0.22]
## GroupECs:TimeD_M1_PHQ_total          |       0.13 | [-0.24,  0.50]
## GroupIntervention:TimeD_M1_PHQ_total |      -0.15 | [-0.45,  0.15]
plot_model(PHQ_MEM_B1M, type = "int")

H2b: difference in change in GAD over time between groups

# Merging across timepoints
GAD_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total")
## Formatting table as needed
GAD_alltimepoints_long <- GAD_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_alltimepoints_long, REML = TRUE)
summary(GAD_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_alltimepoints_long
## 
## REML criterion at convergence: 4917.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4172 -0.4747 -0.0001  0.5239  3.2139 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 19.27    4.389   
##  Residual             21.80    4.669   
## Number of obs: 777, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           15.4717     0.6224 533.2553  24.857
## GroupECs                              -0.4517     1.0994 533.2553  -0.411
## GroupIntervention                      0.8001     0.8866 533.2553   0.902
## TimeC_W1_GAD_total                    -1.0094     0.6413 512.0000  -1.574
## TimeD_M1_GAD_total                    -2.7453     0.6413 512.0000  -4.281
## GroupECs:TimeC_W1_GAD_total            0.7494     1.1328 512.0000   0.662
## GroupIntervention:TimeC_W1_GAD_total  -0.4760     0.9136 512.0000  -0.521
## GroupECs:TimeD_M1_GAD_total            1.6053     1.1328 512.0000   1.417
## GroupIntervention:TimeD_M1_GAD_total  -0.6334     0.9136 512.0000  -0.693
##                                      Pr(>|t|)    
## (Intercept)                           < 2e-16 ***
## GroupECs                                0.681    
## GroupIntervention                       0.367    
## TimeC_W1_GAD_total                      0.116    
## TimeD_M1_GAD_total                   2.23e-05 ***
## GroupECs:TimeC_W1_GAD_total             0.509    
## GroupIntervention:TimeC_W1_GAD_total    0.603    
## GroupECs:TimeD_M1_GAD_total             0.157    
## GroupIntervention:TimeD_M1_GAD_total    0.488    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ TD_M1_ GEC:TC GI:TC_ GEC:TD
## GroupECs    -0.566                                                 
## GrpIntrvntn -0.702  0.397                                          
## TmC_W1_GAD_ -0.515  0.292  0.362                                   
## TmD_M1_GAD_ -0.515  0.292  0.362  0.500                            
## GEC:TC_W1_G  0.292 -0.515 -0.205 -0.566 -0.283                     
## GI:TC_W1_GA  0.362 -0.205 -0.515 -0.702 -0.351  0.397              
## GEC:TD_M1_G  0.292 -0.515 -0.205 -0.283 -0.566  0.500  0.199       
## GI:TD_M1_GA  0.362 -0.205 -0.515 -0.351 -0.702  0.199  0.500  0.397
anova  (GAD_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        8.44    4.22     2   256  0.1935    0.8242    
## Time       687.11  343.55     2   512 15.7595 2.281e-07 ***
## Group:Time  85.55   21.39     4   512  0.9811    0.4174    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM)
  GAD Score
Predictors Estimates CI p
(Intercept) 15.47 14.25 – 16.69 <0.001
Group [ECs] -0.45 -2.61 – 1.71 0.681
Group [Intervention] 0.80 -0.94 – 2.54 0.367
Time [C_W1_GAD_total] -1.01 -2.27 – 0.25 0.116
Time [D_M1_GAD_total] -2.75 -4.00 – -1.49 <0.001
Group [ECs] × Time
[C_W1_GAD_total]
0.75 -1.47 – 2.97 0.508
Group [Intervention] ×
Time [C_W1_GAD_total]
-0.48 -2.27 – 1.32 0.602
Group [ECs] × Time
[D_M1_GAD_total]
1.61 -0.62 – 3.83 0.157
Group [Intervention] ×
Time [D_M1_GAD_total]
-0.63 -2.43 – 1.16 0.488
Random Effects
σ2 21.80
τ00 ID 19.27
ICC 0.47
N ID 259
Observations 777
Marginal R2 / Conditional R2 0.032 / 0.486
parameters::standardise_parameters(GAD_MEM)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.16 | [-0.03,  0.35]
## GroupECs                             |      -0.07 | [-0.40,  0.26]
## GroupIntervention                    |       0.12 | [-0.15,  0.39]
## TimeC_W1_GAD_total                   |      -0.16 | [-0.35,  0.04]
## TimeD_M1_GAD_total                   |      -0.42 | [-0.62, -0.23]
## GroupECs:TimeC_W1_GAD_total          |       0.12 | [-0.23,  0.46]
## GroupIntervention:TimeC_W1_GAD_total |      -0.07 | [-0.35,  0.20]
## GroupECs:TimeD_M1_GAD_total          |       0.25 | [-0.10,  0.59]
## GroupIntervention:TimeD_M1_GAD_total |      -0.10 | [-0.37,  0.18]

Baseline to 1W

# Merging across timepoints
GAD_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total")
## Formatting table as needed
GAD_B1W_long <- GAD_B1W %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_B1W <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1W_long, REML = TRUE)
summary(GAD_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1W_long
## 
## REML criterion at convergence: 3156.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.97971 -0.46162 -0.05959  0.48166  2.72962 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 22.31    4.723   
##  Residual             12.31    3.508   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           15.4717     0.5714 361.7397  27.075
## GroupECs                              -0.4517     1.0094 361.7397  -0.448
## GroupIntervention                      0.8001     0.8140 361.7397   0.983
## TimeC_W1_GAD_total                    -1.0094     0.4818 256.0000  -2.095
## GroupECs:TimeC_W1_GAD_total            0.7494     0.8511 256.0000   0.881
## GroupIntervention:TimeC_W1_GAD_total  -0.4760     0.6864 256.0000  -0.693
##                                      Pr(>|t|)    
## (Intercept)                            <2e-16 ***
## GroupECs                               0.6548    
## GroupIntervention                      0.3263    
## TimeC_W1_GAD_total                     0.0372 *  
## GroupECs:TimeC_W1_GAD_total            0.3794    
## GroupIntervention:TimeC_W1_GAD_total   0.4886    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ GEC:TC
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmC_W1_GAD_ -0.422  0.239  0.296              
## GEC:TC_W1_G  0.239 -0.422 -0.168 -0.566       
## GI:TC_W1_GA  0.296 -0.168 -0.422 -0.702  0.397
anova  (GAD_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
## Group       9.323   4.662     2   256  0.3788 0.685040   
## Time       96.944  96.944     1   256  7.8782 0.005388 **
## Group:Time 25.452  12.726     2   256  1.0342 0.356993   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM_B1W)
  GAD Score
Predictors Estimates CI p
(Intercept) 15.47 14.35 – 16.59 <0.001
Group [ECs] -0.45 -2.43 – 1.53 0.655
Group [Intervention] 0.80 -0.80 – 2.40 0.326
Time [C_W1_GAD_total] -1.01 -1.96 – -0.06 0.037
Group [ECs] × Time
[C_W1_GAD_total]
0.75 -0.92 – 2.42 0.379
Group [Intervention] ×
Time [C_W1_GAD_total]
-0.48 -1.82 – 0.87 0.488
Random Effects
σ2 12.31
τ00 ID 22.31
ICC 0.64
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.012 / 0.649
parameters::standardise_parameters(GAD_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.05 | [-0.14,  0.24]
## GroupECs                             |      -0.08 | [-0.41,  0.26]
## GroupIntervention                    |       0.14 | [-0.14,  0.41]
## TimeC_W1_GAD_total                   |      -0.17 | [-0.33, -0.01]
## GroupECs:TimeC_W1_GAD_total          |       0.13 | [-0.16,  0.41]
## GroupIntervention:TimeC_W1_GAD_total |      -0.08 | [-0.31,  0.15]
plot_model(GAD_MEM_B1W, type = "int")

Baseline to 1M

# Merging across timepoints
GAD_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total")
## Formatting table as needed
GAD_B1M_long <- GAD_B1M %>%
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_B1M <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1M_long, REML = TRUE)
summary(GAD_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1M_long
## 
## REML criterion at convergence: 3351.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.49775 -0.51016 -0.03334  0.55438  2.48053 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 16.32    4.039   
##  Residual             25.74    5.073   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           15.4717     0.6298 445.0075  24.564
## GroupECs                              -0.4517     1.1125 445.0075  -0.406
## GroupIntervention                      0.8001     0.8972 445.0075   0.892
## TimeD_M1_GAD_total                    -2.7453     0.6968 256.0000  -3.940
## GroupECs:TimeD_M1_GAD_total            1.6053     1.2308 256.0000   1.304
## GroupIntervention:TimeD_M1_GAD_total  -0.6334     0.9926 256.0000  -0.638
##                                      Pr(>|t|)    
## (Intercept)                           < 2e-16 ***
## GroupECs                             0.684930    
## GroupIntervention                    0.372967    
## TimeD_M1_GAD_total                   0.000105 ***
## GroupECs:TimeD_M1_GAD_total          0.193332    
## GroupIntervention:TimeD_M1_GAD_total 0.523997    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TD_M1_ GEC:TD
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmD_M1_GAD_ -0.553  0.313  0.388              
## GEC:TD_M1_G  0.313 -0.553 -0.220 -0.566       
## GI:TD_M1_GA  0.388 -0.220 -0.553 -0.702  0.397
anova  (GAD_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group       11.22    5.61     2   256  0.2180    0.8043    
## Time       674.00  674.00     1   256 26.1900 6.079e-07 ***
## Group:Time  84.65   42.32     2   256  1.6446    0.1951    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM_B1M)
  GAD Score
Predictors Estimates CI p
(Intercept) 15.47 14.23 – 16.71 <0.001
Group [ECs] -0.45 -2.64 – 1.73 0.685
Group [Intervention] 0.80 -0.96 – 2.56 0.373
Time [D_M1_GAD_total] -2.75 -4.11 – -1.38 <0.001
Group [ECs] × Time
[D_M1_GAD_total]
1.61 -0.81 – 4.02 0.193
Group [Intervention] ×
Time [D_M1_GAD_total]
-0.63 -2.58 – 1.32 0.524
Random Effects
σ2 25.74
τ00 ID 16.32
ICC 0.39
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.046 / 0.416
parameters::standardise_parameters(GAD_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |         95% CI
## ------------------------------------------------------------------
## (Intercept)                          |       0.17 | [-0.02,  0.36]
## GroupECs                             |      -0.07 | [-0.40,  0.26]
## GroupIntervention                    |       0.12 | [-0.15,  0.39]
## TimeD_M1_GAD_total                   |      -0.42 | [-0.62, -0.21]
## GroupECs:TimeD_M1_GAD_total          |       0.24 | [-0.12,  0.61]
## GroupIntervention:TimeD_M1_GAD_total |      -0.10 | [-0.39,  0.20]
plot_model(GAD_MEM_B1M, type = "int")

H2b: difference in change in mood over time between groups

Mood_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "B_POST_mood_mean", "C_W1_mood_mean", "D_M1_mood_mean")
## Formatting tables as needed
Mood_alltimepoints_long <- Mood_alltimepoints %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "B_POST_mood_mean", "C_W1_mood_mean", "D_M1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_alltimepoints_long, REML = TRUE)
summary(Mood_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_alltimepoints_long
## 
## REML criterion at convergence: 9998.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9245 -0.4840  0.0543  0.5791  3.4075 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 892.9    29.88   
##  Residual             982.7    31.35   
## Number of obs: 995, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             37.3160     4.2065 599.2037   8.871
## GroupECs                                 2.9840     7.4301 599.2037   0.402
## GroupIntervention                       -7.6850     5.9920 599.2037  -1.283
## TimeB_POST_mood_mean                    19.9717     4.3060 729.2427   4.638
## TimeC_W1_mood_mean                      -6.2501     4.3456 731.4162  -1.438
## TimeD_M1_mood_mean                      -6.6068     4.4744 736.8688  -1.477
## GroupECs:TimeB_POST_mood_mean          -19.9917     7.6059 729.2427  -2.628
## GroupIntervention:TimeB_POST_mood_mean   9.4911     6.1432 729.5454   1.545
## GroupECs:TimeC_W1_mood_mean             -8.6947     7.6949 731.6309  -1.130
## GroupIntervention:TimeC_W1_mood_mean     1.2499     6.2004 731.5383   0.202
## GroupECs:TimeD_M1_mood_mean            -14.4877     7.9567 737.8488  -1.821
## GroupIntervention:TimeD_M1_mood_mean    -0.1891     6.3771 736.7884  -0.030
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupECs                                0.68812    
## GroupIntervention                       0.20015    
## TimeB_POST_mood_mean                   4.17e-06 ***
## TimeC_W1_mood_mean                      0.15079    
## TimeD_M1_mood_mean                      0.14022    
## GroupECs:TimeB_POST_mood_mean           0.00876 ** 
## GroupIntervention:TimeB_POST_mood_mean  0.12279    
## GroupECs:TimeC_W1_mood_mean             0.25887    
## GroupIntervention:TimeC_W1_mood_mean    0.84030    
## GroupECs:TimeD_M1_mood_mean             0.06904 .  
## GroupIntervention:TimeD_M1_mood_mean    0.97635    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TB_POS TC_W1_ TD_M1_ GEC:TB GI:TB_ GEC:TC
## GroupECs    -0.566                                                        
## GrpIntrvntn -0.702  0.397                                                 
## TmB_POST_m_ -0.512  0.290  0.359                                          
## TmC_W1_md_m -0.507  0.287  0.356  0.495                                   
## TmD_M1_md_m -0.493  0.279  0.346  0.481  0.478                            
## GEC:TB_POST  0.290 -0.512 -0.203 -0.566 -0.280 -0.272                     
## GI:TB_POST_  0.359 -0.203 -0.511 -0.701 -0.347 -0.337  0.397              
## GEC:TC_W1__  0.286 -0.506 -0.201 -0.280 -0.565 -0.270  0.494  0.196       
## GrI:TC_W1__  0.355 -0.201 -0.506 -0.347 -0.701 -0.335  0.197  0.494  0.396
## GEC:TD_M1__  0.277 -0.489 -0.194 -0.271 -0.269 -0.562  0.478  0.190  0.472
## GrI:TD_M1__  0.346 -0.196 -0.492 -0.338 -0.335 -0.702  0.191  0.480  0.189
##             GI:TC_ GEC:TD
## GroupECs                 
## GrpIntrvntn              
## TmB_POST_m_              
## TmC_W1_md_m              
## TmD_M1_md_m              
## GEC:TB_POST              
## GI:TB_POST_              
## GEC:TC_W1__              
## GrI:TC_W1__              
## GEC:TD_M1__  0.188       
## GrI:TD_M1__  0.476  0.395
anova  (Mood_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
## Group        2110    1055     2 258.46  1.0734 0.34336    
## Time       104490   34830     3 734.51 35.4434 < 2e-16 ***
## Group:Time  15983    2664     6 734.42  2.7107 0.01307 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM)
  Mood Score
Predictors Estimates CI p
(Intercept) 37.32 29.06 – 45.57 <0.001
Group [ECs] 2.98 -11.60 – 17.56 0.688
Group [Intervention] -7.68 -19.44 – 4.07 0.200
Time [B_POST_mood_mean] 19.97 11.52 – 28.42 <0.001
Time [C_W1_mood_mean] -6.25 -14.78 – 2.28 0.151
Time [D_M1_mood_mean] -6.61 -15.39 – 2.17 0.140
Group [ECs] × Time
[B_POST_mood_mean]
-19.99 -34.92 – -5.07 0.009
Group [Intervention] ×
Time [B_POST_mood_mean]
9.49 -2.56 – 21.55 0.123
Group [ECs] × Time
[C_W1_mood_mean]
-8.69 -23.80 – 6.41 0.259
Group [Intervention] ×
Time [C_W1_mood_mean]
1.25 -10.92 – 13.42 0.840
Group [ECs] × Time
[D_M1_mood_mean]
-14.49 -30.10 – 1.13 0.069
Group [Intervention] ×
Time [D_M1_mood_mean]
-0.19 -12.70 – 12.33 0.976
Random Effects
σ2 982.69
τ00 ID 892.93
ICC 0.48
N ID 259
Observations 995
Marginal R2 / Conditional R2 0.079 / 0.517
parameters::standardise_parameters(Mood_MEM)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.03 | [-0.15,  0.21]
## GroupECs                               |       0.07 | [-0.26,  0.39]
## GroupIntervention                      |      -0.17 | [-0.43,  0.09]
## TimeB_POST_mood_mean                   |       0.44 | [ 0.26,  0.63]
## TimeC_W1_mood_mean                     |      -0.14 | [-0.33,  0.05]
## TimeD_M1_mood_mean                     |      -0.15 | [-0.34,  0.05]
## GroupECs:TimeB_POST_mood_mean          |      -0.44 | [-0.78, -0.11]
## GroupIntervention:TimeB_POST_mood_mean |       0.21 | [-0.06,  0.48]
## GroupECs:TimeC_W1_mood_mean            |      -0.19 | [-0.53,  0.14]
## GroupIntervention:TimeC_W1_mood_mean   |       0.03 | [-0.24,  0.30]
## GroupECs:TimeD_M1_mood_mean            |      -0.32 | [-0.67,  0.03]
## GroupIntervention:TimeD_M1_mood_mean   |  -4.20e-03 | [-0.28,  0.27]

Baseline to post

Mood_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "B_POST_mood_mean")
## Formatting tables as needed
Mood_BP_long <- Mood_BP %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "B_POST_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_BP <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_BP_long, REML = TRUE)
summary(Mood_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_BP_long
## 
## REML criterion at convergence: 5079
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1547 -0.3855  0.0476  0.4451  3.3781 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1035.6   32.18   
##  Residual              513.4   22.66   
## Number of obs: 517, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              37.316      3.823 353.535   9.762
## GroupECs                                  2.984      6.752 353.535   0.442
## GroupIntervention                        -7.685      5.445 353.535  -1.411
## TimeB_POST_mood_mean                     19.972      3.112 255.115   6.417
## GroupECs:TimeB_POST_mood_mean           -19.992      5.498 255.115  -3.637
## GroupIntervention:TimeB_POST_mood_mean    9.350      4.443 255.465   2.105
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupECs                               0.658816    
## GroupIntervention                      0.159037    
## TimeB_POST_mood_mean                   6.72e-10 ***
## GroupECs:TimeB_POST_mood_mean          0.000334 ***
## GroupIntervention:TimeB_POST_mood_mean 0.036311 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TB_POS GEC:TB
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmB_POST_m_ -0.407  0.230  0.286              
## GEC:TB_POST  0.230 -0.407 -0.162 -0.566       
## GI:TB_POST_  0.285 -0.161 -0.406 -0.701  0.397
anova  (Mood_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        677.9   339.0     2 255.99  0.6603    0.5176    
## Time       30949.7 30949.7     1 255.29 60.2843 1.989e-13 ***
## Group:Time 14453.2  7226.6     2 255.32 14.0761 1.588e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_BP)
  Mood Score
Predictors Estimates CI p
(Intercept) 37.32 29.81 – 44.83 <0.001
Group [ECs] 2.98 -10.28 – 16.25 0.659
Group [Intervention] -7.68 -18.38 – 3.01 0.159
Time [B_POST_mood_mean] 19.97 13.86 – 26.09 <0.001
Group [ECs] × Time
[B_POST_mood_mean]
-19.99 -30.79 – -9.19 <0.001
Group [Intervention] ×
Time [B_POST_mood_mean]
9.35 0.62 – 18.08 0.036
Random Effects
σ2 513.40
τ00 ID 1035.58
ICC 0.67
N ID 259
Observations 517
Marginal R2 / Conditional R2 0.079 / 0.695
parameters::standardise_parameters(Mood_MEM_BP)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |      -0.18 | [-0.36,  0.00]
## GroupECs                               |       0.07 | [-0.25,  0.40]
## GroupIntervention                      |      -0.19 | [-0.45,  0.07]
## TimeB_POST_mood_mean                   |       0.49 | [ 0.34,  0.64]
## GroupECs:TimeB_POST_mood_mean          |      -0.49 | [-0.75, -0.23]
## GroupIntervention:TimeB_POST_mood_mean |       0.23 | [ 0.02,  0.44]
plot_model(Mood_MEM_BP, type = "int")

Baseline to 1W

Mood_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "C_W1_mood_mean")
## Formatting tables as needed
Mood_B1W_long <- Mood_B1W %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "C_W1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_B1W <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_B1W_long, REML = TRUE)
summary(Mood_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_B1W_long
## 
## REML criterion at convergence: 5220.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1570 -0.4429  0.1159  0.5899  2.4716 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  866.2   29.43   
##  Residual             1117.7   33.43   
## Number of obs: 509, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error      df t value
## (Intercept)                            37.316      4.326 424.920   8.626
## GroupECs                                2.984      7.641 424.920   0.390
## GroupIntervention                      -7.685      6.162 424.920  -1.247
## TimeC_W1_mood_mean                     -6.440      4.640 252.527  -1.388
## GroupECs:TimeC_W1_mood_mean            -8.265      8.220 253.359  -1.005
## GroupIntervention:TimeC_W1_mood_mean    1.112      6.623 253.086   0.168
##                                      Pr(>|t|)    
## (Intercept)                            <2e-16 ***
## GroupECs                                0.696    
## GroupIntervention                       0.213    
## TimeC_W1_mood_mean                      0.166    
## GroupECs:TimeC_W1_mood_mean             0.316    
## GroupIntervention:TimeC_W1_mood_mean    0.867    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ GEC:TC
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmC_W1_md_m -0.525  0.297  0.369              
## GEC:TC_W1__  0.296 -0.524 -0.208 -0.564       
## GrI:TC_W1__  0.368 -0.208 -0.524 -0.701  0.395
anova  (Mood_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)   
## Group      2236.2  1118.1     2 257.40  1.0004 0.36916   
## Time       8711.4  8711.4     1 253.43  7.7944 0.00564 **
## Group:Time 1553.5   776.7     2 253.35  0.6950 0.50003   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_B1W)
  Mood Score
Predictors Estimates CI p
(Intercept) 37.32 28.82 – 45.82 <0.001
Group [ECs] 2.98 -12.03 – 18.00 0.696
Group [Intervention] -7.68 -19.79 – 4.42 0.213
Time [C_W1_mood_mean] -6.44 -15.56 – 2.68 0.166
Group [ECs] × Time
[C_W1_mood_mean]
-8.26 -24.42 – 7.89 0.315
Group [Intervention] ×
Time [C_W1_mood_mean]
1.11 -11.90 – 14.12 0.867
Random Effects
σ2 1117.65
τ00 ID 866.19
ICC 0.44
N ID 259
Observations 509
Marginal R2 / Conditional R2 0.014 / 0.445
parameters::standardise_parameters(Mood_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |        95% CI
## -----------------------------------------------------------------
## (Intercept)                          |       0.14 | [-0.05, 0.33]
## GroupECs                             |       0.07 | [-0.27, 0.40]
## GroupIntervention                    |      -0.17 | [-0.44, 0.10]
## TimeC_W1_mood_mean                   |      -0.14 | [-0.35, 0.06]
## GroupECs:TimeC_W1_mood_mean          |      -0.19 | [-0.55, 0.18]
## GroupIntervention:TimeC_W1_mood_mean |       0.02 | [-0.27, 0.32]
plot_model(Mood_MEM_B1W, type = "int")

Baseline to 1M

Mood_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "D_M1_mood_mean")
## Formatting tables as needed
Mood_B1M_long <- Mood_B1M %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "D_M1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_B1M <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_B1M_long, REML = TRUE)
summary(Mood_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_B1M_long
## 
## REML criterion at convergence: 5011.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91923 -0.51813  0.07265  0.59296  2.42299 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  893.6   29.89   
##  Residual             1156.5   34.01   
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error       df t value
## (Intercept)                           37.3160     4.3979 411.7355   8.485
## GroupECs                               2.9840     7.7682 411.7355   0.384
## GroupIntervention                     -7.6850     6.2646 411.7355  -1.227
## TimeD_M1_mood_mean                    -6.6766     4.8807 243.7920  -1.368
## GroupECs:TimeD_M1_mood_mean          -14.1983     8.6884 245.7580  -1.634
## GroupIntervention:TimeD_M1_mood_mean   0.1323     6.9573 243.9696   0.019
##                                      Pr(>|t|)    
## (Intercept)                          3.93e-16 ***
## GroupECs                                0.701    
## GroupIntervention                       0.221    
## TimeD_M1_mood_mean                      0.173    
## GroupECs:TimeD_M1_mood_mean             0.104    
## GroupIntervention:TimeD_M1_mood_mean    0.985    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TD_M1_ GEC:TD
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmD_M1_md_m -0.508  0.288  0.357              
## GEC:TD_M1__  0.286 -0.504 -0.200 -0.562       
## GrI:TD_M1__  0.357 -0.202 -0.508 -0.702  0.394
anova  (Mood_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2302.4  1151.2     2 260.11  0.9954 0.3709745    
## Time       13435.3 13435.3     1 245.36 11.6170 0.0007637 ***
## Group:Time  3690.3  1845.2     2 245.06  1.5954 0.2049198    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_B1M)
  Mood Score
Predictors Estimates CI p
(Intercept) 37.32 28.67 – 45.96 <0.001
Group [ECs] 2.98 -12.28 – 18.25 0.701
Group [Intervention] -7.68 -19.99 – 4.62 0.221
Time [D_M1_mood_mean] -6.68 -16.27 – 2.91 0.172
Group [ECs] × Time
[D_M1_mood_mean]
-14.20 -31.27 – 2.87 0.103
Group [Intervention] ×
Time [D_M1_mood_mean]
0.13 -13.54 – 13.80 0.985
Random Effects
σ2 1156.52
τ00 ID 893.64
ICC 0.44
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.020 / 0.447
parameters::standardise_parameters(Mood_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                            | Std. Coef. |        95% CI
## -----------------------------------------------------------------
## (Intercept)                          |       0.15 | [-0.04, 0.34]
## GroupECs                             |       0.07 | [-0.27, 0.40]
## GroupIntervention                    |      -0.17 | [-0.44, 0.10]
## TimeD_M1_mood_mean                   |      -0.15 | [-0.36, 0.06]
## GroupECs:TimeD_M1_mood_mean          |      -0.31 | [-0.69, 0.06]
## GroupIntervention:TimeD_M1_mood_mean |   2.90e-03 | [-0.30, 0.30]
plot_model(Mood_MEM_B1M, type = "int")

Hypothesis 3

# Baseline to 1W/1M changes (creating new columns)
changeinvariables <- mutate(Full_data_all,
                      IUS_BP_change = B_POST_IUS_total - A_PRE_IUS_total,
                      IUS_B1W_change = C_W1_IUS_total - A_PRE_IUS_total,
                      IUS_B1M_change = D_M1_IUS_total - A_PRE_IUS_total,
                      PHQ_B1W_change = C_W1_PHQ_total - A_PRE_PHQ_total,
                      PHQ_B1M_change = D_M1_PHQ_total - A_PRE_PHQ_total,
                      GAD_B1W_change = C_W1_GAD_total - A_PRE_GAD_total,
                      GAD_B1M_change = D_M1_GAD_total - A_PRE_GAD_total,
                      Mood_BP_change = B_POST_mood_mean - A_PRE_mood_mean,
                      Mood_B1W_change = C_W1_mood_mean - A_PRE_mood_mean,
                      Mood_B1M_change = D_M1_mood_mean - A_PRE_mood_mean)
# Separating out each group

Intervention_group <- changeinvariables %>% 
  filter(Group == "Intervention")

Psychoed_group <- changeinvariables %>% 
  filter(Group == "Controls")

ECs_group <- changeinvariables %>% 
  filter(Group == "ECs")

H3: IUS mediating change in PHQ over time between groups

Full sample at 1 week: Group to change in PHQ via change in IUS

Mediation.PHQchange.1W <-
  '#regressions
PHQ_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
PHQ_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1W <- sem(Mediation.PHQchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 13 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1W_change ~                                                      
##     Group     (c1)    0.003    0.065    0.043    0.966    0.003    0.003
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.158    0.067   -2.346    0.019   -0.158   -0.142
##   PHQ_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.409    0.084    4.879    0.000    0.409    0.409
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change   -0.006    0.134   -0.041    0.967   -0.006   -0.006
##    .IUS_B1W_change    0.313    0.142    2.212    0.027    0.313    0.314
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.829    0.092    8.978    0.000    0.829    0.833
##    .IUS_B1W_change    0.976    0.153    6.391    0.000    0.976    0.980
## 
## R-Square:
##                    Estimate
##     PHQ_B1W_change    0.167
##     IUS_B1W_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.065    0.031   -2.092    0.036   -0.065   -0.058
##     direct            0.003    0.065    0.043    0.966    0.003    0.003
##     total            -0.062    0.070   -0.880    0.379   -0.062   -0.056

Intervention group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.intervention.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.intervention.1W <- sem(Mediation.PHQ.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.097    0.014    6.784    0.000    0.097    0.549
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)    0.008    0.015    0.534    0.593    0.008    0.047
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.278    0.123    2.254    0.024    0.278    0.278
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.815    0.247   -7.340    0.000   -1.815   -1.823
##    .IUS_B1W_change   -0.154    0.311   -0.495    0.621   -0.154   -0.155
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.601    0.093    6.493    0.000    0.601    0.607
##    .IUS_B1W_change    0.988    0.223    4.429    0.000    0.988    0.998
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.393
##     IUS_B1W_change    0.002
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.002    0.004    0.555    0.579    0.002    0.013
##     direct            0.097    0.014    6.784    0.000    0.097    0.549
##     total             0.100    0.015    6.827    0.000    0.100    0.562

Psychoeducation group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.psychoed.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.psychoed.1W <- sem(Mediation.PHQ.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.118    0.011   10.736    0.000    0.118    0.722
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)   -0.007    0.013   -0.558    0.577   -0.007   -0.043
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.302    0.080    3.785    0.000    0.302    0.302
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -2.048    0.178  -11.515    0.000   -2.048   -2.058
##    .IUS_B1W_change    0.123    0.243    0.507    0.612    0.123    0.124
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.402    0.062    6.491    0.000    0.402    0.406
##    .IUS_B1W_change    0.989    0.233    4.249    0.000    0.989    0.998
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.594
##     IUS_B1W_change    0.002
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.004   -0.563    0.573   -0.002   -0.013
##     direct            0.118    0.011   10.736    0.000    0.118    0.722
##     total             0.115    0.011   10.108    0.000    0.115    0.709

EC group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.ECs.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.ECs.1W <- sem(Mediation.PHQ.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.104    0.008   12.929    0.000    0.104    0.602
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)    0.036    0.013    2.654    0.008    0.036    0.206
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.503    0.051    9.905    0.000    0.503    0.503
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.876    0.150  -12.504    0.000   -1.876   -1.895
##    .IUS_B1W_change   -0.643    0.303   -2.118    0.034   -0.643   -0.649
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.254    0.073    3.473    0.001    0.254    0.259
##    .IUS_B1W_change    0.938    0.464    2.024    0.043    0.938    0.957
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.741
##     IUS_B1W_change    0.043
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.018    0.007    2.505    0.012    0.018    0.104
##     direct            0.104    0.008   12.929    0.000    0.104    0.602
##     total             0.122    0.009   13.339    0.000    0.122    0.706

Full sample at 1 month: Group to change in PHQ via change in IUS

Mediation.PHQchange.1M <-
  '#regressions
PHQ_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
PHQ_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1M <- sem(Mediation.PHQchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 19 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1M_change ~                                                      
##     Group     (c1)   -0.002    0.053   -0.041    0.967   -0.002   -0.002
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.100    0.068   -1.468    0.142   -0.100   -0.090
##   PHQ_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.652    0.052   12.636    0.000    0.652    0.652
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.004    0.119    0.036    0.971    0.004    0.004
##    .IUS_B1M_change    0.200    0.149    1.338    0.181    0.200    0.200
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.572    0.064    8.991    0.000    0.572    0.574
##    .IUS_B1M_change    0.988    0.122    8.130    0.000    0.988    0.992
## 
## R-Square:
##                    Estimate
##     PHQ_B1M_change    0.426
##     IUS_B1M_change    0.008
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.065    0.044   -1.475    0.140   -0.065   -0.059
##     direct           -0.002    0.053   -0.041    0.967   -0.002   -0.002
##     total            -0.068    0.067   -1.007    0.314   -0.068   -0.061

Intervention group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.intervention.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.intervention.1M <- sem(Mediation.PHQ.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.082    0.010    8.324    0.000    0.082    0.464
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.005    0.015   -0.334    0.738   -0.005   -0.028
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.565    0.081    6.974    0.000    0.565    0.565
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.535    0.186   -8.247    0.000   -1.535   -1.543
##    .IUS_B1M_change    0.093    0.290    0.322    0.748    0.093    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.476    0.075    6.303    0.000    0.476    0.481
##    .IUS_B1M_change    0.990    0.184    5.381    0.000    0.990    0.999
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.519
##     IUS_B1M_change    0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.003    0.009   -0.330    0.741   -0.003   -0.016
##     direct            0.082    0.010    8.324    0.000    0.082    0.464
##     total             0.079    0.014    5.820    0.000    0.079    0.448

Psychoeducation group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.psychoed.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.psychoed.1M <- sem(Mediation.PHQ.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.066    0.011    5.895    0.000    0.066    0.403
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.023    0.017   -1.375    0.169   -0.023   -0.142
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.615    0.070    8.805    0.000    0.615    0.615
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.143    0.198   -5.783    0.000   -1.143   -1.149
##    .IUS_B1M_change    0.403    0.273    1.474    0.140    0.403    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.524    0.079    6.655    0.000    0.524    0.529
##    .IUS_B1M_change    0.971    0.183    5.306    0.000    0.971    0.980
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.471
##     IUS_B1M_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.014    0.011   -1.295    0.195   -0.014   -0.087
##     direct            0.066    0.011    5.895    0.000    0.066    0.403
##     total             0.051    0.015    3.474    0.001    0.051    0.316

EC group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.ECs.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.ECs.1M <- sem(Mediation.PHQ.ECs.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.ECs.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.067    0.016    4.242    0.000    0.067    0.386
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.009    0.023   -0.419    0.676   -0.009   -0.055
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.727    0.058   12.599    0.000    0.727    0.727
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.202    0.265   -4.537    0.000   -1.202   -1.214
##    .IUS_B1M_change    0.170    0.382    0.445    0.656    0.170    0.172
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.346    0.120    2.882    0.004    0.346    0.353
##    .IUS_B1M_change    0.977    0.297    3.293    0.001    0.977    0.997
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.647
##     IUS_B1M_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.007    0.017   -0.414    0.679   -0.007   -0.040
##     direct            0.067    0.016    4.242    0.000    0.067    0.386
##     total             0.060    0.024    2.534    0.011    0.060    0.346

H3: IUS mediating change in GAD over time between groups

Full sample at 1 week: Group to change in GAD via change in IUS

Mediation.GADchange.1W <-
  '#regressions
GAD_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
GAD_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1W <- sem(Mediation.GADchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 14 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1W_change ~                                                      
##     Group     (c1)    0.024    0.066    0.364    0.716    0.024    0.022
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.158    0.067   -2.346    0.019   -0.158   -0.142
##   GAD_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.453    0.080    5.691    0.000    0.453    0.453
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change   -0.048    0.134   -0.356    0.722   -0.048   -0.048
##    .IUS_B1W_change    0.313    0.142    2.212    0.027    0.313    0.314
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change    0.794    0.108    7.357    0.000    0.794    0.797
##    .IUS_B1W_change    0.976    0.153    6.391    0.000    0.976    0.980
## 
## R-Square:
##                    Estimate
##     GAD_B1W_change    0.203
##     IUS_B1W_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.071    0.034   -2.095    0.036   -0.071   -0.064
##     direct            0.024    0.066    0.364    0.716    0.024    0.022
##     total            -0.047    0.071   -0.664    0.506   -0.047   -0.043

Intervention group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.intervention.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.intervention.1W <- sem(Mediation.GAD.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.108    0.014    7.546    0.000    0.108    0.589
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)   -0.004    0.017   -0.233    0.815   -0.004   -0.022
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.286    0.121    2.372    0.018    0.286    0.286
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.750    0.208   -8.401    0.000   -1.750   -1.759
##    .IUS_B1W_change    0.065    0.299    0.217    0.828    0.065    0.065
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.573    0.106    5.421    0.000    0.573    0.578
##    .IUS_B1W_change    0.990    0.223    4.434    0.000    0.990    1.000
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.422
##     IUS_B1W_change    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.005   -0.224    0.823   -0.001   -0.006
##     direct            0.108    0.014    7.546    0.000    0.108    0.589
##     total             0.106    0.014    7.366    0.000    0.106    0.583

Psychoeducation group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.psychoed.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.psychoed.1W <- sem(Mediation.GAD.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.122    0.010   12.186    0.000    0.122    0.706
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)   -0.009    0.013   -0.694    0.488   -0.009   -0.053
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.343    0.065    5.253    0.000    0.343    0.343
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.891    0.163  -11.636    0.000   -1.891   -1.900
##    .IUS_B1W_change    0.142    0.231    0.614    0.539    0.142    0.143
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.407    0.075    5.397    0.000    0.407    0.410
##    .IUS_B1W_change    0.988    0.232    4.253    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.590
##     IUS_B1W_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.003    0.004   -0.703    0.482   -0.003   -0.018
##     direct            0.122    0.010   12.186    0.000    0.122    0.706
##     total             0.119    0.011   11.113    0.000    0.119    0.687

EC group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.ECs.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.ECs.1W <- sem(Mediation.GAD.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.135    0.012   11.312    0.000    0.135    0.657
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)    0.027    0.017    1.622    0.105    0.027    0.131
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.503    0.039   13.030    0.000    0.503    0.503
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -2.035    0.166  -12.255    0.000   -2.035   -2.055
##    .IUS_B1W_change   -0.405    0.312   -1.297    0.195   -0.405   -0.409
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.224    0.053    4.212    0.000    0.224    0.228
##    .IUS_B1W_change    0.963    0.469    2.055    0.040    0.963    0.983
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.772
##     IUS_B1W_change    0.017
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.014    0.009    1.595    0.111    0.014    0.066
##     direct            0.135    0.012   11.312    0.000    0.135    0.657
##     total             0.149    0.013   11.412    0.000    0.149    0.723

Full sample at 1 month: Group to change in GAD via change in IUS

Mediation.GADchange.1M <-
  '#regressions
GAD_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
GAD_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1M <- sem(Mediation.GADchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1M_change ~                                                      
##     Group     (c1)    0.025    0.050    0.490    0.624    0.025    0.022
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.100    0.068   -1.468    0.142   -0.100   -0.090
##   GAD_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.678    0.050   13.527    0.000    0.678    0.678
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change   -0.049    0.115   -0.426    0.670   -0.049   -0.049
##    .IUS_B1M_change    0.200    0.149    1.338    0.181    0.200    0.200
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.541    0.068    7.997    0.000    0.541    0.543
##    .IUS_B1M_change    0.988    0.122    8.130    0.000    0.988    0.992
## 
## R-Square:
##                    Estimate
##     GAD_B1M_change    0.457
##     IUS_B1M_change    0.008
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.068    0.046   -1.479    0.139   -0.068   -0.061
##     direct            0.025    0.050    0.490    0.624    0.025    0.022
##     total            -0.043    0.067   -0.646    0.518   -0.043   -0.039

Intervention group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.intervention.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.intervention.1M <- sem(Mediation.GAD.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.100    0.011    9.396    0.000    0.100    0.546
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)   -0.004    0.014   -0.268    0.788   -0.004   -0.021
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.572    0.075    7.597    0.000    0.572    0.572
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.622    0.170   -9.555    0.000   -1.622   -1.630
##    .IUS_B1M_change    0.063    0.247    0.256    0.798    0.063    0.063
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.384    0.062    6.200    0.000    0.384    0.388
##    .IUS_B1M_change    0.990    0.184    5.379    0.000    0.990    1.000
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.612
##     IUS_B1M_change    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.008   -0.266    0.790   -0.002   -0.012
##     direct            0.100    0.011    9.396    0.000    0.100    0.546
##     total             0.097    0.013    7.632    0.000    0.097    0.534

Psychoeducation group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.psychoed.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.psychoed.1M <- sem(Mediation.GAD.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.072    0.010    7.252    0.000    0.072    0.417
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)   -0.025    0.019   -1.300    0.194   -0.025   -0.143
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.671    0.065   10.368    0.000    0.671    0.671
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.117    0.154   -7.270    0.000   -1.117   -1.122
##    .IUS_B1M_change    0.383    0.272    1.405    0.160    0.383    0.384
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.452    0.075    5.988    0.000    0.452    0.456
##    .IUS_B1M_change    0.970    0.180    5.388    0.000    0.970    0.980
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.544
##     IUS_B1M_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.017    0.013   -1.247    0.213   -0.017   -0.096
##     direct            0.072    0.010    7.252    0.000    0.072    0.417
##     total             0.056    0.017    3.219    0.001    0.056    0.321

EC group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.ECs.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.ECs.1M <- sem(Mediation.GAD.ECs.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.ECs.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.067    0.024    2.783    0.005    0.067    0.327
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)    0.002    0.018    0.122    0.903    0.002    0.011
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.673    0.051   13.210    0.000    0.673    0.673
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.013    0.366   -2.765    0.006   -1.013   -1.023
##    .IUS_B1M_change   -0.033    0.294   -0.113    0.910   -0.033   -0.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.427    0.142    3.008    0.003    0.427    0.436
##    .IUS_B1M_change    0.980    0.301    3.256    0.001    0.980    1.000
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.564
##     IUS_B1M_change    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.001    0.012    0.122    0.903    0.001    0.007
##     direct            0.067    0.024    2.783    0.005    0.067    0.327
##     total             0.069    0.027    2.562    0.010    0.069    0.334

H3: IUS mediating change in mood over time between groups

Full sample at post: Group to change in mood via change in IUS

Mediation.Moodchange.post <-
  '#regressions
Mood_BP_change ~ c1 * Group  
IUS_BP_change ~ a1 * Group 
Mood_BP_change ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.post <- sem(Mediation.Moodchange.post, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_BP_change ~                                                      
##     Group     (c1)    0.086    0.070    1.220    0.223    0.086    0.077
##   IUS_BP_change ~                                                       
##     Group     (a1)   -0.195    0.070   -2.780    0.005   -0.195   -0.176
##   Mood_BP_change ~                                                      
##     IUS_BP_ch (b1)   -0.305    0.073   -4.157    0.000   -0.305   -0.304
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_BP_change   -0.164    0.148   -1.110    0.267   -0.164   -0.163
##    .IUS_BP_change     0.388    0.131    2.960    0.003    0.388    0.389
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_BP_change    0.900    0.151    5.946    0.000    0.900    0.894
##    .IUS_BP_change     0.965    0.148    6.504    0.000    0.965    0.969
## 
## R-Square:
##                    Estimate
##     Mood_BP_change    0.106
##     IUS_BP_change     0.031
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.060    0.023    2.577    0.010    0.060    0.053
##     direct            0.086    0.070    1.220    0.223    0.086    0.077
##     total             0.145    0.071    2.048    0.041    0.145    0.130

Intervention group at post: pre mood to post mood via change in IU

Mediation.Mood.intervention.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.post <- sem(Mediation.Mood.intervention.post, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.014    0.003    4.715    0.000    0.014    0.600
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.001    0.002    0.530    0.596    0.001    0.051
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.162    0.093   -1.751    0.080   -0.162   -0.162
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.407    0.147   -2.767    0.006   -0.407   -0.407
##    .IUS_BP_change    -0.035    0.099   -0.357    0.721   -0.035   -0.035
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.624    0.128    4.889    0.000    0.624    0.624
##    .IUS_BP_change     0.988    0.224    4.416    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.376
##     IUS_BP_change     0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.495    0.621   -0.000   -0.008
##     direct            0.014    0.003    4.715    0.000    0.014    0.600
##     total             0.014    0.003    4.724    0.000    0.014    0.591

Psychoeducation group at post: pre mood to post mood via change in IU

Mediation.Mood.psychoed.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.post <- sem(Mediation.Mood.psychoed.post, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.016    0.002    7.911    0.000    0.016    0.695
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.002    0.002    0.698    0.485    0.002    0.067
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.241    0.069   -3.506    0.000   -0.241   -0.241
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.589    0.119   -4.939    0.000   -0.589   -0.592
##    .IUS_BP_change    -0.057    0.138   -0.412    0.681   -0.057   -0.057
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.477    0.083    5.756    0.000    0.477    0.482
##    .IUS_BP_change     0.986    0.196    5.026    0.000    0.986    0.996
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.518
##     IUS_BP_change     0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.647    0.518   -0.000   -0.016
##     direct            0.016    0.002    7.911    0.000    0.016    0.695
##     total             0.015    0.002    7.039    0.000    0.015    0.679

EC group at post: pre mood to post mood via change in IU

Mediation.Mood.ECs.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.ECs.post <- sem(Mediation.Mood.ECs.post, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.ECs.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.022    0.002   13.400    0.000    0.022    0.868
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.001    0.003    0.236    0.814    0.001    0.025
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.063    0.060   -1.052    0.293   -0.063   -0.063
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.895    0.104   -8.601    0.000   -0.895   -0.904
##    .IUS_BP_change    -0.026    0.178   -0.147    0.883   -0.026   -0.026
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.240    0.063    3.801    0.000    0.240    0.245
##    .IUS_BP_change     0.979    0.226    4.336    0.000    0.979    0.999
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.755
##     IUS_BP_change     0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.231    0.817   -0.000   -0.002
##     direct            0.022    0.002   13.400    0.000    0.022    0.868
##     total             0.022    0.002   13.364    0.000    0.022    0.866

Full sample at 1 week: Group to change in mood via change in IUS

Mediation.Moodchange.1W <-
  '#regressions
Mood_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
Mood_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.1W <- sem(Mediation.Moodchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_B1W_change ~                                                      
##     Group     (c1)    -0.026    0.074   -0.354    0.723   -0.026   -0.023
##   IUS_B1W_change ~                                                       
##     Group     (a1)    -0.158    0.067   -2.346    0.019   -0.158   -0.142
##   Mood_B1W_change ~                                                      
##     IUS_B1W_c (b1)    -0.221    0.090   -2.451    0.014   -0.221   -0.219
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1W_chang    0.076    0.166    0.456    0.648    0.076    0.075
##    .IUS_B1W_change    0.313    0.142    2.212    0.027    0.313    0.314
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1W_chang    0.965    0.120    8.070    0.000    0.965    0.953
##    .IUS_B1W_change    0.976    0.153    6.391    0.000    0.976    0.980
## 
## R-Square:
##                    Estimate
##     Mood_B1W_chang    0.047
##     IUS_B1W_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.035    0.019    1.870    0.062    0.035    0.031
##     direct           -0.026    0.074   -0.354    0.723   -0.026   -0.023
##     total             0.009    0.072    0.119    0.906    0.009    0.008

Intervention group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.intervention.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.1W <- sem(Mediation.Mood.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.011    0.002    4.421    0.000    0.011    0.457
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.492    0.623    0.001    0.051
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.133    0.114   -1.173    0.241   -0.133   -0.134
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.311    0.110   -2.833    0.005   -0.311   -0.313
##    .IUS_B1W_change   -0.036    0.114   -0.311    0.756   -0.036   -0.036
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.768    0.155    4.947    0.000    0.768    0.779
##    .IUS_B1W_change    0.988    0.220    4.496    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.221
##     IUS_B1W_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.478    0.633   -0.000   -0.007
##     direct            0.011    0.002    4.421    0.000    0.011    0.457
##     total             0.011    0.003    4.150    0.000    0.011    0.450

Psychoeducation group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.psychoed.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.1W <- sem(Mediation.Mood.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.478    0.000    0.010    0.444
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.633    0.527    0.001    0.062
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.198    0.120   -1.648    0.099   -0.198   -0.196
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.361    0.135   -2.670    0.008   -0.361   -0.359
##    .IUS_B1W_change   -0.053    0.133   -0.397    0.691   -0.053   -0.053
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.781    0.126    6.223    0.000    0.781    0.776
##    .IUS_B1W_change    0.987    0.235    4.206    0.000    0.987    0.996
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.224
##     IUS_B1W_change    0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.554    0.579   -0.000   -0.012
##     direct            0.010    0.002    4.478    0.000    0.010    0.444
##     total             0.010    0.002    4.164    0.000    0.010    0.431

EC group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.ECs.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.ECs.1W <- sem(Mediation.Mood.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            50
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.011    0.003    3.198    0.001    0.011    0.434
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.003    0.002    2.046    0.041    0.003    0.136
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.078    0.244   -0.320    0.749   -0.078   -0.078
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.434    0.178   -2.433    0.015   -0.434   -0.439
##    .IUS_B1W_change   -0.140    0.154   -0.906    0.365   -0.140   -0.141
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.795    0.129    6.163    0.000    0.795    0.815
##    .IUS_B1W_change    0.962    0.476    2.021    0.043    0.962    0.982
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.185
##     IUS_B1W_change    0.018
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.314    0.754   -0.000   -0.011
##     direct            0.011    0.003    3.198    0.001    0.011    0.434
##     total             0.011    0.003    3.239    0.001    0.011    0.424

Full sample at 1 month: Group to change in mood via change in IUS

Mediation.Moodchange.1M <-
  '#regressions
Mood_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
Mood_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.1M <- sem(Mediation.Moodchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_B1M_change ~                                                      
##     Group     (c1)    -0.046    0.075   -0.607    0.544   -0.046   -0.039
##   IUS_B1M_change ~                                                       
##     Group     (a1)    -0.100    0.068   -1.468    0.142   -0.100   -0.090
##   Mood_B1M_change ~                                                      
##     IUS_B1M_c (b1)    -0.452    0.119   -3.812    0.000   -0.452   -0.425
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1M_chang    0.215    0.177    1.213    0.225    0.215    0.203
##    .IUS_B1M_change    0.200    0.149    1.338    0.181    0.200    0.200
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1M_chang    0.925    0.102    9.074    0.000    0.925    0.821
##    .IUS_B1M_change    0.988    0.122    8.130    0.000    0.988    0.992
## 
## R-Square:
##                    Estimate
##     Mood_B1M_chang    0.179
##     IUS_B1M_change    0.008
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.045    0.033    1.382    0.167    0.045    0.038
##     direct           -0.046    0.075   -0.607    0.544   -0.046   -0.039
##     total            -0.000    0.079   -0.005    0.996   -0.000   -0.000

Intervention group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.intervention.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.1M <- sem(Mediation.Mood.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 13 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.288    0.000    0.010    0.417
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.003    0.002    1.160    0.246    0.003    0.111
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.329    0.135   -2.428    0.015   -0.329   -0.320
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.209    0.115   -1.806    0.071   -0.209   -0.204
##    .IUS_B1M_change   -0.077    0.120   -0.645    0.519   -0.077   -0.078
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.785    0.140    5.613    0.000    0.785    0.753
##    .IUS_B1M_change    0.978    0.183    5.338    0.000    0.978    0.988
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.247
##     IUS_B1M_change    0.012
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.001   -1.014    0.311   -0.001   -0.036
##     direct            0.010    0.002    4.288    0.000    0.010    0.417
##     total             0.009    0.003    3.594    0.000    0.009    0.381

Psychoeducation group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.psychoed.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.1M <- sem(Mediation.Mood.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           106
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.816    0.000    0.010    0.422
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.786    0.432    0.001    0.060
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.342    0.145   -2.365    0.018   -0.342   -0.332
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.274    0.131   -2.092    0.036   -0.274   -0.268
##    .IUS_B1M_change   -0.051    0.121   -0.423    0.672   -0.051   -0.051
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.764    0.093    8.253    0.000    0.764    0.728
##    .IUS_B1M_change    0.987    0.197    5.013    0.000    0.987    0.996
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.272
##     IUS_B1M_change    0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.698    0.485   -0.000   -0.020
##     direct            0.010    0.002    4.816    0.000    0.010    0.422
##     total             0.009    0.002    4.193    0.000    0.009    0.403

Exploratory analyses

E1: Growth mindsets moderating the association between group and PHQ changes across time

# 1 week
moderation_GM_PHQ_1W <- lm(PHQ_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1W)
## 
## Call:
## lm(formula = PHQ_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.0159  -2.0823   0.7306   3.0574  12.9841 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                 -2.1921     1.2297  -1.783   0.0758 .
## GroupECs                    -0.8065     2.0501  -0.393   0.6944  
## GroupIntervention            0.3160     1.7306   0.183   0.8553  
## A_PRE_GM                     0.2744     0.3565   0.770   0.4423  
## GroupECs:A_PRE_GM            0.5426     0.6425   0.845   0.3991  
## GroupIntervention:A_PRE_GM  -0.3104     0.5212  -0.596   0.5520  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.226 on 253 degrees of freedom
## Multiple R-squared:  0.01907,    Adjusted R-squared:  -0.0003146 
## F-statistic: 0.9838 on 5 and 253 DF,  p-value: 0.4282
anova(moderation_GM_PHQ_1W)
## Analysis of Variance Table
## 
## Response: PHQ_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   54.1  27.054  0.9905 0.3728
## A_PRE_GM         1   34.0  33.971  1.2438 0.2658
## Group:A_PRE_GM   2   46.3  23.135  0.8470 0.4299
## Residuals      253 6910.3  27.313
# 1 month
moderation_GM_PHQ_1M <- lm(PHQ_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1M)
## 
## Call:
## lm(formula = PHQ_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.700  -3.261   1.451   4.711  22.300 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                 -4.0267     1.8888  -2.132    0.034 *
## GroupECs                     2.3436     3.1490   0.744    0.457  
## GroupIntervention            1.5199     2.6582   0.572    0.568  
## A_PRE_GM                     0.2878     0.5476   0.526    0.600  
## GroupECs:A_PRE_GM           -0.4691     0.9868  -0.475    0.635  
## GroupIntervention:A_PRE_GM  -0.8757     0.8005  -1.094    0.275  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.028 on 253 degrees of freedom
## Multiple R-squared:  0.01432,    Adjusted R-squared:  -0.00516 
## F-statistic: 0.7351 on 5 and 253 DF,  p-value: 0.5977
anova(moderation_GM_PHQ_1M)
## Analysis of Variance Table
## 
## Response: PHQ_B1M_change
##                 Df  Sum Sq Mean Sq F value Pr(>F)
## Group            2   150.6  75.293  1.1684 0.3125
## A_PRE_GM         1     8.9   8.889  0.1379 0.7106
## Group:A_PRE_GM   2    77.4  38.696  0.6005 0.5493
## Residuals      253 16303.8  64.442

E1: Growth mindsets moderating the association between group and GAD changes across time

# 1 week
moderation_GM_GAD_1W <- lm(GAD_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1W)
## 
## Call:
## lm(formula = GAD_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.5676  -2.0544   0.4949   2.4807  15.5291 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                  0.4066     1.1658   0.349   0.7275  
## GroupECs                    -2.5470     1.9436  -1.310   0.1912  
## GroupIntervention           -2.0325     1.6407  -1.239   0.2166  
## A_PRE_GM                    -0.4508     0.3380  -1.334   0.1835  
## GroupECs:A_PRE_GM            1.1370     0.6091   1.867   0.0631 .
## GroupIntervention:A_PRE_GM   0.4991     0.4941   1.010   0.3134  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.955 on 253 degrees of freedom
## Multiple R-squared:  0.02205,    Adjusted R-squared:  0.002722 
## F-statistic: 1.141 on 5 and 253 DF,  p-value: 0.3392
anova(moderation_GM_GAD_1W)
## Analysis of Variance Table
## 
## Response: GAD_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   50.9  25.452  1.0367 0.3561
## A_PRE_GM         1    1.0   0.977  0.0398 0.8420
## Group:A_PRE_GM   2   88.2  44.079  1.7955 0.1682
## Residuals      253 6211.2  24.550
# 1 month
moderation_GM_GAD_1M <- lm(GAD_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1M)
## 
## Call:
## lm(formula = GAD_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.151  -2.289   1.296   4.085  19.507 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                 -2.6309     1.6911  -1.556    0.121
## GroupECs                     0.9127     2.8193   0.324    0.746
## GroupIntervention            1.3990     2.3799   0.588    0.557
## A_PRE_GM                    -0.0364     0.4903  -0.074    0.941
## GroupECs:A_PRE_GM            0.2474     0.8835   0.280    0.780
## GroupIntervention:A_PRE_GM  -0.7031     0.7167  -0.981    0.328
## 
## Residual standard error: 7.187 on 253 degrees of freedom
## Multiple R-squared:  0.02077,    Adjusted R-squared:  0.001419 
## F-statistic: 1.073 on 5 and 253 DF,  p-value: 0.3756
anova(moderation_GM_GAD_1M)
## Analysis of Variance Table
## 
## Response: GAD_B1M_change
##                 Df  Sum Sq Mean Sq F value Pr(>F)
## Group            2   169.3  84.646  1.6387 0.1963
## A_PRE_GM         1    32.5  32.506  0.6293 0.4284
## Group:A_PRE_GM   2    75.4  37.704  0.7299 0.4829
## Residuals      253 13068.5  51.654

E1: Growth mindsets moderating the association between group and mood changes across time

# post
moderation_GM_mood_BP <- lm(Mood_BP_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_BP)
## 
## Call:
## lm(formula = Mood_BP_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -72.57 -19.14  -3.97  15.23 171.32 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                 23.2623     7.5685   3.074  0.00235 **
## GroupECs                   -31.6421    12.6179  -2.508  0.01278 * 
## GroupIntervention            7.2041    10.6547   0.676  0.49957   
## A_PRE_GM                    -1.0475     2.1943  -0.477  0.63353   
## GroupECs:A_PRE_GM            4.0985     3.9542   1.036  0.30097   
## GroupIntervention:A_PRE_GM   0.6891     3.2076   0.215  0.83007   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.17 on 252 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1039, Adjusted R-squared:  0.08617 
## F-statistic: 5.847 on 5 and 252 DF,  p-value: 3.945e-05
anova(moderation_GM_mood_BP)
## Analysis of Variance Table
## 
## Response: Mood_BP_change
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## Group            2  29097 14548.3 14.0609 1.625e-06 ***
## A_PRE_GM         1      0     0.0  0.0000    0.9988    
## Group:A_PRE_GM   2   1150   575.1  0.5558    0.5743    
## Residuals      252 260736  1034.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1 week
moderation_GM_mood_1W <- lm(Mood_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_1W)
## 
## Call:
## lm(formula = Mood_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -185.320  -23.963    2.028   25.016  185.316 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                  0.3130    11.2877   0.028    0.978
## GroupECs                   -15.5416    18.8441  -0.825    0.410
## GroupIntervention            0.8914    16.0669   0.055    0.956
## A_PRE_GM                    -2.1258     3.2638  -0.651    0.515
## GroupECs:A_PRE_GM            2.3073     5.8749   0.393    0.695
## GroupIntervention:A_PRE_GM  -0.2204     4.8097  -0.046    0.963
## 
## Residual standard error: 47.61 on 244 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.00881,    Adjusted R-squared:  -0.0115 
## F-statistic: 0.4338 on 5 and 244 DF,  p-value: 0.8248
anova(moderation_GM_mood_1W)
## Analysis of Variance Table
## 
## Response: Mood_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   2952  1476.0  0.6511 0.5224
## A_PRE_GM         1   1516  1515.6  0.6686 0.4143
## Group:A_PRE_GM   2    449   224.5  0.0990 0.9057
## Residuals      244 553135  2266.9
# 1 month
moderation_GM_mood_1W <- lm(Mood_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_1W)
## 
## Call:
## lm(formula = Mood_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -150.984  -28.262    4.266   26.821  183.538 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                  -2.407     12.401  -0.194    0.846
## GroupECs                    -27.357     20.391  -1.342    0.181
## GroupIntervention           -14.301     17.187  -0.832    0.406
## A_PRE_GM                     -1.226      3.614  -0.339    0.735
## GroupECs:A_PRE_GM             4.281      6.404   0.668    0.505
## GroupIntervention:A_PRE_GM    4.774      5.228   0.913    0.362
## 
## Residual standard error: 48.65 on 222 degrees of freedom
##   (31 observations deleted due to missingness)
## Multiple R-squared:  0.02057,    Adjusted R-squared:  -0.001493 
## F-statistic: 0.9323 on 5 and 222 DF,  p-value: 0.4608
anova(moderation_GM_mood_1W)
## Analysis of Variance Table
## 
## Response: Mood_B1M_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   7881  3940.5  1.6652 0.1915
## A_PRE_GM         1    904   904.4  0.3822 0.5371
## Group:A_PRE_GM   2   2246  1122.9  0.4745 0.6228
## Residuals      222 525329  2366.3

E2: Association between IUS and baseline functional impairment

# Total FI scale
PRE_IUS_FI_lm <- lm(A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
summary(PRE_IUS_FI_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.4978  -4.2115   0.3611   5.1474  16.9780 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     23.5947     1.7806   13.25   <2e-16 ***
## A_PRE_FI_total   1.2379     0.1141   10.85   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.354 on 257 degrees of freedom
## Multiple R-squared:  0.314,  Adjusted R-squared:  0.3113 
## F-statistic: 117.6 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_FI_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_FI_total   1  6360.1  6360.1  117.61 < 2.2e-16 ***
## Residuals      257 13897.6    54.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Friends item
PRE_IUS_friends_lm <- lm(A_PRE_IUS_total ~ B_FI_friends, data = Full_data_all)
summary(PRE_IUS_friends_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_friends, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.7419  -5.1496   0.6416   6.0252  19.2581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   33.2760     1.3886  23.963  < 2e-16 ***
## B_FI_friends   3.2329     0.4657   6.942 3.16e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.159 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1584, Adjusted R-squared:  0.1551 
## F-statistic:  48.2 on 1 and 256 DF,  p-value: 3.163e-11
anova(PRE_IUS_friends_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_friends   1  3208.3  3208.3  48.195 3.163e-11 ***
## Residuals    256 17041.8    66.6                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Strangers item
PRE_IUS_strangers_lm <- lm(A_PRE_IUS_total ~ B_FI_strangers, data = Full_data_all)
summary(PRE_IUS_strangers_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_strangers, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.857  -4.948   1.075   6.143  20.189 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     34.7198     1.7331  20.033  < 2e-16 ***
## B_FI_strangers   2.0457     0.4489   4.557 8.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.548 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.07504,    Adjusted R-squared:  0.07142 
## F-statistic: 20.77 on 1 and 256 DF,  p-value: 8.034e-06
anova(PRE_IUS_strangers_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_strangers   1  1517.6 1517.59  20.768 8.034e-06 ***
## Residuals      256 18707.0   73.07                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Work item
PRE_IUS_work_lm <- lm(A_PRE_IUS_total ~ B_FI_work, data = Full_data_all)
summary(PRE_IUS_work_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_work, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.9966  -4.3259   0.0034   5.8388  18.9211 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   29.914      1.450  20.627   <2e-16 ***
## B_FI_work      4.082      0.451   9.051   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.705 on 243 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.2521, Adjusted R-squared:  0.249 
## F-statistic: 81.92 on 1 and 243 DF,  p-value: < 2.2e-16
anova(PRE_IUS_work_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_work   1  4863.8  4863.8   81.92 < 2.2e-16 ***
## Residuals 243 14427.5    59.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Education item
PRE_IUS_education_lm <- lm(A_PRE_IUS_total ~ B_FI_education, data = Full_data_all)
summary(PRE_IUS_education_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_education, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.9221  -4.9864   0.0136   5.9976  18.0457 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     32.8900     1.3789  23.853  < 2e-16 ***
## B_FI_education   3.0321     0.4192   7.233 5.79e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.153 on 249 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1736, Adjusted R-squared:  0.1703 
## F-statistic: 52.32 on 1 and 249 DF,  p-value: 5.793e-12
anova(PRE_IUS_education_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_education   1  3478.3  3478.3  52.323 5.793e-12 ***
## Residuals      249 16552.6    66.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Hobbies item
PRE_IUS_hobbies_lm <- lm(A_PRE_IUS_total ~ B_FI_hobbies, data = Full_data_all)
summary(PRE_IUS_hobbies_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_hobbies, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.3848  -5.5183   0.0813   5.4372  17.6152 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   33.2068     1.2818  25.907  < 2e-16 ***
## B_FI_hobbies   3.1780     0.4149   7.659 3.85e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.022 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1864, Adjusted R-squared:  0.1832 
## F-statistic: 58.66 on 1 and 256 DF,  p-value: 3.853e-13
anova(PRE_IUS_hobbies_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_hobbies   1  3775.2  3775.2  58.662 3.853e-13 ***
## Residuals    256 16474.9    64.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

E2: Change in functional impairment over time across groups

# Merging across timepoints
FI_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total", "D_M1_FI_total")
## Formatting table as needed
FI_alltimepoints_long <- FI_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_alltimepoints_long, REML = TRUE)
summary(FI_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_alltimepoints_long
## 
## REML criterion at convergence: 4585.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5128 -0.3758  0.0291  0.5036  2.2680 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  9.546   3.090   
##  Residual             15.332   3.916   
## Number of obs: 777, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error        df t value
## (Intercept)                          14.95283    0.48446 593.28918  30.865
## GroupECs                             -0.09283    0.85573 593.28918  -0.108
## GroupIntervention                     0.35785    0.69010 593.28918   0.519
## TimeC_W1_FI_total                    -0.55660    0.53785 512.00000  -1.035
## TimeD_M1_FI_total                    -2.25472    0.53785 512.00000  -4.192
## GroupECs:TimeC_W1_FI_total            0.07660    0.95003 512.00000   0.081
## GroupIntervention:TimeC_W1_FI_total  -0.79291    0.76615 512.00000  -1.035
## GroupECs:TimeD_M1_FI_total            0.35472    0.95003 512.00000   0.373
## GroupIntervention:TimeD_M1_FI_total  -0.37635    0.76615 512.00000  -0.491
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## GroupECs                               0.914    
## GroupIntervention                      0.604    
## TimeC_W1_FI_total                      0.301    
## TimeD_M1_FI_total                   3.26e-05 ***
## GroupECs:TimeC_W1_FI_total             0.936    
## GroupIntervention:TimeC_W1_FI_total    0.301    
## GroupECs:TimeD_M1_FI_total             0.709    
## GroupIntervention:TimeD_M1_FI_total    0.623    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ TD_M1_ GEC:TC GI:TC_ GEC:TD
## GroupECs    -0.566                                                 
## GrpIntrvntn -0.702  0.397                                          
## TmC_W1_FI_t -0.555  0.314  0.390                                   
## TmD_M1_FI_t -0.555  0.314  0.390  0.500                            
## GEC:TC_W1_F  0.314 -0.555 -0.221 -0.566 -0.283                     
## GI:TC_W1_FI  0.390 -0.221 -0.555 -0.702 -0.351  0.397              
## GEC:TD_M1_F  0.314 -0.555 -0.221 -0.283 -0.566  0.500  0.199       
## GI:TD_M1_FI  0.390 -0.221 -0.555 -0.351 -0.702  0.199  0.500  0.397
anova  (FI_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)    
## Group        0.24   0.122     2   256  0.0079   0.9921    
## Time       605.46 302.728     2   512 19.7448 5.49e-09 ***
## Group:Time  23.37   5.842     4   512  0.3811   0.8222    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM)
  FI Score
Predictors Estimates CI p
(Intercept) 14.95 14.00 – 15.90 <0.001
Group [ECs] -0.09 -1.77 – 1.59 0.914
Group [Intervention] 0.36 -1.00 – 1.71 0.604
Time [C_W1_FI_total] -0.56 -1.61 – 0.50 0.301
Time [D_M1_FI_total] -2.25 -3.31 – -1.20 <0.001
Group [ECs] × Time
[C_W1_FI_total]
0.08 -1.79 – 1.94 0.936
Group [Intervention] ×
Time [C_W1_FI_total]
-0.79 -2.30 – 0.71 0.301
Group [ECs] × Time
[D_M1_FI_total]
0.35 -1.51 – 2.22 0.709
Group [Intervention] ×
Time [D_M1_FI_total]
-0.38 -1.88 – 1.13 0.623
Random Effects
σ2 15.33
τ00 ID 9.55
ICC 0.38
N ID 259
Observations 777
Marginal R2 / Conditional R2 0.037 / 0.407
parameters::standardise_parameters(FI_MEM)
## # Standardization method: refit
## 
## Parameter                           | Std. Coef. |         95% CI
## -----------------------------------------------------------------
## (Intercept)                         |       0.19 | [ 0.00,  0.37]
## GroupECs                            |      -0.02 | [-0.35,  0.31]
## GroupIntervention                   |       0.07 | [-0.20,  0.34]
## TimeC_W1_FI_total                   |      -0.11 | [-0.32,  0.10]
## TimeD_M1_FI_total                   |      -0.45 | [-0.65, -0.24]
## GroupECs:TimeC_W1_FI_total          |       0.02 | [-0.35,  0.38]
## GroupIntervention:TimeC_W1_FI_total |      -0.16 | [-0.45,  0.14]
## GroupECs:TimeD_M1_FI_total          |       0.07 | [-0.30,  0.44]
## GroupIntervention:TimeD_M1_FI_total |      -0.07 | [-0.37,  0.22]

Baseline to 1W

# Merging across timepoints
FI_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total")
## Formatting table as needed
FI_B1W_long <- FI_B1W %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM_B1W <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1W_long, REML = TRUE)
summary(FI_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1W_long
## 
## REML criterion at convergence: 2917.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6197 -0.4865  0.0175  0.4849  2.7271 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 9.554    3.091   
##  Residual             9.586    3.096   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error        df t value
## (Intercept)                          14.95283    0.42493 409.87229  35.189
## GroupECs                             -0.09283    0.75058 409.87229  -0.124
## GroupIntervention                     0.35785    0.60531 409.87229   0.591
## TimeC_W1_FI_total                    -0.55660    0.42529 256.00000  -1.309
## GroupECs:TimeC_W1_FI_total            0.07660    0.75121 256.00000   0.102
## GroupIntervention:TimeC_W1_FI_total  -0.79291    0.60581 256.00000  -1.309
##                                     Pr(>|t|)    
## (Intercept)                           <2e-16 ***
## GroupECs                               0.902    
## GroupIntervention                      0.555    
## TimeC_W1_FI_total                      0.192    
## GroupECs:TimeC_W1_FI_total             0.919    
## GroupIntervention:TimeC_W1_FI_total    0.192    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TC_W1_ GEC:TC
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmC_W1_FI_t -0.500  0.283  0.351              
## GEC:TC_W1_F  0.283 -0.500 -0.199 -0.566       
## GI:TC_W1_FI  0.351 -0.199 -0.500 -0.702  0.397
anova  (FI_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
## Group       0.086   0.043     2   256  0.0045 0.995524   
## Time       72.728  72.728     1   256  7.5869 0.006301 **
## Group:Time 20.828  10.414     2   256  1.0864 0.338986   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM_B1W)
  FI Score
Predictors Estimates CI p
(Intercept) 14.95 14.12 – 15.79 <0.001
Group [ECs] -0.09 -1.57 – 1.38 0.902
Group [Intervention] 0.36 -0.83 – 1.55 0.555
Time [C_W1_FI_total] -0.56 -1.39 – 0.28 0.191
Group [ECs] × Time
[C_W1_FI_total]
0.08 -1.40 – 1.55 0.919
Group [Intervention] ×
Time [C_W1_FI_total]
-0.79 -1.98 – 0.40 0.191
Random Effects
σ2 9.59
τ00 ID 9.55
ICC 0.50
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.012 / 0.505
parameters::standardise_parameters(FI_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                           | Std. Coef. |        95% CI
## ----------------------------------------------------------------
## (Intercept)                         |       0.07 | [-0.12, 0.26]
## GroupECs                            |      -0.02 | [-0.36, 0.32]
## GroupIntervention                   |       0.08 | [-0.19, 0.35]
## TimeC_W1_FI_total                   |      -0.13 | [-0.32, 0.06]
## GroupECs:TimeC_W1_FI_total          |       0.02 | [-0.32, 0.35]
## GroupIntervention:TimeC_W1_FI_total |      -0.18 | [-0.45, 0.09]
plot_model(FI_MEM_B1W, type = "int")

Baseline to 1M

# Merging across timepoints
FI_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "D_M1_FI_total")
## Formatting table as needed
FI_B1M_long <- FI_B1M %>%
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM_B1M <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1M_long, REML = TRUE)
summary(FI_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1M_long
## 
## REML criterion at convergence: 3116.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.73980 -0.43311  0.05596  0.52370  2.09643 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  9.596   3.098   
##  Residual             16.669   4.083   
## Number of obs: 518, groups:  ID, 259
## 
## Fixed effects:
##                                      Estimate Std. Error        df t value
## (Intercept)                          14.95283    0.49778 451.70879  30.039
## GroupECs                             -0.09283    0.87925 451.70879  -0.106
## GroupIntervention                     0.35785    0.70907 451.70879   0.505
## TimeD_M1_FI_total                    -2.25472    0.56081 256.00000  -4.020
## GroupECs:TimeD_M1_FI_total            0.35472    0.99059 256.00000   0.358
## GroupIntervention:TimeD_M1_FI_total  -0.37635    0.79886 256.00000  -0.471
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## GroupECs                               0.916    
## GroupIntervention                      0.614    
## TimeD_M1_FI_total                   7.65e-05 ***
## GroupECs:TimeD_M1_FI_total             0.721    
## GroupIntervention:TimeD_M1_FI_total    0.638    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpECs GrpInt TD_M1_ GEC:TD
## GroupECs    -0.566                            
## GrpIntrvntn -0.702  0.397                     
## TmD_M1_FI_t -0.563  0.319  0.395              
## GEC:TD_M1_F  0.319 -0.563 -0.224 -0.566       
## GI:TD_M1_FI  0.395 -0.224 -0.563 -0.702  0.397
anova  (FI_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Group        1.40    0.70     2   256  0.0419    0.9589    
## Time       588.19  588.19     1   256 35.2863 9.248e-09 ***
## Group:Time   9.59    4.79     2   256  0.2875    0.7503    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM_B1M)
  FI Score
Predictors Estimates CI p
(Intercept) 14.95 13.97 – 15.93 <0.001
Group [ECs] -0.09 -1.82 – 1.63 0.916
Group [Intervention] 0.36 -1.04 – 1.75 0.614
Time [D_M1_FI_total] -2.25 -3.36 – -1.15 <0.001
Group [ECs] × Time
[D_M1_FI_total]
0.35 -1.59 – 2.30 0.720
Group [Intervention] ×
Time [D_M1_FI_total]
-0.38 -1.95 – 1.19 0.638
Random Effects
σ2 16.67
τ00 ID 9.60
ICC 0.37
N ID 259
Observations 518
Marginal R2 / Conditional R2 0.050 / 0.397
parameters::standardise_parameters(FI_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                           | Std. Coef. |         95% CI
## -----------------------------------------------------------------
## (Intercept)                         |       0.20 | [ 0.01,  0.39]
## GroupECs                            |      -0.02 | [-0.35,  0.31]
## GroupIntervention                   |       0.07 | [-0.20,  0.33]
## TimeD_M1_FI_total                   |      -0.43 | [-0.64, -0.22]
## GroupECs:TimeD_M1_FI_total          |       0.07 | [-0.30,  0.44]
## GroupIntervention:TimeD_M1_FI_total |      -0.07 | [-0.37,  0.23]
plot_model(FI_MEM_B1M, type = "int")

Extra exploratory: IUS and GM association at PRE

PRE_IUS_GM_lm <- lm(A_PRE_IUS_total ~ A_PRE_GM, data = Full_data_all)
summary(PRE_IUS_GM_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GM, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.939  -5.868   0.918   6.097  18.132 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  38.6537     1.2714  30.402  < 2e-16 ***
## A_PRE_GM      1.2142     0.3875   3.134  0.00193 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.713 on 257 degrees of freedom
## Multiple R-squared:  0.03681,    Adjusted R-squared:  0.03306 
## F-statistic:  9.82 on 1 and 257 DF,  p-value: 0.001926
anova(PRE_IUS_GM_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##            Df  Sum Sq Mean Sq F value   Pr(>F)   
## A_PRE_GM    1   745.6  745.58  9.8203 0.001926 **
## Residuals 257 19512.1   75.92                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1