#install.packages("EnvStats")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(infer)
library(EnvStats)
##
## Attaching package: 'EnvStats'
##
## The following objects are masked from 'package:stats':
##
## predict, predict.lm
##
## The following object is masked from 'package:base':
##
## print.default
chi <- read.csv("Frequency_Chi_Square.csv")
chi4 <- read.csv("Frequency_Chi_Square_4.csv")
chisq.test(chi$Reading, chi$English, correct = FALSE)
##
## Pearson's Chi-squared test
##
## data: chi$Reading and chi$English
## X-squared = 11.96, df = 12, p-value = 0.4489
#chisq.test(chi$Reading)
x <- c(10.4, 8.6, 8.0, 3.4, 3);
chisq.test(x)
##
## Chi-squared test for given probabilities
##
## data: x
## X-squared = 6.5222, df = 4, p-value = 0.1634
chin <- read.csv("Frequency_Chi_Square_Numeric.csv")
chisq.test(chin$C3)
## Warning in chisq.test(chin$C3): Chi-squared approximation may be incorrect
##
## Chi-squared test for given probabilities
##
## data: chin$C3
## X-squared = 133.2, df = 259, p-value = 1
chisq.test (chin$Reading, chin$C3)
##
## Pearson's Chi-squared test
##
## data: chin$Reading and chin$C3
## X-squared = 780, df = 9, p-value < 2.2e-16
chisq.test (chin$Reading,chin$English)
##
## Pearson's Chi-squared test
##
## data: chin$Reading and chin$English
## X-squared = 11.96, df = 12, p-value = 0.4489
chisq.test (chin$English, chin$C3)
##
## Pearson's Chi-squared test
##
## data: chin$English and chin$C3
## X-squared = 11.96, df = 12, p-value = 0.4489
chisq.test(chi4$Reading,chi4$English)
##
## Pearson's Chi-squared test
##
## data: chi4$Reading and chi4$English
## X-squared = 11.96, df = 12, p-value = 0.4489
chisq.test(chi4$C3, chi4$C4)
##
## Pearson's Chi-squared test
##
## data: chi4$C3 and chi4$C4
## X-squared = 11.631, df = 9, p-value = 0.2349