Last updated: 09:53:12 IST, 24 August, 2023
In the standard ‘cars’ dataset, check if there is any correlation between the ‘speed’ and the ‘dist’ variables.
Check summary, scatter plot and do a correlation test using ‘pearson’ method.
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
plot(cars$speed,cars$dist)
# Test for correlation using 'pearson' method.
cor_res <- cor.test(x=cars$speed, y=cars$dist,method='pearson')
cor_res
##
## Pearson's product-moment correlation
##
## data: cars$speed and cars$dist
## t = 9.464, df = 48, p-value = 1.49e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6816422 0.8862036
## sample estimates:
## cor
## 0.8068949