Campos en R

# Ctrl + alt + i (chunk R)

# rnorm generador de datos normales

set.seed(123)
rto = rnorm(n = 100, mean = 3, sd = 0.3) 

# Redondear
rto = round(rto, digits = 2);rto
##   [1] 2.83 2.93 3.47 3.02 3.04 3.51 3.14 2.62 2.79 2.87 3.37 3.11 3.12 3.03 2.83
##  [16] 3.54 3.15 2.41 3.21 2.86 2.68 2.93 2.69 2.78 2.81 2.49 3.25 3.05 2.66 3.38
##  [31] 3.13 2.91 3.27 3.26 3.25 3.21 3.17 2.98 2.91 2.89 2.79 2.94 2.62 3.65 3.36
##  [46] 2.66 2.88 2.86 3.23 2.97 3.08 2.99 2.99 3.41 2.93 3.45 2.54 3.18 3.04 3.06
##  [61] 3.11 2.85 2.90 2.69 2.68 3.09 3.13 3.02 3.28 3.62 2.85 2.31 3.30 2.79 2.79
##  [76] 3.31 2.91 2.63 3.05 2.96 3.00 3.12 2.89 3.19 2.93 3.10 3.33 3.13 2.90 3.34
##  [91] 3.30 3.16 3.07 2.81 3.41 2.82 3.66 3.46 2.93 2.69
rto2 = c(3.2, 3.4, 3.2, 3.3, 3.4, 3.1, 2.8, 2.2, 2.9, 1.9)

MO = c(10.3, 10.4, 11.3, 12, 9.8, 9.7, 8.9, 10.2, 10, 9.1)

pH = c(7, 6.7, NA, 5, 5.3, 7, 6.3, 8)
# Clase
class(pH)
## [1] "numeric"
# Tamaño de un vector
length(rto)
## [1] 100
length(rto2)
## [1] 10
# Indexación
rto[1]
## [1] 2.83
rto[1:5]
## [1] 2.83 2.93 3.47 3.02 3.04
rto[length(rto)]
## [1] 2.69
rto[100]
## [1] 2.69
# Cambiar valores
rto[100] = 3
rto[100]
## [1] 3
# Cuál es el máximo
which.max(rto) # Posición
## [1] 97
rto[which.max(rto)] # valor máximo
## [1] 3.66
# Diagrama de cajas
boxplot(rto)

# Diagrama de cajas en posición horizontal
boxplot(rto, horizontal = T)

# Vector en escala nominal

gn = c("g1", "g2", "g3", "g4", "g5")
gn
## [1] "g1" "g2" "g3" "g4" "g5"
class(gn)
## [1] "character"
# Histograma
hist(rto)

sismo = rexp(n = 100, rate = 0.6)
hist(sismo, ylim = c(0, 50))

boxplot(sismo, horizontal = T)

Importar datos desde excel

# Crear una matriz

M1 = matrix(data = 1:9, nrow = 3, byrow = T)
M1
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6
## [3,]    7    8    9
# Indexar una matrix
# M1[filas, columnas]
M1[1,]
## [1] 1 2 3
M1[,3]
## [1] 3 6 9
M1[2.2]
## [1] 4
M2 = M1[,-3]
M2
##      [,1] [,2]
## [1,]    1    2
## [2,]    4    5
## [3,]    7    8
# Matrix identidad
v1 = rep(1,5)
v1
## [1] 1 1 1 1 1
v2= diag(v1)
v2
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    1    0    0    0    0
## [2,]    0    1    0    0    0
## [3,]    0    0    1    0    0
## [4,]    0    0    0    1    0
## [5,]    0    0    0    0    1
# Dataframes

df = data.frame(MO, rto2)
class(df)
## [1] "data.frame"
df
##      MO rto2
## 1  10.3  3.2
## 2  10.4  3.4
## 3  11.3  3.2
## 4  12.0  3.3
## 5   9.8  3.4
## 6   9.7  3.1
## 7   8.9  2.8
## 8  10.2  2.2
## 9  10.0  2.9
## 10  9.1  1.9
# Dimension del dataframe
dim(df)
## [1] 10  2
dim(M1)
## [1] 3 3
df[5,2] = NA
df
##      MO rto2
## 1  10.3  3.2
## 2  10.4  3.4
## 3  11.3  3.2
## 4  12.0  3.3
## 5   9.8   NA
## 6   9.7  3.1
## 7   8.9  2.8
## 8  10.2  2.2
## 9  10.0  2.9
## 10  9.1  1.9
# Eliminando una fila
df2 = df[-1,]
df2
##      MO rto2
## 2  10.4  3.4
## 3  11.3  3.2
## 4  12.0  3.3
## 5   9.8   NA
## 6   9.7  3.1
## 7   8.9  2.8
## 8  10.2  2.2
## 9  10.0  2.9
## 10  9.1  1.9
# Eliminando una columna
df3 = df2[,-2]
df3
## [1] 10.4 11.3 12.0  9.8  9.7  8.9 10.2 10.0  9.1
df3 = data.frame(MO = df3)
df3$pH = rnorm(9, 6, 0.3)
df3
##     MO       pH
## 1 10.4 6.539142
## 2 11.3 5.756902
## 3 12.0 6.570270
## 4  9.8 6.212686
## 5  9.7 6.220858
## 6  8.9 6.409733
## 7 10.2 5.827121
## 8 10.0 5.758580
## 9  9.1 5.839480
df3$Alt = rnorm(9, 100, 1)
df3
##     MO       pH       Alt
## 1 10.4 6.539142 100.79155
## 2 11.3 5.756902  99.29239
## 3 12.0 6.570270  98.72446
## 4  9.8 6.212686 102.37546
## 5  9.7 6.220858  98.90641
## 6  8.9 6.409733 100.19244
## 7 10.2 5.827121  99.87384
## 8 10.0 5.758580  98.61157
## 9  9.1 5.839480 100.46990
# Cambiando los nombres al dataframe
colnames(df3) = c("N1", "N2", "N3")
df3
##     N1       N2        N3
## 1 10.4 6.539142 100.79155
## 2 11.3 5.756902  99.29239
## 3 12.0 6.570270  98.72446
## 4  9.8 6.212686 102.37546
## 5  9.7 6.220858  98.90641
## 6  8.9 6.409733 100.19244
## 7 10.2 5.827121  99.87384
## 8 10.0 5.758580  98.61157
## 9  9.1 5.839480 100.46990

Escribiendo ecuaciones en latex

\[\LARGE{Latex}\]

\[x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\]