Lendo os dados - Turma A:
setwd("C:/Users/UFMT/Desktop")
DadosA <- read.table("Dados Turma A.csv", sep = ";", header = T, dec = ",")
rownames(DadosA) <- DadosA[,1]
DadosA <- DadosA[,-1]
attach(DadosA)
DadosA
## Y X1 X2
## Gabriela 15 8 16
## Dalila 20 6 12
## Gustavo 20 15 30
## Leticia 40 20 40
## Luiz Ovidio 50 25 50
## Leonor 25 11 22
## Ana 10 5 10
## Antonio 55 32 64
## Julia 35 28 56
## Mariana 30 20 40
Declarando as variáveis - Turma A:
Y=as.numeric(Y)
X1=as.numeric(X1)
X2=as.numeric(X2)
Ajuste - Turma A:
ajusteA <- lm(Y~(X1+X2),data=DadosA)
resumoA <- summary(ajusteA)
resumoA
##
## Call:
## lm(formula = Y ~ (X1 + X2), data = DadosA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.6081 -3.9358 0.6419 5.1351 8.6486
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8784 4.5323 1.297 0.230788
## X1 1.4189 0.2355 6.025 0.000314 ***
## X2 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.719 on 8 degrees of freedom
## Multiple R-squared: 0.8194, Adjusted R-squared: 0.7969
## F-statistic: 36.3 on 1 and 8 DF, p-value: 0.0003144
Correlação entre \(X_1\) e \(X_2\) - Turma A:
plot(X1,X2,ylab="Nº de Cruzamentos",xlab="Distância Percorrida", main="Figura 1: Nº de Cruzamentos em relação a Distância Percorrida até chegar a escola.", cex = 1.5, pch = 18,cex.main = 0.95)
cor.test(X1,X2)
##
## Pearson's product-moment correlation
##
## data: X1 and X2
## t = 189812531, df = 8, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 1 1
## sample estimates:
## cor
## 1
Regressões Auxiliares Turma A
regA <- lm(X1~X2-1)
SregA <- summary(regA)
## Warning in summary.lm(regA): essentially perfect fit: summary may be unreliable
SregA
##
## Call:
## lm(formula = X1 ~ X2 - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.639e-15 -1.260e-15 1.280e-17 1.429e-16 1.230e-14
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X2 5.000e-01 3.525e-17 1.419e+16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.29e-15 on 9 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.012e+32 on 1 and 9 DF, p-value: < 2.2e-16
Cálculo da Tolerância - Turma A:
R2_A <- SregA$r.squared
Tol_A <- 1 - R2_A
Tol_A
## [1] 0
Cálculo do FIV - Turma A:
FIV_A = 1/Tol_A
FIV_A
## [1] Inf
Lendo os dados - Turma B:
rm(list=ls(all=TRUE)) # removendo algoritmos anteriores
DadosB <- read.table("Dados Turma B.csv", sep = ";", header = T, dec = ",")
rownames(DadosB) <- DadosB[,1]
DadosB <- DadosB[,-1]
attach(DadosB)
DadosB
## YB X1B X2B
## Giulia 16 8 16
## Luiz Felipe 12 6 12
## Antonieta 30 15 30
## Americo 39 20 39
## Ferruccio 50 25 50
## Filomena 22 11 22
## Camilo 10 5 10
## Guilherme 64 32 64
## Maria Paula 56 28 56
## Mateus 40 20 35
Declarando as variáveis - Turma B:
YB=as.numeric(YB)
X1B=as.numeric(X1B)
X2B=as.numeric(X2B)
Ajuste - Turma B:
ajusteB <- lm(YB~(X1B+X2B),data=DadosB)
resumoB <- summary(ajusteB)
resumoB
##
## Call:
## lm(formula = YB ~ (X1B + X2B), data = DadosB)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.88388 0.05572 0.07750 0.12524 0.17678
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03395 0.24030 -0.141 0.892
## X1B 1.96632 0.15035 13.078 3.56e-06 ***
## X2B 0.01517 0.07576 0.200 0.847
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3553 on 7 degrees of freedom
## Multiple R-squared: 0.9997, Adjusted R-squared: 0.9996
## F-statistic: 1.285e+04 on 2 and 7 DF, p-value: 3.336e-13
Correlação entre \(X_1\) e \(X_2\) - Turma B:
plot(X1B,X2B,ylab="Nº de Cruzamentos",xlab="Distância Percorrida", main="Figura 2: Nº de Cruzamentos em relação a Distância Percorrida até chegar a escola.", cex = 1.5, pch = 20,cex.main = 0.95)
cor.test(X1B,X2B)
##
## Pearson's product-moment correlation
##
## data: X1B and X2B
## t = 34.027, df = 8, p-value = 6.079e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9849659 0.9992179
## sample estimates:
## cor
## 0.9965631
Regressões Auxiliares Turma B
regB <- lm(X1B~X2B-1)
SregB <- summary(regB)
SregB
##
## Call:
## lm(formula = X1B ~ X2B - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47681 -0.33526 -0.14155 -0.07823 2.23924
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X2B 0.507450 0.006642 76.4 5.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.796 on 9 degrees of freedom
## Multiple R-squared: 0.9985, Adjusted R-squared: 0.9983
## F-statistic: 5837 on 1 and 9 DF, p-value: 5.707e-14
Cálculo da Tolerância - Turma B:
R2_B <- SregB$r.squared
Tol_B <- 1 - R2_B
Tol_B
## [1] 0.00153964
Cálculo do FIV - Turma B:
FIV_B = 1/Tol_B
FIV_B
## [1] 649.5024
Lendo os dados - Turma C:
rm(list=ls(all=TRUE)) # removendo algoritmos anteriores
DadosC <- read.table("Dados Turma C.csv", sep = ";", header = T, dec = ",")
rownames(DadosC) <- DadosC[,1]
DadosC <- DadosC[,-1]
attach(DadosC)
DadosC
## YC X1C X2C
## Juliana 15 8 12
## Raquel 20 6 20
## Larissa 20 15 25
## Rogerio 40 20 37
## Isabel 50 25 32
## Wilson 25 11 17
## Luciana 10 5 9
## Sandra 55 32 60
## Oswaldo 35 28 12
## Lucas 30 20 17
Declarando as variáveis - Turma B:
YC=as.numeric(YC)
X1C=as.numeric(X1C)
X2C=as.numeric(X2C)
Ajuste - Turma B:
ajusteC <- lm(YC~(X1C+X2C),data=DadosC)
resumoC <- summary(ajusteC)
resumoC
##
## Call:
## lm(formula = YC ~ (X1C + X2C), data = DadosC)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2584 -2.0734 -0.9101 2.7025 8.8563
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6635 3.6942 0.992 0.35439
## X1C 1.0343 0.2448 4.224 0.00392 **
## X2C 0.3632 0.1504 2.415 0.04643 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.305 on 7 degrees of freedom
## Multiple R-squared: 0.9015, Adjusted R-squared: 0.8734
## F-statistic: 32.03 on 2 and 7 DF, p-value: 3e-04
Correlação entre \(X_1\) e \(X_2\) - Turma C:
plot(X1C,X2C,ylab="Nº de Cruzamentos",xlab="Distância Percorrida", main="Figura 3: Nº de Cruzamentos em relação a Distância Percorrida até chegar a escola.", cex = 1.5, pch = 17,cex.main = 0.95)
cor.test(X1C,X2C)
##
## Pearson's product-moment correlation
##
## data: X1C and X2C
## t = 2.4228, df = 8, p-value = 0.04167
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.03543846 0.90818163
## sample estimates:
## cor
## 0.6505491
Regressões Auxiliares Turma C
regC <- lm(X1C~X2C-1)
SregC <- summary(regC)
SregC
##
## Call:
## lm(formula = X1C ~ X2C - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4520 -2.4280 -0.0746 3.9398 20.5288
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X2C 0.62260 0.09274 6.713 8.72e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.277 on 9 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8151
## F-statistic: 45.07 on 1 and 9 DF, p-value: 8.719e-05
Cálculo da Tolerância - Turma C:
R2_C <- SregC$r.squared
Tol_C <- 1 - R2_C
Tol_C
## [1] 0.1664504
Cálculo do FIV - Turma C:
FIV_C = 1/Tol_C
FIV_C
## [1] 6.007796