全校導入資訊安全管理系統(ISMS)問卷調查-前測

讀取資料

isms01 <- read.csv("isms01.csv", header=T)

將資料中問卷填答欄位篩除。

head(isms01,3)
##                時間戳記         A1         A2         A3         A4         A5
## 1 2023/7/5 上午 9:35:47       普通       同意       普通       普通     不同意
## 2 2023/7/5 上午 9:39:25 非常不同意 非常不同意 非常不同意 非常不同意 非常不同意
## 3 2023/7/5 上午 9:45:40       普通       普通     不同意     不同意 非常不同意
##           A6         A7     A8         A9        A10    A11       B1   B2
## 1       同意       同意   同意       同意       同意   同意     同意 同意
## 2 非常不同意 非常不同意 不同意 非常不同意 非常不同意 不同意 非常同意 同意
## 3       同意       普通   普通       普通       同意   同意     同意 同意
##         B3       B4       B5       B6       B7       B8       B9 您的性別
## 1     同意     同意     同意     同意     同意     普通     普通       女
## 2 非常同意 非常同意 非常同意 非常同意 非常同意 非常同意 非常同意       女
## 3     同意     同意     同意     同意     同意     同意     同意       男
##         您的年齡 服務單位      您的年資                         您的職務
## 1 30歲(含以下) 行政單位 5年(含以下) 一般人員:行政人員、技工及工友等
## 2 30歲(含以下) 行政單位 5年(含以下) 一般人員:行政人員、技工及工友等
## 3 61歲(含以上) 教學單位       11~20年 一般人員:行政人員、技工及工友等
isms02 <- isms01[,-1]
head(isms02,3)
##           A1         A2         A3         A4         A5         A6         A7
## 1       普通       同意       普通       普通     不同意       同意       同意
## 2 非常不同意 非常不同意 非常不同意 非常不同意 非常不同意 非常不同意 非常不同意
## 3       普通       普通     不同意     不同意 非常不同意       同意       普通
##       A8         A9        A10    A11       B1   B2       B3       B4       B5
## 1   同意       同意       同意   同意     同意 同意     同意     同意     同意
## 2 不同意 非常不同意 非常不同意 不同意 非常同意 同意 非常同意 非常同意 非常同意
## 3   普通       普通       同意   同意     同意 同意     同意     同意     同意
##         B6       B7       B8       B9 您的性別       您的年齡 服務單位
## 1     同意     同意     普通     普通       女 30歲(含以下) 行政單位
## 2 非常同意 非常同意 非常同意 非常同意       女 30歲(含以下) 行政單位
## 3     同意     同意     同意     同意       男 61歲(含以上) 教學單位
##        您的年資                         您的職務
## 1 5年(含以下) 一般人員:行政人員、技工及工友等
## 2 5年(含以下) 一般人員:行政人員、技工及工友等
## 3       11~20年 一般人員:行政人員、技工及工友等
dim(isms02)
## [1] 138  25

選取問卷中李克特五點量表部分,將此部分資料轉換為量化數據,以利後續分析。

for (i in 1:138) {
  for (j in 1:20) {
  if (isms02[i,j]=="非常不同意") isms02[i,j] <- 1
  if (isms02[i,j]=="不同意") isms02[i,j] <- 2
  if (isms02[i,j]=="普通") isms02[i,j] <- 3
  if (isms02[i,j]=="同意") isms02[i,j] <- 4
  if (isms02[i,j]=="非常同意") isms02[i,j] <- 5
  }
}

轉換整理資料格式,計算各題項整體平均分數並列表。

mlst <- c()
isms02a <- as.data.frame(isms02)
for (j in 1:20) { mlst <- cbind(mlst,mean(as.integer(isms02a[,j])))}
# mlst
cname= c("A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","B1","B2","B3","B4","B5","B6","B7", "B8","B9")
rname= c("Average")
mlst1 <- matrix(mlst,nrow=1,ncol=20, dimnames=list(rname,cname))
mlst1
##               A1       A2       A3       A4       A5       A6       A7       A8
## Average 2.782609 3.246377 3.115942 2.913043 2.318841 3.268116 3.297101 3.478261
##               A9      A10      A11      B1       B2       B3       B4       B5
## Average 3.231884 3.173913 3.427536 4.07971 4.065217 4.094203 4.065217 4.014493
##               B6       B7       B8 B9
## Average 4.101449 4.007246 4.072464  4

根據上表繪圖(橫向長條圖),顯示數據,標註3分位置。由圖中可觀察到僅 A1、A4、A5 平均得分低於3 (即 “普通” 水準),顯然有些是反向敘述問題。

image <- barplot(mlst1, horiz = T , col=c("003388"), space = 0.5, xlim =c(0,5), border="#FFFFFF")
abline(v=3, col="orange", lty=2, lwd=2)
tot <- mlst1[1,]
names(tot) <- colnames(mlst1)
# tot
# View(tot)
text(image, x=1.5, format(tot),col="black", cex=0.7)

性別不同,在答題結果上的差異:

首先整理資料:

head(isms02a,3)
##   A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 您的性別
## 1  3  4  3  3  2  4  4  4  4   4   4  4  4  4  4  4  4  4  3  3       女
## 2  1  1  1  1  1  1  1  2  1   1   2  5  4  5  5  5  5  5  5  5       女
## 3  3  3  2  2  1  4  3  3  3   4   4  4  4  4  4  4  4  4  4  4       男
##         您的年齡 服務單位      您的年資                         您的職務
## 1 30歲(含以下) 行政單位 5年(含以下) 一般人員:行政人員、技工及工友等
## 2 30歲(含以下) 行政單位 5年(含以下) 一般人員:行政人員、技工及工友等
## 3 61歲(含以上) 教學單位       11~20年 一般人員:行政人員、技工及工友等
mlstm <- c()
mlstw <- c()
isms02m <- isms02a[isms02a[,21]=="男",]
isms02w <- isms02a[isms02a[,21]=="女",]
dim(isms02m)
## [1] 41 25
for (j in 1:20) { mlstm <- cbind(mlstm,mean(as.integer(isms02m[,j])));
mlstw <- cbind(mlstw,mean(as.integer(isms02w[,j])))}
mlmw <- rbind(mlstm, mlstw)
tmlmw <- t(mlmw)
rname <- c("A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","B1","B2","B3","B4","B5","B6","B7", "B8","B9")
cname <- c("男", "女")
tmlmw <- matrix(tmlmw,nrow=20,ncol=2, dimnames=list(rname,cname))
tmlmw
##           男       女
## A1  2.804878 2.773196
## A2  3.292683 3.226804
## A3  3.048780 3.144330
## A4  2.853659 2.938144
## A5  2.170732 2.381443
## A6  3.146341 3.319588
## A7  3.121951 3.371134
## A8  3.536585 3.453608
## A9  3.439024 3.144330
## A10 3.317073 3.113402
## A11 3.414634 3.432990
## B1  4.219512 4.020619
## B2  4.219512 4.000000
## B3  4.170732 4.061856
## B4  4.195122 4.010309
## B5  4.048780 4.000000
## B6  4.243902 4.041237
## B7  4.097561 3.969072
## B8  4.195122 4.020619
## B9  4.170732 3.927835
tmj <- c()
for (j in 1:20) {tmj <- rbind(tmj,tmlmw[j,1],tmlmw[j,2])}
# tmj

images <- barplot(tmj, horiz = F , beside= TRUE, col=c("003388","004466"), space = 0.5, ylim =c(0,5), 
                  border="#FFFFFF" ,names.arg = c("A1","A1","A2","A2","A3","A3","A4","A4","A5","A5","A6","A6","A7","A7","A8","A8","A9","A9","A10","A10","A11","A11","B1","B1","B2","B2","B3","B3","B4", "B4","B5","B5","B6","B6","B7","B7","B8","B8", "B9","B9"))
abline(h=3, col="orange", lty=2, lwd=2)
abline(h=4, col="purple", lty=2, lwd=2)
leg.text <- c("男性","女性")
legend("topleft", legend=leg.text, fill=c("003388","004466"), cex=0.7, border=F)

由上圖可觀察 B1 \(\sim\) B9 每題之平均分數皆為 “男性高於女性”。

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{男女受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{男女受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。

t.test(mlmw[1,1:11],mlmw[2,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  mlmw[1, 1:11] and mlmw[2, 1:11]
## t = -0.091514, df = 19.3, p-value = 0.928
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3308849  0.3031344
## sample estimates:
## mean of x mean of y 
##  3.104213  3.118088

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{男女受試者之 B1} \sim \mbox{B9 答題分數一致}\)

\(H_1: \mbox{男女受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,有足夠證據可推翻 \(H_0\) 虛無假設,亦即男女受試者之 B1 \(\sim\) B9 答題分數明顯不一致,符合前述圖形觀察結果。

t.test(mlmw[1,12:20],mlmw[2,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  mlmw[1, 12:20] and mlmw[2, 12:20]
## t = 6.7987, df = 13.443, p-value = 1.064e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1145989 0.2208299
## sample estimates:
## mean of x mean of y 
##  4.173442  4.005727

服務單位不同,在答題結果上的差異:

首先整理資料:

mla <- c()
mlt <- c()
isms02aa <- isms02a[isms02a[,23]=="行政單位",]
isms02at <- isms02a[isms02a[,23]=="教學單位",]
dim(isms02a)
## [1] 138  25
for (j in 1:20) { mla <- cbind(mla,mean(as.integer(isms02aa[,j])));
mlt <- cbind(mlt,mean(as.integer(isms02at[,j])))}
mls <- rbind(mla, mlt ,mlst)
cname <- c("A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","B1","B2","B3","B4","B5","B6","B7", "B8","B9")
rname <- c("行政單位", "教學單位" ,"整體")
tmls <- matrix(mls,nrow=3,ncol=20, dimnames=list(rname,cname))
tmls
##                A1       A2       A3       A4       A5       A6       A7
## 行政單位 2.936709 3.341772 3.113924 3.000000 2.354430 3.189873 3.417722
## 教學單位 2.576271 3.118644 3.118644 2.796610 2.271186 3.372881 3.135593
## 整體     2.782609 3.246377 3.115942 2.913043 2.318841 3.268116 3.297101
##                A8       A9      A10      A11       B1       B2       B3
## 行政單位 3.518987 3.227848 3.177215 3.303797 4.151899 4.101266 4.101266
## 教學單位 3.423729 3.237288 3.169492 3.593220 3.983051 4.016949 4.084746
## 整體     3.478261 3.231884 3.173913 3.427536 4.079710 4.065217 4.094203
##                B4       B5       B6       B7       B8       B9
## 行政單位 4.088608 4.050633 4.075949 4.000000 4.050633 4.012658
## 教學單位 4.033898 3.966102 4.135593 4.016949 4.101695 3.983051
## 整體     4.065217 4.014493 4.101449 4.007246 4.072464 4.000000

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{不同服務單位受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{不同服務單位受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論不同服務單位受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmls[1,1:11],tmls[2,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmls[1, 1:11] and tmls[2, 1:11]
## t = 0.46613, df = 19.167, p-value = 0.6464
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2437228  0.3834899
## sample estimates:
## mean of x mean of y 
##  3.143843  3.073960

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{不同服務單位受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{不同服務單位受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論不同服務單位受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmls[1,12:20],tmls[2,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmls[1, 12:20] and tmls[2, 12:20]
## t = 1.3693, df = 15.293, p-value = 0.1907
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.01913519  0.08821908
## sample estimates:
## mean of x mean of y 
##  4.070323  4.035782

職務不同,在答題結果上的差異:

首先整理資料:

fj <- factor(isms02$您的職務)
levels(fj)
## [1] "一般人員:行政人員、技工及工友等"          
## [2] "一般人員:行政人員、教師、技工及工友等"    
## [3] "資安人員:資訊部門,負責資安業務聯絡人員"  
## [4] "資訊人員:資安人員以外,從事與資訊相關人員"
## [5] "管理階層-行政主管"                        
## [6] "管理階層-資訊主管"
mj1s <- c()
mj2s <- c()
mj3s <- c()

mj1 <- isms02a[isms02a[,25]=="一般人員:行政人員、技工及工友等" | isms02a[,25]=="一般人員:行政人員、教師、技工及工友等",]
mj2 <- isms02a[isms02a[,25]=="資安人員:資訊部門,負責資安業務聯絡人員" | isms02a[,25]=="資訊人員:資安人員以外,從事與資訊相關人員" | isms02a[,25]=="管理階層-資訊主管",]
mj3 <- isms02a[isms02a[,25]=="管理階層-行政主管",]
for (j in 1:20) { 
  mj1s <- cbind(mj1s,mean(as.integer(mj1[,j])));
  mj2s <- cbind(mj2s,mean(as.integer(mj2[,j])));
  mj3s <- cbind(mj3s,mean(as.integer(mj3[,j]))) }
mjs <- rbind(mj1s, mj2s ,mj3s)
cname <- c("A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","B1","B2","B3","B4","B5","B6","B7", "B8","B9")
rname <- c("一般人員", "資訊相關人員" ,"行政主管")
tmjs <- matrix(mjs,nrow=3,ncol=20, dimnames=list(rname,cname))
tmjs
##                    A1       A2       A3       A4       A5       A6       A7
## 一般人員     2.768519 3.157407 3.111111 2.916667 2.407407 3.351852 3.324074
## 資訊相關人員 3.250000 3.875000 3.375000 3.250000 1.875000 2.250000 3.000000
## 行政主管     2.681818 3.454545 3.045455 2.772727 2.045455 3.227273 3.272727
##                    A8       A9      A10      A11       B1       B2       B3
## 一般人員     3.398148 3.250000 3.203704 3.490741 3.981481 3.981481 4.037037
## 資訊相關人員 4.125000 2.750000 3.125000 2.250000 4.500000 4.250000 4.125000
## 行政主管     3.636364 3.318182 3.045455 3.545455 4.409091 4.409091 4.363636
##                    B4       B5       B6       B7       B8       B9
## 一般人員     3.990741 3.925926 4.037037 3.907407 3.990741 3.907407
## 資訊相關人員 4.250000 4.375000 4.375000 4.375000 4.375000 4.500000
## 行政主管     4.363636 4.318182 4.318182 4.363636 4.363636 4.272727

按題項繪製並列長條圖

tmjss <- c()
for (j in 1:20) {tmjss <- rbind(tmjss,tmjs[1,j],tmjs[2,j],tmjs[3,j])}
# tmjss
imaget <- barplot(tmjss, horiz = F , beside= TRUE, col=c("003388","004466","005577"), space = 0.5, ylim =c(0,5), 
                  border="#FFFFFF" ,names.arg = c("A1","A1","A1","A2","A2","A2","A3","A3","A3","A4","A4","A4","A5","A5","A5","A6","A6","A6","A7","A7","A7","A8","A8","A8","A9","A9","A9","A10","A10","10","A11","A11","A11",
                                                  "B1","B1","B1","B2","B2","B2","B3","B3","B3","B4", "B4","B4","B5","B5","B5","B6","B6","B6","B7","B7","B7","B8","B8","B8", "B9","B9","B9"))
abline(h=3, col="orange", lty=2, lwd=2)
abline(h=4, col="purple", lty=2, lwd=2)

leg.text <- c("一般人員", "資訊相關人員" ,"行政主管")
legend("bottomright", legend=leg.text, fill=c("003388","004466","005577"), cex=0.7, border=F)

由上圖觀察可得 “一般人員” 之 B1 \(\sim\) B9 填答結果之平均分數皆偏低。

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{一般人員與資訊相關人員受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{一般人員與資訊相關人員受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論一般人員與資訊相關人員受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmjs[1,1:11],tmjs[2,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmjs[1, 1:11] and tmjs[2, 1:11]
## t = 0.49791, df = 14.05, p-value = 0.6263
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3770899  0.6052043
## sample estimates:
## mean of x mean of y 
##  3.125421  3.011364

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{一般人員與資訊相關人員受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{一般人員與資訊相關人員受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即推論一般人員與資訊相關人員受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmjs[1,12:20],tmjs[2,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmjs[1, 12:20] and tmjs[2, 12:20]
## t = -8.5467, df = 10.609, p-value = 4.427e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4707119 -0.2772305
## sample estimates:
## mean of x mean of y 
##  3.973251  4.347222

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{一般人員與行政主管受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{一般人員與行政主管受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論一般人員與行政主管受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmjs[1,1:11],tmjs[3,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmjs[1, 1:11] and tmjs[3, 1:11]
## t = 0.18058, df = 17.79, p-value = 0.8587
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3233570  0.3841162
## sample estimates:
## mean of x mean of y 
##  3.125421  3.095041

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{一般人員與行政主管受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{一般人員與行政主管受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即推論一般人員與行政主管受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmjs[1,12:20],tmjs[3,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmjs[1, 12:20] and tmjs[3, 12:20]
## t = -17.149, df = 15.78, p-value = 1.27e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4273473 -0.3332213
## sample estimates:
## mean of x mean of y 
##  3.973251  4.353535

年齡不同,在答題結果上的差異:

首先整理資料:

fa<- factor(isms02$您的年齡)
levels(fa)
## [1] "30歲(含以下)" "31-40歲"        "41-50歲"        "51-60歲"       
## [5] "61歲(含以上)"
ma1s <- c()
ma2s <- c()
ma3s <- c()

ma1 <- isms02a[isms02a[,22]=="30歲(含以下)" | isms02a[,22]=="31-40歲",]
ma2 <- isms02a[isms02a[,22]=="41-50歲" ,]
ma3 <- isms02a[isms02a[,22]=="51-60歲" | isms02a[,22]=="61歲(含以上)" ,]
for (j in 1:20) { 
  ma1s <- cbind(ma1s,mean(as.integer(ma1[,j])));
  ma2s <- cbind(ma2s,mean(as.integer(ma2[,j])));
  ma3s <- cbind(ma3s,mean(as.integer(ma3[,j]))) }
mas <- rbind(ma1s, ma2s ,ma3s)
cname <- c("A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","B1","B2","B3","B4","B5","B6","B7", "B8","B9")
rname <- c("-40", "41-50" ,"50+")
tmas <- matrix(mas,nrow=3,ncol=20, dimnames=list(rname,cname))
tmas
##             A1       A2       A3       A4       A5       A6       A7       A8
## -40   2.900000 3.325000 3.225000 3.025000 2.325000 3.150000 3.375000 3.375000
## 41-50 2.894737 3.210526 3.078947 2.921053 2.394737 3.078947 3.368421 3.631579
## 50+   2.633333 3.216667 3.066667 2.833333 2.266667 3.466667 3.200000 3.450000
##             A9      A10      A11       B1       B2       B3       B4       B5
## -40   3.150000 3.200000 3.275000 4.175000 4.125000 4.075000 4.100000 4.025000
## 41-50 3.105263 3.078947 3.210526 3.973684 3.973684 4.105263 4.078947 3.868421
## 50+   3.366667 3.216667 3.666667 4.083333 4.083333 4.100000 4.033333 4.100000
##             B6       B7       B8       B9
## -40   4.150000 3.975000 4.075000 4.025000
## 41-50 4.026316 4.000000 4.000000 3.868421
## 50+   4.116667 4.033333 4.116667 4.066667

按題項繪製並列長條圖

tmass <- c()
for (j in 1:20) {tmass <- rbind(tmass,tmas[1,j],tmas[2,j],tmas[3,j])}
# tmass

imageu <- barplot(tmass, horiz = F , beside= TRUE, col=c("003388","004466","005544"), space = 0.5, ylim =c(0,5), 
                  border="#FFFFFF" ,names.arg = c("A1","A1","A1","A2","A2","A2","A3","A3","A3","A4","A4","A4","A5","A5","A5","A6","A6","A6","A7","A7","A7","A8","A8","A8","A9","A9","A9","A10","A10","10","A11","A11","A11",
                                                  "B1","B1","B1","B2","B2","B2","B3","B3","B3","B4", "B4","B4","B5","B5","B5","B6","B6","B6","B7","B7","B7","B8","B8","B8", "B9","B9","B9"))
abline(h=3, col="orange", lty=2, lwd=2)
abline(h=4, col="purple", lty=2, lwd=2)

leg.text <- c("-40", "41-50" ,"51+")
legend("bottomright", legend=leg.text, fill=c("003388","004466","005544"), cex=0.7, border=F)

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{"-40" 與 "41-50" 受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{"-40" 與 "41-50" 受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論 “-40” 與 “41-50” 受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmas[1,1:11],tmas[2,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmas[1, 1:11] and tmas[2, 1:11]
## t = 0.24592, df = 19.988, p-value = 0.8083
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2389772  0.3028528
## sample estimates:
## mean of x mean of y 
##  3.120455  3.088517

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{"-40" 與 "41-50" 受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{"-40" 與 "41-50" 受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即推論 “-40” 與 “41-50” 受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmas[1,12:20],tmas[2,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmas[1, 12:20] and tmas[2, 12:20]
## t = 2.6653, df = 15.236, p-value = 0.01747
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.01857619 0.16592673
## sample estimates:
## mean of x mean of y 
##  4.080556  3.988304

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{"-40" 與 "51+" 受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{"-40" 與 "51+" 受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論 “-40” 與 “51+” 受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmas[1,1:11],tmas[3,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmas[1, 1:11] and tmas[3, 1:11]
## t = -0.034705, df = 18.395, p-value = 0.9727
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3258340  0.3152279
## sample estimates:
## mean of x mean of y 
##  3.120455  3.125758

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{"-40" 與 "51+" 受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{"-40" 與 "51+" 受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果不顯著,故無法推翻 \(H_0\) 虛無假設。亦即無法推論 “-40” 與 “51+” 受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmas[1,12:20],tmas[3,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmas[1, 12:20] and tmas[3, 12:20]
## t = -0.038569, df = 11.627, p-value = 0.9699
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.05341966  0.05156781
## sample estimates:
## mean of x mean of y 
##  4.080556  4.081481

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{"41-50" 與 "51+" 受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{"41-50" 與 "51+" 受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論 “41-50” 與 “51+” 受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmas[2,1:11],tmas[3,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmas[2, 1:11] and tmas[3, 1:11]
## t = -0.24158, df = 18.615, p-value = 0.8117
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3603455  0.2858638
## sample estimates:
## mean of x mean of y 
##  3.088517  3.125758

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{"41-50" 與 "51+" 受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{"41-50" 與 "51+" 受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即推論 “41-50” 與 “51+” 受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmas[2,12:20],tmas[3,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmas[2, 12:20] and tmas[3, 12:20]
## t = -3.2062, df = 10.377, p-value = 0.008974
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.15761318 -0.02874159
## sample estimates:
## mean of x mean of y 
##  3.988304  4.081481

年資不同,在答題結果上的差異:

首先整理資料:

fb<- factor(isms02$您的年資)
levels(fb)
## [1] "11~20年"        "21年(含以上)" "5年(含以下)"  "6~10年"
mb1s <- c()
mb2s <- c()
mb3s <- c()

mb1 <- isms02a[isms02a[,24]=="5年(含以下)" | isms02a[,24]=="6~10年",]
mb2 <- isms02a[isms02a[,24]=="11~20年" ,]
mb3 <- isms02a[isms02a[,24]=="21年(含以上)" ,]
for (j in 1:20) { 
  mb1s <- cbind(mb1s,mean(as.integer(mb1[,j])));
  mb2s <- cbind(mb2s,mean(as.integer(mb2[,j])));
  mb3s <- cbind(mb3s,mean(as.integer(mb3[,j]))) }
mbs <- rbind(mb1s, mb2s ,mb3s)
cname <- c("A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","B1","B2","B3","B4","B5","B6","B7", "B8","B9")
rname <- c("-10", "11-20" ,"21+")
tmbs <- matrix(mbs,nrow=3,ncol=20, dimnames=list(rname,cname))
tmbs
##             A1       A2       A3       A4       A5       A6       A7       A8
## -10   2.811594 3.159420 3.072464 2.811594 2.347826 3.304348 3.318841 3.434783
## 11-20 3.161290 3.645161 3.387097 3.225806 2.354839 3.225806 3.516129 3.677419
## 21+   2.421053 3.078947 2.973684 2.842105 2.236842 3.236842 3.078947 3.394737
##             A9      A10      A11       B1       B2       B3       B4       B5
## -10   3.347826 3.159420 3.376812 4.043478 4.057971 4.072464 4.043478 3.927536
## 11-20 3.129032 3.580645 3.483871 4.064516 3.967742 4.000000 4.000000 3.967742
## 21+   3.105263 2.868421 3.473684 4.157895 4.157895 4.210526 4.157895 4.210526
##             B6       B7       B8       B9
## -10   4.057971 4.014493 4.043478 3.985507
## 11-20 4.000000 3.774194 3.967742 3.903226
## 21+   4.263158 4.184211 4.210526 4.105263

按題項繪製並列長條圖

tmbss <- c()
for (j in 1:20) {tmbss <- rbind(tmbss,tmbs[1,j],tmbs[2,j],tmbs[3,j])}
# tmbss

imagev <- barplot(tmbss, horiz = F , beside= TRUE, col=c("003388","004466","005566"), space = 0.5,ylim =c(0,5), 
                  border="#FFFFFF" ,names.arg = c("A1","A1","A1","A2","A2","A2","A3","A3","A3","A4","A4","A4","A5","A5","A5","A6","A6","A6","A7","A7","A7","A8","A8","A8","A9","A9","A9","A10","A10","10","A11","A11","A11",
                                                  "B1","B1","B1","B2","B2","B2","B3","B3","B3","B4", "B4","B4","B5","B5","B5","B6","B6","B6","B7","B7","B7","B8","B8","B8", "B9","B9","B9"))
abline(h=3, col="orange", lty=2, lwd=2)
abline(h=4, col="purple", lty=2, lwd=2)

leg.text <- c("年資低於10年", "年資11-20年" ,"年資21年或以上")
legend("bottomright", legend=leg.text, fill=c("003388","004466","005566"), cex=0.7, border=F)

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{年資 "-10" 與 "11-20" 受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{年資 "-10" 與 "11-20" 受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論年資 “-10” 與 “11-20” 受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmbs[1,1:11],tmbs[2,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmbs[1, 1:11] and tmbs[2, 1:11]
## t = -1.363, df = 19.705, p-value = 0.1883
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.5160844  0.1084173
## sample estimates:
## mean of x mean of y 
##  3.104084  3.307918

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{年資 "-10" 與 "11-20" 受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{年資 "-10" 與 "11-20" 受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果 p-value 很接近 0.05,在設定顯著水準較高時,可推翻 \(H_0\) 虛無假設。亦即推論 年資 “-10” 與 “11-20” 受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmbs[1,12:20],tmbs[2,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmbs[1, 12:20] and tmbs[2, 12:20]
## t = 2.1391, df = 12.511, p-value = 0.05277
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.0009330272  0.1345364763
## sample estimates:
## mean of x mean of y 
##  4.027375  3.960573

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{年資 "-10" 與 "20+" 受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{年資 "-10" 與 "20+" 受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果不顯著,無法推翻 \(H_0\) 虛無假設。亦即無法推論年資 “-10” 與 “20+” 受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmbs[1,1:11],tmbs[3,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmbs[1, 1:11] and tmbs[3, 1:11]
## t = 0.86632, df = 19.649, p-value = 0.3968
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1839444  0.4447447
## sample estimates:
## mean of x mean of y 
##  3.104084  2.973684

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{年資 "-10" 與 "20+" 受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{年資 "-10" 與 "20+" 受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即可推論年資 “-10” 與 “20+” 受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmbs[1,12:20],tmbs[3,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmbs[1, 12:20] and tmbs[3, 12:20]
## t = -7.3047, df = 16, p-value = 1.767e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2023505 -0.1113202
## sample estimates:
## mean of x mean of y 
##  4.027375  4.184211

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 A1 \(\sim\) A11 進行 \(t\) 檢定

\(H_0: \mbox{年資 "11-20" 與 "20+" 受試者之 A1} \sim \mbox{A11 答題分數一致}\)
\(H_1: \mbox{年資 "11-20" 與 "20+" 受試者之 A1} \sim \mbox{A11 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即可推論年資 “11-20” 與 “20+” 受試者之 A1 \(\sim\) A11 答題分數有明顯差異。

t.test(tmbs[2,1:11],tmbs[3,1:11])
## 
##  Welch Two Sample t-test
## 
## data:  tmbs[2, 1:11] and tmbs[3, 1:11]
## t = 2.0974, df = 19.997, p-value = 0.04887
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.001823925 0.666643431
## sample estimates:
## mean of x mean of y 
##  3.307918  2.973684

在假設平均分數符合常態的假設下 (不見得符合,結果僅供參考),針對題項 B1 \(\sim\) B9 進行 \(t\) 檢定

\(H_0: \mbox{年資 "11-20" 與 "20+" 受試者之 B1} \sim \mbox{B9 答題分數一致}\)
\(H_1: \mbox{年資 "11-20" 與 "20+" 受試者之 B1} \sim \mbox{B9 答題分數不一致}\)

檢定結果顯著,故推翻 \(H_0\) 虛無假設。亦即推論 年資 “11-20” 與 “20+” 受試者之 B1 \(\sim\) B9 答題分數有明顯差異。

t.test(tmbs[2,12:20],tmbs[3,12:20])
## 
##  Welch Two Sample t-test
## 
## data:  tmbs[2, 12:20] and tmbs[3, 12:20]
## t = -7.1586, df = 12.523, p-value = 9.091e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2913897 -0.1558844
## sample estimates:
## mean of x mean of y 
##  3.960573  4.184211