1 Setup

Libraries and functions

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 

Mypackages <-
  c("lme4","tidyverse","effects","ggplot2","psych",
    "MASS","Rmisc","lmerTest","ggthemes", "knitr",
    "lsmeans","pastecs","sjstats","car","ordinal",
    "Rcpp","corrplot", "ggpubr", "EnvStats",
    "easyStats", "cowplot","see","datawizard", "ggcorrplot",
    "corrplot", "effects", "lme4", "sjPlot"
    )

# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages! 
lapply(Mypackages,
       require,
       character.only = TRUE)

options(knitr.kable.NA = '—')
set.seed(1)  

1.1 Load Data

# read in data files
gjg <-read.csv("/Users/mtrenfield17/Desktop/Research/Boston College Research/Institutional Signaling/Study 3/IVS Action.csv")

1.2 Functions

plot_cooker <- function(data, iv, dv, title) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
    ggtitle(title)
  ggpar(part1, legend = "none")
}

wrapped_plot_cooker <- function(data, iv, dv, title, facet_var) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2, 
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
    ggtitle(title) +
    facet_wrap(vars({{facet_var}}))
  ggpar(part1, legend = "none")
}

by_line <- function(data, iv, dv, x_label, y_label, color_label, plot_title) {
  ggplot(data, aes(x = {{iv}}, y = {{dv}}, color = condition)) +
    stat_summary(fun.data = "mean_cl_normal", geom = "line") +
    geom_point(position = position_jitter(width = 0.1, height = 0.1), alpha = 0.2) +
    labs(x = x_label, y = y_label, color = color_label, title = plot_title)
}

1.3 Reshaping data

#### filtering people who failed the attn check ####
filtered_gjg <-  gjg %>% filter(attentionCheck == 3 | attentionCheck == 7)

#### make dataset long ####
gjg_long <- filtered_gjg %>% gather(stim, resp, "B_C_Chic_staticNorm_18":"C_C_Star_riskInact") 

gjg_long<-gjg_long %>%
  separate(stim, into= c("social_issue", "action", "company", "DV"), sep="_")

## shift dataset back to wide format ##
gjg_long <- spread(gjg_long, DV, resp)

gjg_long <- gjg_long %>% mutate_at(c("dyNorm", "noisyMin", "OComp", "OLike", "OMotivate", "OTrust", "peerPress", "Profit", "pubPress", "Rep", "riskInact", "SComp", "SGen", "SImport", "SLike", "SRelImport", "staticNorm", "STrust", "surprise","post_Real_Check", "age", "prolificID", "area", "pol", "edu", "gen", "inc"), as.numeric)

## Rename Vignettes
gjg_long <- gjg_long %>%
  mutate(companyLeaning = case_when(
    company == "Bud" ~ "R",
    company == "CAR" ~ "R",
    company == "Chic" ~ "R",
    company == "Dis" ~ "L",
    company == "Pop" ~ "L",
    company == "Star" ~ "L",
    company == "Tar" ~ "L",
    company == "Wal" ~ "R",
    company == "WNBA" ~ "L",
    company == "Fox" ~ "R",
    company == "NBC" ~ "L",
    company == "NBA" ~ "L",
    company == "NFL" ~ "R",
    TRUE ~ company  # if none of the above conditions are met, keep the original value
  ))

gjg_long$condition <- paste0(gjg_long$companyLeaning, gjg_long$action)

gjg_long <- gjg_long %>%
  mutate(condition = case_when(
    condition == "CC" ~ "Conservative \n\ Progressive Mess.",
    condition == "CI" ~ "Liberal \n\ Control",
    condition == "RS" ~ "Conservative \n\ Progressive Mess.",
    condition == "RN" ~ "Conservative \n\ Control",
    TRUE ~ condition  # if none of the above conditions are met, keep the original value
  ))

gjg_long <- gjg_long %>%
  mutate(companyLeaning = case_when(
    companyLeaning == "R" ~ "Right",
    companyLeaning == "L" ~ "Left",
    TRUE ~ companyLeaning  # if none of the above conditions are met, keep the original value
  ))


gjg_long <- gjg_long %>%
  mutate(company = case_when(
    company == "Bud" ~ "Budweiser",
    company == "CAR" ~ "NASCAR",
    company == "Chic" ~ "Chick-fil-A",
    company == "Dis" ~ "Disney",
    company == "Pop" ~ "Popeyes",
    company == "Star" ~ "Starbucks",
    company == "Tar" ~ "Target",
    company == "Wal" ~ "Walmart",
    TRUE ~ company  # if none of the above conditions are met, keep the original value
  ))

## Rename Conditions
gjg_long$signal <- as.factor(gjg_long$action)
gjg_long <- gjg_long %>%
  mutate(signal = case_when(
    action == "C" ~ "Consistent",
    action == "I" ~ "Inconsistent",
    TRUE ~ signal  # if none of the above conditions are met, keep the original value
  ))

gjg_long$social_issue <- as.factor(gjg_long$social_issue)
gjg_long <- gjg_long %>%
  mutate(social_issue = case_when(
    social_issue == "T" ~ "Transgendered Representation",
    social_issue == "C" ~ "Climate Change",
    social_issue == "L" ~ "LGBTQ Representation",
    social_issue == "B" ~ "BLM",
    TRUE ~ social_issue  # if none of the above conditions are met, keep the original value
  ))

## filter out rows for condition-vignette pairs people DON'T see
gjg_long <- gjg_long %>% filter(is.na(dyNorm) == FALSE)

2 Attention Check

gjg %>%
  group_by(consent) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

gjg %>%
  group_by(attentionCheck) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

22 people did not accept the consent.

2/801 people failed the attention check.

3 Demographics

# Subset your data frame to include only the demographic columns
demo_gjg <- gjg[, c("gen_TEXT", "race_TEXT", "inc_TEXT", "edu_TEXT", "pol_TEXT", "pid_TEXT", "area_TEXT")]

# Age
mean(gjg$age, na.rm=TRUE)
## [1] 42.80025
sd(gjg$age, na.rm=TRUE)
## [1] 14.16845
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()

for (col in names(demo_gjg)) {
  {
    freq_table <- as.data.frame(table(demo_gjg[[col]]))
    freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
    freq_tables[[col]] <- freq_table
  }
}

# Print the frequency tables
for (i in seq_along(freq_tables)) {
  if (!is.null(freq_tables[[i]])) {
    cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
    print(freq_tables[[i]])
  }
}
## 
## Table of frequencies for gen_TEXT :
##             Var1 Freq Percent
## 1                  22    2.67
## 2 I identify as:   13    1.58
## 3            Man  396   48.12
## 4          Woman  392   47.63
## 
## Table of frequencies for race_TEXT :
##                                                                                                                                                                                 Var1
## 1                                                                                                                                                                                   
## 2                                                                                                                                                 American Indian and Native Alaskan
## 3                                                                                                                                           American Indian and Native Alaskan,Black
## 4  American Indian and Native Alaskan,Black,East Asian,South Asian,Southeast Asian,Pacific Islander or Native Hawaiian,Hispanic or Latino/a/x,Middle Eastern and North African,White
## 5                                                                                                                    American Indian and Native Alaskan,Black,Hispanic or Latino/a/x
## 6                                                                                                                                     American Indian and Native Alaskan,Black,White
## 7                                                                                                                          American Indian and Native Alaskan,Hispanic or Latino/a/x
## 8                                                                                                                                           American Indian and Native Alaskan,White
## 9                                                                                                                                                                              Black
## 10                                                                                                                                     Black,East Asian,Hispanic or Latino/a/x,White
## 11                                                                                                                                                Black,Hispanic or Latino/a/x,White
## 12                                                                                                                                                                       Black,White
## 13                                                                                                                                                                        East Asian
## 14                                                                                                                                       East Asian,Middle Eastern and North African
## 15                                                                                                                                                        East Asian,Southeast Asian
## 16                                                                                                                                                                  East Asian,White
## 17                                                                                                                                                            Hispanic or Latino/a/x
## 18                                                                                                                                                      Hispanic or Latino/a/x,White
## 19                                                                                                                                                  Middle Eastern and North African
## 20                                                                                                                                            Middle Eastern and North African,White
## 21                                                                                                                                                                       South Asian
## 22                                                                                                                             South Asian,Pacific Islander or Native Hawaiian,White
## 23                                                                                                                                                                   Southeast Asian
## 24                                                                                                                         Southeast Asian,Pacific Islander or Native Hawaiian,White
## 25                                                                                                                                                             Southeast Asian,White
## 26                                                                                                                                                                             White
##    Freq Percent
## 1    22    2.67
## 2     1    0.12
## 3     2    0.24
## 4     1    0.12
## 5     1    0.12
## 6     3    0.36
## 7     1    0.12
## 8     8    0.97
## 9    64    7.78
## 10    1    0.12
## 11    3    0.36
## 12    8    0.97
## 13   22    2.67
## 14    2    0.24
## 15    1    0.12
## 16    7    0.85
## 17   27    3.28
## 18   20    2.43
## 19    3    0.36
## 20    3    0.36
## 21    9    1.09
## 22    1    0.12
## 23   12    1.46
## 24    1    0.12
## 25    4    0.49
## 26  596   72.42
## 
## Table of frequencies for inc_TEXT :
##                  Var1 Freq Percent
## 1                       22    2.67
## 2 $100,000 - $149,999  107   13.00
## 3 $150,000 - $199,999   46    5.59
## 4   $25,000 - $49,999  205   24.91
## 5   $50,000 - $74,999  165   20.05
## 6   $75,000 - $99,999  131   15.92
## 7   less than $25,000  128   15.55
## 8  more than $200,000   19    2.31
## 
## Table of frequencies for edu_TEXT :
##                                                   Var1 Freq Percent
## 1                                                        22    2.67
## 2                                    Bachelor's degree  279   33.90
## 3                  Graduate degree (Masters, PhD, etc)  111   13.49
## 4                           High school diploma or GED  136   16.52
## 5 Some college, Technical degree, or Associates degree  271   32.93
## 6 Some schooling, but no high school diploma or degree    4    0.49
## 
## Table of frequencies for pol_TEXT :
##                    Var1 Freq Percent
## 1                         22    2.67
## 2          Conservative  142   17.25
## 3               Liberal  110   13.37
## 4              Moderate  187   22.72
## 5 Somewhat Conservative   92   11.18
## 6      Somewhat Liberal   94   11.42
## 7     Very Conservative   65    7.90
## 8          Very Liberal  111   13.49
## 
## Table of frequencies for pid_TEXT :
##                  Var1 Freq Percent
## 1                       22    2.67
## 2            Democrat  298   36.21
## 3 Independent / Other  255   30.98
## 4          Republican  248   30.13
## 
## Table of frequencies for area_TEXT :
##       Var1 Freq Percent
## 1            22    2.67
## 2    Rural  157   19.08
## 3 Suburban  439   53.34
## 4    Urban  205   24.91

4 Correlation

DVs <- gjg_long[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "post_Real_Check", "age", "pol", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.6, insig = "label_sig", diag = FALSE)

4.1 Correlation for liberal participants

gjg_polLib <- gjg_long %>% filter(pol > 4)

DVs <- gjg_polLib[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "post_Real_Check", "age", "pol", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.5, insig = "label_sig", diag = FALSE)

4.2 Correlation for conservative participants

gjg_polCon <- gjg_long %>% filter(pol < 4)

DVs <- gjg_polCon[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "post_Real_Check", "age", "pol", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.5, insig = "label_sig", diag = FALSE)

4.3 Correlation for moderate participants

gjg_polMod <- gjg_long %>% filter(pol == 4)

DVs <- gjg_polMod[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "post_Real_Check", "age", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "belief in manipulation", "age", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.5, insig = "label_sig", diag = FALSE)

5 EFA

5.1 Evaluating the correlation matrix

factorCor <- cor(factorDVs, use = "complete.obs")

# Assuming you have a correlation matrix named "correlation_matrix"
correlation_threshold <- 0.8
high_correlations <- which(factorCor > correlation_threshold & upper.tri(factorCor, diag = FALSE), arr.ind = TRUE)

# Extract the row and column indices of high correlations
row_indices <- high_correlations[, 1]
column_indices <- high_correlations[, 2]

# Extract the correlations greater than 0.8
high_correlation_values <- factorCor[high_correlations]

# Print the results
high_correlation_results <- data.frame(row_indices, column_indices, high_correlation_values)
print(high_correlation_results)

efaDVs <- factorDVs

5.2 Determining number of factors

  • Scree plot suggests 5-6 factors

  • Parallel Analysis suggests 6

  • eigenvalue method suggests 5

## evaluating data
corr_DVs = cor(efaDVs, use="complete.obs")
KMO(efaDVs)
cortest.bartlett(efaDVs) #tests correlations between variables

##
ev<-eigen(corr_DVs) #gets eigenvalues (variance explained by each component)
ev$values
scree(efaDVs, pc = FALSE) #number of factors until plot levels off

fa.parallel(efaDVs, fa="fa") #checks eigenvalues of factors against eigenvalues of identity (no correlation) matrix

dat_fa <- na.omit(DVs)

5.3 5 Factors

fit <- factanal(na.omit(efaDVs), factors=5, rotation="promax", scores = "regression")
print(fit, digits = 2, cutoff = .4, sort = TRUE)

loads <- fit$loadings
fa.diagram(loads)

## Cronbach's Alpha
f1 <- efaDVs[ , c("STrust", "SLike", "SComp", "SGen", "OMotivate")]
f2 <- efaDVs[ , c("SImport", "SRelImport", "staticNorm", "noisyMin")]
f3 <- efaDVs[ , c("OTrust", "OComp", "OLike")]
f4 <- efaDVs[ , c("peerPress", "pubPress", "riskInact", "surprise")]
f5 <- efaDVs[ , c("Rep", "Profit")]
alpha(f1)
alpha(f2)
alpha(f3)
alpha(f4)
alpha(f5)

5.4 6 Factors (Going with 6 factor)

fit <- factanal(na.omit(efaDVs), factors=6, rotation="promax", scores = "regression")
print(fit, digits = 2, cutoff = .4, sort = TRUE)

loads <- fit$loadings
fa.diagram(loads)

## Cronbach's Alpha
f1 <- efaDVs[ , c("STrust", "SLike", "SComp", "SGen")]
f2 <- efaDVs[ , c("OTrust", "OComp", "OLike")]
f3 <- efaDVs[ , c("SImport", "SRelImport", "staticNorm", "noisyMin")]
f4 <- efaDVs[ , c("peerPress", "pubPress", "riskInact")]
f5 <- efaDVs[ , c("Rep", "Profit")]
f6 <- efaDVs[ , c("dyNorm", "OMotivate", "SGen")]
alpha(f1)
alpha(f2)
alpha(f3)
alpha(f4)
alpha(f5)
alpha(f6)

6 Plots + Inferential Stats

6.1 All Plots

plot_list <- list(plot_cooker(gjg_long, condition, staticNorm, "Percent of support for issue"),
                         plot_cooker(gjg_long, condition, dyNorm, "Change in support for issue"),
                         plot_cooker(gjg_long, condition, SImport, "I think cause is important"),
                         plot_cooker(gjg_long, condition, SRelImport, "I think cause is important relative to other causes"),
                         plot_cooker(gjg_long, condition, OMotivate, "Message motivates others to act"),
                         plot_cooker(gjg_long, condition, surprise, "Surprise"),
                         plot_cooker(gjg_long, condition, SGen, "I think company is genuine"),
                         plot_cooker(gjg_long, condition, Rep, "Reputation motive"),
                         plot_cooker(gjg_long, condition, Profit, "Profit motive"),
                         plot_cooker(gjg_long, condition, noisyMin, "Motive to cater to noisy minority"),
                         plot_cooker(gjg_long, condition, peerPress, "Pressured by peer companies"),
                         plot_cooker(gjg_long, condition, pubPress, "Pressured by public"),
                         plot_cooker(gjg_long, condition, riskInact, "Risky NOT to send signal"),
                         plot_cooker(gjg_long, condition, SLike, "I like company"),
                         plot_cooker(gjg_long, condition, STrust, "I trust company"),
                         plot_cooker(gjg_long, condition, SComp, "I think company is competent"),
                         plot_cooker(gjg_long, condition, OLike, "Others like company"),
                         plot_cooker(gjg_long, condition, OTrust, "Others trust company"),
                         plot_cooker(gjg_long, condition, OComp, "Others think company is competent")
                        )

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 5, nrow = 4)
plot_arranged

6.2 Factor Plots + Tests

6.2.1 Creating Factors

# Factor 1
gjg_long$selfPercep_z <- rowMeans(scale(gjg_long[, c("STrust", "SLike", "SComp", "SGen")], center = TRUE, scale = TRUE), na.rm = TRUE)

# Factor 2
gjg_long$otherPercep_z <- rowMeans(scale(gjg_long[, c("OTrust", "OComp", "OLike")], center = TRUE, scale = TRUE), na.rm = TRUE)

# Factor 3
gjg_long$noisyMin_R <- max(gjg_long$noisyMin) + min(gjg_long$noisyMin) - gjg_long$noisyMin

gjg_long$issueImport_z <- rowMeans(scale(gjg_long[, c("SImport", "SRelImport", "staticNorm", "noisyMin_R")], center = TRUE, scale = TRUE), na.rm = TRUE)

# Factor 4
gjg_long$externalMotive_z <- rowMeans(scale(gjg_long[, c("peerPress", "pubPress", "riskInact")], center = TRUE, scale = TRUE), na.rm = TRUE)

# Factor 5
gjg_long$selfishMotive_z <- rowMeans(scale(gjg_long[, c("Rep", "Profit")], center = TRUE, scale = TRUE), na.rm = TRUE)

# Factor 6
gjg_long$driveAction_z <- rowMeans(scale(gjg_long[, c("dyNorm", "OMotivate", "SGen")], center = TRUE, scale = TRUE), na.rm = TRUE)

6.2.2 All factor plot

plot_list <- list(plot_cooker(gjg_long, condition, selfPercep_z, "Perception of company"),
                         plot_cooker(gjg_long, condition, otherPercep_z, "Others' perception of company"),
                         plot_cooker(gjg_long, condition, issueImport_z, "Importance of cause"),
                         plot_cooker(gjg_long, condition, externalMotive_z, "External Motives"),
                         plot_cooker(gjg_long, condition, selfishMotive_z, "Selfish Motives"),
                         plot_cooker(gjg_long, condition, driveAction_z, "Motivate Others to Act")
                        )

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 3, nrow = 2)
plot_arranged

6.2.3 Tests

  • There is a main effect of company leaning and consistency for all factors ASIDE for factor 3: issue importance

  • There is an interact effect for factors: selfish motivation (5) and motivating others to act (6)

  • Other perception (2) has a main effect of participants political leaning (liberals believe others perceive companies more positively)

  • Issue importance (3) only has a main effect for political leaning

  • Drive others to act has a marginal main effect of participants political leaning (liberals think they messages are more driving)

# Factor 1
mod_selfPercep <- lmer(selfPercep_z ~ companyLeaning*action + (1 | participantID) + (1 | social_issue) + (1 | company), data = gjg_long)
summary(mod_selfPercep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: selfPercep_z ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue) + (1 | company)
##    Data: gjg_long
## 
## REML criterion at convergence: 7376.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0907 -0.5969  0.0485  0.6017  3.8752 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.280153 0.5293  
##  company       (Intercept) 0.030391 0.1743  
##  social_issue  (Intercept) 0.008135 0.0902  
##  Residual                  0.418201 0.6467  
## Number of obs: 3196, groups:  participantID, 799; company, 13; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.31997    0.08537   13.08367   3.748  0.00241
## companyLeaningRight           -0.26845    0.10257   11.85057  -2.617  0.02270
## actionI                       -0.28900    0.03280 2391.00000  -8.810  < 2e-16
## companyLeaningRight:actionI   -0.01234    0.04607 2392.09199  -0.268  0.78880
##                                
## (Intercept)                 ** 
## companyLeaningRight         *  
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.560              
## actionI     -0.186  0.155       
## cmpnyLnnR:I  0.132 -0.221 -0.712
mod_pol_selfPercep <- lmer(selfPercep_z ~ companyLeaning*action + pol +  (1 | participantID) + (1 | social_issue) + + (1 | company), data = gjg_long)
summary(mod_pol_selfPercep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: selfPercep_z ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue) + +(1 | company)
##    Data: gjg_long
## 
## REML criterion at convergence: 7380.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0889 -0.5955  0.0466  0.5979  3.8854 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.279386 0.52857 
##  company       (Intercept) 0.030402 0.17436 
##  social_issue  (Intercept) 0.008147 0.09026 
##  Residual                  0.418171 0.64666 
## Number of obs: 3196, groups:  participantID, 799; company, 13; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.23967    0.09809   22.71076   2.443   0.0227
## companyLeaningRight           -0.26855    0.10259   11.84900  -2.618   0.0227
## actionI                       -0.28890    0.03280 2391.28743  -8.808   <2e-16
## pol                            0.01962    0.01179  792.00314   1.664   0.0965
## companyLeaningRight:actionI   -0.01243    0.04606 2392.30546  -0.270   0.7872
##                                
## (Intercept)                 *  
## companyLeaningRight         *  
## actionI                     ***
## pol                         .  
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.487                     
## actionI     -0.163  0.155              
## pol         -0.492 -0.001  0.002       
## cmpnyLnnR:I  0.116 -0.221 -0.712 -0.001
# Factor 2
mod_otherPercep <- lmer(otherPercep_z ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_otherPercep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: otherPercep_z ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 7940.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9033 -0.4244  0.1238  0.5621  3.3713 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.322207 0.56763 
##  social_issue  (Intercept) 0.004554 0.06749 
##  Residual                  0.508626 0.71318 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.18057    0.04667    8.41497   3.869  0.00431
## companyLeaningRight           -0.23097    0.03568 2389.74688  -6.473 1.16e-10
## actionI                       -0.10807    0.03595 2393.55912  -3.006  0.00267
## companyLeaningRight:actionI   -0.02625    0.05064 2393.94294  -0.518  0.60421
##                                
## (Intercept)                 ** 
## companyLeaningRight         ***
## actionI                     ** 
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.382              
## actionI     -0.380  0.496       
## cmpnyLnnR:I  0.269 -0.705 -0.710
mod_pol_otherPercep <- lmer(otherPercep_z ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_otherPercep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: otherPercep_z ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 7918.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9612 -0.4278  0.1227  0.5633  3.4399 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.306707 0.55381 
##  social_issue  (Intercept) 0.004581 0.06768 
##  Residual                  0.508620 0.71318 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   -0.09821    0.06927   39.48374  -1.418  0.16410
## companyLeaningRight           -0.23097    0.03568 2389.80325  -6.473 1.16e-10
## actionI                       -0.10800    0.03595 2393.63375  -3.004  0.00269
## pol                            0.06806    0.01253  796.69911   5.433 7.35e-08
## companyLeaningRight:actionI   -0.02632    0.05064 2393.97917  -0.520  0.60328
##                                
## (Intercept)                    
## companyLeaningRight         ***
## actionI                     ** 
## pol                         ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.258                     
## actionI     -0.256  0.496              
## pol         -0.741  0.000  0.001       
## cmpnyLnnR:I  0.182 -0.705 -0.710  0.000
# Factor 3
mod_issueImport <- lmer(issueImport_z ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_issueImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: issueImport_z ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5732.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3064 -0.5384  0.0074  0.5456  3.7772 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.3625   0.6021  
##  social_issue  (Intercept) 0.1160   0.3406  
##  Residual                  0.2068   0.4547  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  3.964e-02  1.724e-01  3.135e+00   0.230    0.832
## companyLeaningRight         -1.406e-02  2.275e-02  2.391e+03  -0.618    0.537
## actionI                     -2.566e-05  2.295e-02  2.391e+03  -0.001    0.999
## companyLeaningRight:actionI -4.817e-02  3.230e-02  2.391e+03  -1.491    0.136
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.066              
## actionI     -0.065  0.496       
## cmpnyLnnR:I  0.046 -0.704 -0.710
mod_pol_issueImport <- lmer(issueImport_z ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_issueImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: issueImport_z ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5273.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3415 -0.5494  0.0014  0.5405  3.6240 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.1793   0.4234  
##  social_issue  (Intercept) 0.1151   0.3392  
##  Residual                  0.2068   0.4547  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 -9.027e-01  1.751e-01  3.391e+00  -5.156   0.0104
## companyLeaningRight         -1.405e-02  2.275e-02  2.390e+03  -0.618   0.5368
## actionI                     -5.538e-04  2.295e-02  2.392e+03  -0.024   0.9807
## pol                          2.300e-01  9.139e-03  7.964e+02  25.170   <2e-16
## companyLeaningRight:actionI -4.765e-02  3.230e-02  2.391e+03  -1.475   0.1403
##                                
## (Intercept)                 *  
## companyLeaningRight            
## actionI                        
## pol                         ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.065                     
## actionI     -0.065  0.496              
## pol         -0.214  0.000  0.001       
## cmpnyLnnR:I  0.046 -0.704 -0.710  0.000
# Factor 4
mod_externalMotive <- lmer(externalMotive_z ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_externalMotive)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: externalMotive_z ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 6801.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4879 -0.5784  0.0138  0.5981  3.3897 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.27151  0.5211  
##  social_issue  (Intercept) 0.01088  0.1043  
##  Residual                  0.34078  0.5838  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   -0.16495    0.05905    4.55886  -2.793   0.0424
## companyLeaningRight            0.08706    0.02921 2390.91182   2.981   0.0029
## actionI                        0.26743    0.02945 2394.36842   9.081   <2e-16
## companyLeaningRight:actionI   -0.04387    0.04147 2392.78575  -1.058   0.2901
##                                
## (Intercept)                 *  
## companyLeaningRight         ** 
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.247              
## actionI     -0.245  0.496       
## cmpnyLnnR:I  0.174 -0.704 -0.710
mod_pol_externalMotive <- lmer(externalMotive_z ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_externalMotive)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## externalMotive_z ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 6808.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4883 -0.5794  0.0137  0.5977  3.3892 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.27195  0.5215  
##  social_issue  (Intercept) 0.01088  0.1043  
##  Residual                  0.34078  0.5838  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 -1.613e-01  7.520e-02  1.195e+01  -2.145   0.0532
## companyLeaningRight          8.706e-02  2.921e-02  2.391e+03   2.981   0.0029
## actionI                      2.674e-01  2.945e-02  2.394e+03   9.081   <2e-16
## pol                         -8.876e-04  1.136e-02  7.969e+02  -0.078   0.9378
## companyLeaningRight:actionI -4.387e-02  4.147e-02  2.393e+03  -1.058   0.2901
##                                
## (Intercept)                 .  
## companyLeaningRight         ** 
## actionI                     ***
## pol                            
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.194                     
## actionI     -0.193  0.496              
## pol         -0.619  0.000  0.001       
## cmpnyLnnR:I  0.137 -0.704 -0.710  0.000
# Factor 5
mod_selfishMotive <- lmer(selfishMotive_z ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_selfishMotive)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: selfishMotive_z ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 7718.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5209 -0.4509  0.1066  0.5613  3.3803 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.36148  0.60123 
##  social_issue  (Intercept) 0.00581  0.07622 
##  Residual                  0.45474  0.67435 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   -0.17029    0.04974    7.08834  -3.424  0.01087
## companyLeaningRight            0.10818    0.03374 2390.38742   3.206  0.00136
## actionI                        0.30551    0.03400 2394.70903   8.985  < 2e-16
## companyLeaningRight:actionI   -0.12443    0.04789 2393.74615  -2.598  0.00943
##                                
## (Intercept)                 *  
## companyLeaningRight         ** 
## actionI                     ***
## companyLeaningRight:actionI ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.339              
## actionI     -0.337  0.496       
## cmpnyLnnR:I  0.239 -0.704 -0.710
plot_cooker(gjg_long, condition, selfishMotive_z, "Selfish Motives")

mod_selfishMotive <- lmer(selfishMotive_z ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_selfishMotive)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## selfishMotive_z ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 7725
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5148 -0.4517  0.1049  0.5622  3.3849 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.361969 0.60164 
##  social_issue  (Intercept) 0.005815 0.07625 
##  Residual                  0.454744 0.67435 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   -0.19302    0.07323   32.65158  -2.636  0.01273
## companyLeaningRight            0.10818    0.03374 2390.39450   3.206  0.00136
## actionI                        0.30552    0.03400 2394.70876   8.985  < 2e-16
## pol                            0.00555    0.01311  796.92137   0.423  0.67227
## companyLeaningRight:actionI   -0.12444    0.04789 2393.74784  -2.598  0.00942
##                                
## (Intercept)                 *  
## companyLeaningRight         ** 
## actionI                     ***
## pol                            
## companyLeaningRight:actionI ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.230                     
## actionI     -0.229  0.496              
## pol         -0.734  0.000  0.001       
## cmpnyLnnR:I  0.163 -0.704 -0.710  0.000
# Factor 6
mod_driveAction <- lmer(driveAction_z ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_driveAction)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: driveAction_z ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 6131.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5246 -0.5641  0.0433  0.5961  2.8869 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.25197  0.5020  
##  social_issue  (Intercept) 0.01406  0.1186  
##  Residual                  0.26725  0.5170  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.26553    0.06454    4.00576   4.114   0.0146
## companyLeaningRight           -0.21552    0.02586 2390.56912  -8.333   <2e-16
## actionI                       -0.25916    0.02608 2393.35463  -9.936   <2e-16
## companyLeaningRight:actionI   -0.08032    0.03672 2391.98099  -2.187   0.0288
##                                
## (Intercept)                 *  
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.200              
## actionI     -0.199  0.496       
## cmpnyLnnR:I  0.141 -0.704 -0.710
plot_cooker(gjg_long, condition, driveAction_z, "Motivate Others to Act")

mod_pol_driveAction <- lmer(driveAction_z ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_driveAction)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: driveAction_z ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 6135.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5240 -0.5593  0.0470  0.5963  2.8957 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.25107  0.5011  
##  social_issue  (Intercept) 0.01408  0.1187  
##  Residual                  0.26725  0.5170  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.18622    0.07809    8.54613   2.385   0.0423
## companyLeaningRight           -0.21552    0.02586 2390.58405  -8.333   <2e-16
## actionI                       -0.25913    0.02608 2393.36640  -9.935   <2e-16
## pol                            0.01936    0.01072  796.87577   1.806   0.0713
## companyLeaningRight:actionI   -0.08035    0.03672 2391.99420  -2.188   0.0288
##                                
## (Intercept)                 *  
## companyLeaningRight         ***
## actionI                     ***
## pol                         .  
## companyLeaningRight:actionI *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.166                     
## actionI     -0.165  0.496              
## pol         -0.562  0.000  0.001       
## cmpnyLnnR:I  0.117 -0.704 -0.710  0.000
plot_cooker(gjg_long, condition, driveAction_z, "Motivate Others to Act")

6.3 Factor SubPlots + Tests

6.3.1 Factor 1: Perception of Companies

plot_list <- list(       
                         plot_cooker(gjg_long, condition, SLike, "I like company"),
                         plot_cooker(gjg_long, condition, STrust, "I trust company"),
                         plot_cooker(gjg_long, condition, SComp, "I think company is competent"),
                         plot_cooker(gjg_long, condition, SGen, "I think company is genuine")
)

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 2, nrow = 2)
plot_arranged

6.3.1.1 Factor 1 Items Tests

  • All main effects, no interaction effects

  • Signficant main effect of participant political leaning for competence (but not warmth)

# Like
mod_like <- lmer(SLike ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_like)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12660.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.65444 -0.69809  0.07469  0.69303  2.98340 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.93225  0.9655  
##  social_issue  (Intercept) 0.04603  0.2145  
##  Residual                  2.42198  1.5563  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.47211    0.12532    4.88688  35.686 4.25e-07
## companyLeaningRight           -0.61112    0.07786 2390.93718  -7.849 6.29e-15
## actionI                       -0.35495    0.07849 2395.61999  -4.522 6.41e-06
## companyLeaningRight:actionI   -0.02653    0.11053 2393.76447  -0.240     0.81
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.311              
## actionI     -0.308  0.496       
## cmpnyLnnR:I  0.219 -0.704 -0.710
mod_pol_like <- lmer(SLike ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_like)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12663.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.63384 -0.70177  0.06935  0.69054  3.01288 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.92904  0.9639  
##  social_issue  (Intercept) 0.04612  0.2148  
##  Residual                  2.42197  1.5563  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.31445    0.15822   12.33290  27.268 2.13e-12
## companyLeaningRight           -0.61112    0.07786 2390.95136  -7.849 6.28e-15
## actionI                       -0.35485    0.07849 2395.62436  -4.521 6.45e-06
## pol                            0.03849    0.02356  797.04458   1.634    0.103
## companyLeaningRight:actionI   -0.02662    0.11053 2393.77172  -0.241    0.810
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## pol                            
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.246                     
## actionI     -0.245  0.496              
## pol         -0.610  0.000  0.001       
## cmpnyLnnR:I  0.174 -0.704 -0.710 -0.001
# Trust
mod_pol_trust <- lmer(STrust ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_trust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12085.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0243 -0.6300  0.0331  0.6277  3.3431 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.17684  1.0848  
##  social_issue  (Intercept) 0.02828  0.1682  
##  Residual                  1.86341  1.3651  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.11158    0.10428    5.99278  39.429 1.81e-08
## companyLeaningRight           -0.45203    0.06830 2390.95968  -6.619 4.46e-11
## actionI                       -0.45434    0.06884 2395.13970  -6.600 5.04e-11
## companyLeaningRight:actionI   -0.04612    0.09695 2393.88568  -0.476    0.634
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.327              
## actionI     -0.325  0.496       
## cmpnyLnnR:I  0.231 -0.704 -0.710
mod_like <- lmer(SLike ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_like)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12663.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.63384 -0.70177  0.06935  0.69054  3.01288 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.92904  0.9639  
##  social_issue  (Intercept) 0.04612  0.2148  
##  Residual                  2.42197  1.5563  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.31445    0.15822   12.33290  27.268 2.13e-12
## companyLeaningRight           -0.61112    0.07786 2390.95136  -7.849 6.28e-15
## actionI                       -0.35485    0.07849 2395.62436  -4.521 6.45e-06
## pol                            0.03849    0.02356  797.04458   1.634    0.103
## companyLeaningRight:actionI   -0.02662    0.11053 2393.77172  -0.241    0.810
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## pol                            
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.246                     
## actionI     -0.245  0.496              
## pol         -0.610  0.000  0.001       
## cmpnyLnnR:I  0.174 -0.704 -0.710 -0.001
# Competence
mod_comp <- lmer(SComp ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_comp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11912.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0950 -0.5663  0.1048  0.6211  3.2020 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.97727  0.9886  
##  social_issue  (Intercept) 0.04371  0.2091  
##  Residual                  1.81414  1.3469  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  4.902e+00  1.201e-01  4.663e+00  40.822 3.88e-07
## companyLeaningRight         -5.221e-01  6.739e-02  2.391e+03  -7.747 1.38e-14
## actionI                     -3.571e-01  6.794e-02  2.395e+03  -5.257 1.59e-07
## companyLeaningRight:actionI -7.286e-03  9.567e-02  2.393e+03  -0.076    0.939
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.281              
## actionI     -0.278  0.496       
## cmpnyLnnR:I  0.198 -0.704 -0.710
mod_pol_comp <- lmer(SComp ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_comp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11902.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1095 -0.5625  0.1187  0.6204  3.1957 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.95165  0.9755  
##  social_issue  (Intercept) 0.04391  0.2095  
##  Residual                  1.81413  1.3469  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  4.538e+00  1.515e-01  1.169e+01  29.945 2.05e-12
## companyLeaningRight         -5.221e-01  6.739e-02  2.391e+03  -7.747 1.38e-14
## actionI                     -3.570e-01  6.794e-02  2.395e+03  -5.255 1.62e-07
## pol                          8.892e-02  2.254e-02  7.970e+02   3.945 8.69e-05
## companyLeaningRight:actionI -7.454e-03  9.567e-02  2.393e+03  -0.078    0.938
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## pol                         ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.222                     
## actionI     -0.221  0.496              
## pol         -0.609  0.000  0.001       
## cmpnyLnnR:I  0.157 -0.704 -0.710  0.000
mod_pol_comp <- lmer(SComp ~ companyLeaning*action*pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_comp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ companyLeaning * action * pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11776.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2216 -0.5729  0.1145  0.6151  3.2878 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.97726  0.9886  
##  social_issue  (Intercept) 0.04575  0.2139  
##  Residual                  1.71222  1.3085  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        3.76764    0.17648   19.99491  21.349
## companyLeaningRight                0.30064    0.15857 2388.67129   1.896
## actionI                            0.20092    0.15877 2389.55160   1.265
## pol                                0.27695    0.03120 2286.11190   8.875
## companyLeaningRight:actionI        0.31451    0.22455 2389.46190   1.401
## companyLeaningRight:pol           -0.20085    0.03526 2388.84612  -5.697
## actionI:pol                       -0.13548    0.03521 2388.21100  -3.847
## companyLeaningRight:actionI:pol   -0.07930    0.04985 2388.67640  -1.591
##                                 Pr(>|t|)    
## (Intercept)                     3.11e-15 ***
## companyLeaningRight             0.058077 .  
## actionI                         0.205839    
## pol                              < 2e-16 ***
## companyLeaningRight:actionI     0.161459    
## companyLeaningRight:pol         1.37e-08 ***
## actionI:pol                     0.000123 ***
## companyLeaningRight:actionI:pol 0.111797    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    cmLR:I cmpLR: actnI:
## cmpnyLnngRg -0.449                                          
## actionI     -0.449  0.501                                   
## pol         -0.724  0.515  0.514                            
## cmpnyLnnR:I  0.318 -0.707 -0.709 -0.364                     
## cmpnyLnngR:  0.409 -0.911 -0.457 -0.565  0.645              
## actionI:pol  0.409 -0.456 -0.909 -0.564  0.644  0.500       
## cmpnyLnR:I: -0.289  0.644  0.644  0.399 -0.910 -0.707 -0.708
# Genuinely care about cause
mod_gen <- lmer(SGen ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## SGen ~ companyLeaning * action + (1 | participantID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12007.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10336 -0.65538 -0.01925  0.65306  3.03902 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.05521  1.0272  
##  social_issue  (Intercept) 0.02946  0.1716  
##  Residual                  1.85185  1.3608  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.59481    0.10490    5.72893  43.803 1.85e-08
## companyLeaningRight           -0.80761    0.06808 2390.82664 -11.862  < 2e-16
## actionI                       -0.89976    0.06862 2395.22969 -13.111  < 2e-16
## companyLeaningRight:actionI   -0.02131    0.09665 2393.77087  -0.221    0.825
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.325              
## actionI     -0.322  0.496       
## cmpnyLnnR:I  0.229 -0.704 -0.710
mod_pol_gen <- lmer(SGen ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_gen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SGen ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12013.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10512 -0.65475 -0.01726  0.65262  3.03994 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.05707  1.0281  
##  social_issue  (Intercept) 0.02947  0.1717  
##  Residual                  1.85185  1.3608  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  4.581e+00  1.422e-01  1.922e+01  32.205   <2e-16
## companyLeaningRight         -8.076e-01  6.808e-02  2.391e+03 -11.862   <2e-16
## actionI                     -8.998e-01  6.863e-02  2.395e+03 -13.111   <2e-16
## pol                          3.461e-03  2.344e-02  7.970e+02   0.148    0.883
## companyLeaningRight:actionI -2.132e-02  9.665e-02  2.394e+03  -0.221    0.825
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## pol                            
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.239                     
## actionI     -0.238  0.496              
## pol         -0.675  0.000  0.001       
## cmpnyLnnR:I  0.169 -0.704 -0.710  0.000

6.3.2 Factor 2: Others’ Perception of Companies

plot_list <- list(       
                         plot_cooker(gjg_long, condition, OLike, "Others like company"),
                         plot_cooker(gjg_long, condition, OTrust, "Others trust company"),
                         plot_cooker(gjg_long, condition, OComp, "Others think company is competent")
)

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 2, nrow = 2)
plot_arranged

by_line(gjg_long, pol, OLike, "political leaning", " ", "Condition", "Others like company")

by_line(gjg_long, pol, OTrust, "political leaning", " ", "Condition", "Others trust company")

by_line(gjg_long, pol, OComp, "political leaning", " ", "Condition", "Others think company is competent")

6.3.2.1 Factor 2 Items Tests

  • All main effects no interaction effects aside from noted below

  • Others liking of the comapny: The main effect of action consistency is nearing but not significant

# Other Like
mod_otherLike <- lmer(OLike ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_otherLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10312.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6934 -0.4353  0.1287  0.5800  2.7269 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.519453 0.72073 
##  social_issue  (Intercept) 0.007611 0.08724 
##  Residual                  1.129443 1.06275 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.47657    0.06298    9.22003  86.958 9.39e-15
## companyLeaningRight           -0.28049    0.05317 2389.86639  -5.275 1.44e-07
## actionI                       -0.09079    0.05355 2391.31604  -1.695   0.0901
## companyLeaningRight:actionI   -0.06488    0.07545 2394.35843  -0.860   0.3899
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     .  
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.422              
## actionI     -0.419  0.496       
## cmpnyLnnR:I  0.298 -0.705 -0.709
mod_pol_otherLike <- lmer(OLike ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_otherLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10286.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7275 -0.4459  0.1443  0.5903  2.7859 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.488578 0.69898 
##  social_issue  (Intercept) 0.007684 0.08766 
##  Residual                  1.129424 1.06274 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.08380    0.09287   41.86602  54.744  < 2e-16
## companyLeaningRight           -0.28049    0.05317 2389.94728  -5.275 1.44e-07
## actionI                       -0.09064    0.05355 2391.46753  -1.693   0.0907
## pol                            0.09588    0.01670  796.79401   5.743 1.33e-08
## companyLeaningRight:actionI   -0.06502    0.07545 2394.40282  -0.862   0.3889
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     .  
## pol                         ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.286                     
## actionI     -0.285  0.496              
## pol         -0.736  0.000  0.001       
## cmpnyLnnR:I  0.202 -0.705 -0.709  0.000
# Other Trust
mod_otherTrust <- lmer(OTrust ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_otherTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10424.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5727 -0.4477  0.0808  0.5735  3.2633 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.671102 0.81921 
##  social_issue  (Intercept) 0.004964 0.07046 
##  Residual                  1.118816 1.05774 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.12883    0.05900   14.32278  86.927  < 2e-16
## companyLeaningRight           -0.31555    0.05292 2389.68836  -5.963 2.85e-09
## actionI                       -0.16070    0.05327 2383.01774  -3.017  0.00258
## companyLeaningRight:actionI   -0.02410    0.07507 2393.90328  -0.321  0.74822
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ** 
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.448              
## actionI     -0.446  0.497       
## cmpnyLnnR:I  0.316 -0.705 -0.709
mod_pol_otherTrust <- lmer(OTrust ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_otherTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10411.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6171 -0.4426  0.0958  0.5862  3.3225 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.649883 0.80615 
##  social_issue  (Intercept) 0.005008 0.07077 
##  Residual                  1.118799 1.05773 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.79945    0.09543   90.31467  50.295  < 2e-16
## companyLeaningRight           -0.31555    0.05292 2389.75657  -5.963 2.85e-09
## actionI                       -0.16058    0.05327 2383.23782  -3.015   0.0026
## pol                            0.08041    0.01833  796.74528   4.386 1.31e-05
## companyLeaningRight:actionI   -0.02421    0.07507 2393.93787  -0.322   0.7471
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ** 
## pol                         ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.277                     
## actionI     -0.276  0.497              
## pol         -0.787  0.000  0.001       
## cmpnyLnnR:I  0.196 -0.705 -0.709  0.000
# Other Competence
mod_pol_otherComp <- lmer(OComp ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_otherComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10486.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5081 -0.4419  0.1125  0.5942  3.0093 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.60060  0.7750  
##  social_issue  (Intercept) 0.01207  0.1099  
##  Residual                  1.16891  1.0812  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.88527    0.10320   29.15063  47.338  < 2e-16
## companyLeaningRight           -0.32941    0.05409 2389.52437  -6.090 1.31e-09
## actionI                       -0.18691    0.05450 2394.35733  -3.429 0.000615
## pol                            0.09579    0.01797  796.54376   5.331 1.27e-07
## companyLeaningRight:actionI   -0.01132    0.07677 2393.66291  -0.147 0.882833
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## pol                         ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.262                     
## actionI     -0.261  0.496              
## pol         -0.713  0.000  0.001       
## cmpnyLnnR:I  0.185 -0.705 -0.710  0.000

6.3.3 Factor 3: Importance of the Cause

plot_list <- list(       
                         plot_cooker(gjg_long, condition, SImport, "I think cause is important"),
                         plot_cooker(gjg_long, condition, SRelImport, "I think cause is important relative to other causes"),
                         plot_cooker(gjg_long, condition, staticNorm, "Percent of support for issue"),
                         plot_cooker(gjg_long, condition, noisyMin, "Motive to cater to noisy minority")
)

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 2, nrow = 2)
plot_arranged

6.3.3.1 Factor 3 Items Tests

  • Issue Importance: No main effects, Marginal interaction effect (less decrease in perceived issue importance when a conservative company acts inconsistently)

  • Issue Relative Importance: Main effect of consistency (acting inconsistent INCREASES perceived issue importance), Marginal interaction effect (less decrease in perceived issue importance when a conservative company acts inconsistently)

  • Static Norm: No effects

  • Noisy Min: Main effects – perceived as moreso catering to noisy minority if conservative or inconsistent

# Importance of cause
mod_import <- lmer(SImport ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_import)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SImport ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11928.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6568 -0.4790  0.0186  0.5512  3.1553 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 2.5335   1.5917  
##  social_issue  (Intercept) 0.3892   0.6239  
##  Residual                  1.4399   1.1999  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.93049    0.31982    3.28369  15.417 0.000355
## companyLeaningRight            0.05470    0.06003 2390.77325   0.911 0.362278
## actionI                        0.08561    0.06056 2391.78503   1.414 0.157565
## companyLeaningRight:actionI   -0.15517    0.08525 2391.25731  -1.820 0.068850
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                        
## companyLeaningRight:actionI .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.094              
## actionI     -0.093  0.496       
## cmpnyLnnR:I  0.066 -0.704 -0.710
# Relative importance of cause
mod_relImport <- lmer(SRelImport ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_relImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SRelImport ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11350.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1108 -0.5733 -0.0035  0.5267  3.9263 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.8941   1.3763  
##  social_issue  (Intercept) 0.5043   0.7101  
##  Residual                  1.2382   1.1127  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    3.94371    0.36054    3.17122  10.938  0.00127
## companyLeaningRight            0.03863    0.05567 2390.66316   0.694  0.48784
## actionI                        0.12142    0.05615 2391.61997   2.162  0.03070
## companyLeaningRight:actionI   -0.14857    0.07905 2391.11914  -1.879  0.06031
##                               
## (Intercept)                 **
## companyLeaningRight           
## actionI                     * 
## companyLeaningRight:actionI . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.077              
## actionI     -0.077  0.496       
## cmpnyLnnR:I  0.054 -0.704 -0.710
# Static Norm
mod_staticNorm <- lmer(staticNorm ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_staticNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: staticNorm ~ companyLeaning * action + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 27299.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0044 -0.5492  0.0148  0.5491  3.6201 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 168.9    13.00   
##  social_issue  (Intercept) 106.3    10.31   
##  Residual                  208.4    14.43   
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                              Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                   56.0514     5.2010    3.0925  10.777  0.00149 **
## companyLeaningRight           -0.1413     0.7222 2390.4205  -0.196  0.84491   
## actionI                        0.7087     0.7284 2391.7706   0.973  0.33067   
## companyLeaningRight:actionI   -1.2599     1.0255 2391.0627  -1.229  0.21934   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.069              
## actionI     -0.069  0.496       
## cmpnyLnnR:I  0.049 -0.704 -0.710
mod_staticNorm <- lmer(staticNorm ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_staticNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## staticNorm ~ companyLeaning * action + pol + SGen + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 27101.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0617 -0.5609  0.0026  0.5747  3.6886 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 131.4    11.46   
##  social_issue  (Intercept) 100.3    10.01   
##  Residual                  204.4    14.30   
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                   36.0946     5.2291    3.5497   6.903  0.00354 ** 
## companyLeaningRight            1.3799     0.7313 2433.7159   1.887  0.05930 .  
## actionI                        2.3948     0.7410 2444.2885   3.232  0.00125 ** 
## pol                            2.7592     0.2569  791.9105  10.741  < 2e-16 ***
## SGen                           1.8835     0.1880 3183.1620  10.019  < 2e-16 ***
## companyLeaningRight:actionI   -1.2113     1.0158 2385.9511  -1.192  0.23322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.101                            
## actionI     -0.104  0.519                     
## pol         -0.201 -0.001  0.000              
## SGen        -0.165  0.208  0.228 -0.003       
## cmpnyLnnR:I  0.048 -0.688 -0.690  0.000  0.004
# Catering to Noisy Minority
mod_noisyMin <- lmer(noisyMin ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_noisyMin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: noisyMin ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11737.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8458 -0.5723  0.0511  0.5800  3.4278 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.6731   1.2935  
##  social_issue  (Intercept) 0.1741   0.4173  
##  Residual                  1.4938   1.2222  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.17683    0.21793    3.49110  19.166 0.000116
## companyLeaningRight            0.17605    0.06115 2390.60658   2.879 0.004025
## actionI                        0.25917    0.06167 2392.38651   4.202 2.74e-05
## companyLeaningRight:actionI   -0.04380    0.08683 2391.47053  -0.504 0.614027
##                                
## (Intercept)                 ***
## companyLeaningRight         ** 
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.140              
## actionI     -0.139  0.496       
## cmpnyLnnR:I  0.099 -0.704 -0.710

6.3.4 Factor 4: Perception of Companies

plot_list <- list(       
                         plot_cooker(gjg_long, condition, peerPress, "Pressured by peer companies"),
                         plot_cooker(gjg_long, condition, pubPress, "Pressured by public"),
                         plot_cooker(gjg_long, condition, riskInact, "Risky NOT to send signal")
)

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 2, nrow = 2)
plot_arranged

6.3.4.1 Factor 4 Items Tests

  • All main effects no interaction effects aside from noted below

  • Risky to not send signal: No main effect of on company political leaning, but interaction effect (conservative companies that act inconsistent experience a lower increase in risk for NOT signaling)

# Motive is pressure from peer institutions
mod_peerPress <- lmer(peerPress ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_peerPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: peerPress ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11668.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5953 -0.5587  0.0836  0.6200  3.0851 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.12485  1.0606  
##  social_issue  (Intercept) 0.02671  0.1634  
##  Residual                  1.60459  1.2667  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 4.099e+00  1.005e-01 5.827e+00  40.803 2.19e-08 ***
## companyLeaningRight         2.177e-01  6.338e-02 2.391e+03   3.435 0.000603 ***
## actionI                     4.146e-01  6.388e-02 2.395e+03   6.489 1.04e-10 ***
## companyLeaningRight:actionI 8.411e-02  8.996e-02 2.394e+03   0.935 0.349896    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.315              
## actionI     -0.313  0.496       
## cmpnyLnnR:I  0.222 -0.704 -0.710
# Motive is pressure from general public
mod_pubPress <- lmer(pubPress ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pubPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pubPress ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11594.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9762 -0.6241  0.0376  0.6139  3.4002 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.15220  1.0734  
##  social_issue  (Intercept) 0.03784  0.1945  
##  Residual                  1.78416  1.3357  
## Number of obs: 3095, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    3.79900    0.11461    5.08373  33.148 3.88e-07
## companyLeaningRight            0.25490    0.06683 2286.20317   3.814  0.00014
## actionI                        0.54640    0.06743 2291.44633   8.103 8.60e-16
## companyLeaningRight:actionI   -0.10002    0.09668 2304.03074  -1.035  0.30099
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.292              
## actionI     -0.289  0.495       
## cmpnyLnnR:I  0.202 -0.691 -0.688
# Risky to NOT send signal
mod_riskInact <- lmer(riskInact ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_riskInact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskInact ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12023.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2288 -0.6400 -0.0196  0.6371  3.1790 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.11979  1.0582  
##  social_issue  (Intercept) 0.08174  0.2859  
##  Residual                  1.83782  1.3557  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    3.61771    0.15536    3.96490  23.286 2.17e-05
## companyLeaningRight           -0.02588    0.06783 2390.35744  -0.382  0.70279
## actionI                        0.41643    0.06839 2393.67766   6.089 1.32e-09
## companyLeaningRight:actionI   -0.25382    0.09630 2392.05482  -2.636  0.00845
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                     ***
## companyLeaningRight:actionI ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.218              
## actionI     -0.217  0.496       
## cmpnyLnnR:I  0.154 -0.704 -0.710

6.3.5 Factor 5: Selfish/Profit Motives

plot_list <- list(       
                         plot_cooker(gjg_long, condition, Rep, "Reputation motive"),
                         plot_cooker(gjg_long, condition, Profit, "Profit motive")
)

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 2, nrow = 1)
plot_arranged

6.3.5.1 Factor 5 Item Tests

  • Motivated by reputational gain: Main effect and interaction effect (less increase in selfish motive when acting inconsistently if company is conservative)

  • Motivated by profit: Main effect, no interaction effect

# Motivated by reputational gain
mod_rep <- lmer(Rep ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Rep ~ companyLeaning * action + (1 | participantID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10556.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2296 -0.4267  0.1317  0.5753  3.1785 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.74129  0.8610  
##  social_issue  (Intercept) 0.01971  0.1404  
##  Residual                  1.15010  1.0724  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.20642    0.08541    5.65570  60.960 3.45e-09
## companyLeaningRight            0.16743    0.05365 2390.31376   3.121 0.001827
## actionI                        0.45229    0.05408 2394.99275   8.363  < 2e-16
## companyLeaningRight:actionI   -0.25631    0.07617 2393.28711  -3.365 0.000777
##                                
## (Intercept)                 ***
## companyLeaningRight         ** 
## actionI                     ***
## companyLeaningRight:actionI ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.314              
## actionI     -0.312  0.496       
## cmpnyLnnR:I  0.221 -0.704 -0.710
# Motivated by profit
mod_Profit <- lmer(Profit ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Profit ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11291.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8780 -0.5054  0.1093  0.5959  2.7708 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.97973  0.9898  
##  social_issue  (Intercept) 0.01028  0.1014  
##  Residual                  1.43364  1.1973  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.80807    0.07477    9.98388  64.307 2.10e-14
## companyLeaningRight            0.15015    0.05990 2390.52571   2.506   0.0123
## actionI                        0.44581    0.06034 2391.18631   7.388 2.04e-13
## companyLeaningRight:actionI   -0.09938    0.08501 2394.41637  -1.169   0.2425
##                                
## (Intercept)                 ***
## companyLeaningRight         *  
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.401              
## actionI     -0.398  0.496       
## cmpnyLnnR:I  0.282 -0.705 -0.710
# Competence
mod_comp <- lmer(SComp ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_comp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11912.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0950 -0.5663  0.1048  0.6211  3.2020 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.97727  0.9886  
##  social_issue  (Intercept) 0.04371  0.2091  
##  Residual                  1.81414  1.3469  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  4.902e+00  1.201e-01  4.663e+00  40.822 3.88e-07
## companyLeaningRight         -5.221e-01  6.739e-02  2.391e+03  -7.747 1.38e-14
## actionI                     -3.571e-01  6.794e-02  2.395e+03  -5.257 1.59e-07
## companyLeaningRight:actionI -7.286e-03  9.567e-02  2.393e+03  -0.076    0.939
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.281              
## actionI     -0.278  0.496       
## cmpnyLnnR:I  0.198 -0.704 -0.710
# Genuinely care about cause
mod_gen <- lmer(SGen ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## SGen ~ companyLeaning * action + (1 | participantID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12007.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10336 -0.65538 -0.01925  0.65306  3.03902 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.05521  1.0272  
##  social_issue  (Intercept) 0.02946  0.1716  
##  Residual                  1.85185  1.3608  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.59481    0.10490    5.72893  43.803 1.85e-08
## companyLeaningRight           -0.80761    0.06808 2390.82664 -11.862  < 2e-16
## actionI                       -0.89976    0.06862 2395.22969 -13.111  < 2e-16
## companyLeaningRight:actionI   -0.02131    0.09665 2393.77087  -0.221    0.825
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.325              
## actionI     -0.322  0.496       
## cmpnyLnnR:I  0.229 -0.704 -0.710

6.3.6 Factor 6: Motivating people to act

plot_list <- list(       
                         plot_cooker(gjg_long, condition, dyNorm, "Change in support for issue"),
                         plot_cooker(gjg_long, condition, OMotivate, "Message motivates others to act"),
                         plot_cooker(gjg_long, condition, SGen, "I think company is genuine")
)

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 2, nrow = 2)
plot_arranged

by_line(gjg_long, pol, OMotivate, "political leaning", " ", "Condition", "Motivate others to act")

# Assuming your dataset is named "your_data", and "pol" is the column with political scores

# Create a new column "pol_name" based on the values in the "pol" column
gjg_long$pol_name <- ifelse(gjg_long$pol > 4, "lib", ifelse(gjg_long$pol == 4, "mod", "con"))

# Print the first few rows to check the result
head(gjg_long$pol_name)
## [1] "lib" "mod" "con" "mod" "con" "lib"
wrapped_plot_cooker(gjg_long, condition, SGen, "I think company is genuine", pol_name)

wrapped_plot_cooker(gjg_long, condition, SRelImport, "I think cause is important relative to other causes", pol_name)

mod_Profit <- lmer(SRelImport ~ companyLeaning*action + pol_name + (1 | participantID) + (1 | social_issue), data = gjg_long)



summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## SRelImport ~ companyLeaning * action + pol_name + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10963.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8100 -0.5858 -0.0169  0.5263  4.0706 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.0406   1.0201  
##  social_issue  (Intercept) 0.5006   0.7075  
##  Residual                  1.2383   1.1128  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    2.89560    0.36172    3.25753   8.005   0.0030
## companyLeaningRight            0.03863    0.05567 2390.38811   0.694   0.4878
## actionI                        0.12037    0.05615 2391.76356   2.143   0.0322
## pol_namelib                    2.10964    0.09397  795.54308  22.450   <2e-16
## pol_namemod                    0.93591    0.10840  795.55111   8.634   <2e-16
## companyLeaningRight:actionI   -0.14755    0.07905 2391.04290  -1.866   0.0621
##                                
## (Intercept)                 ** 
## companyLeaningRight            
## actionI                     *  
## pol_namelib                 ***
## pol_namemod                 ***
## companyLeaningRight:actionI .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pl_nml pl_nmm
## cmpnyLnngRg -0.077                            
## actionI     -0.076  0.496                     
## pol_namelib -0.133  0.000  0.000              
## pol_namemod -0.116  0.000  0.001  0.445       
## cmpnyLnnR:I  0.054 -0.704 -0.710  0.000  0.000

6.3.6.1 Tests

  • Dynamic Norm: Marginal

  • Driving others to support cause: Significant main and interaction effects (The cost of inconsistency is lower if a company is conservative), significant main effect of political leaning (liberals think messages are more effective at motivating others to act)

# Dynamic Norm
mod_dyNorm <- lmer(dyNorm ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10558.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8861 -0.4786  0.0680  0.5927  3.6063 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.92445  0.9615  
##  social_issue  (Intercept) 0.05652  0.2377  
##  Residual                  1.09266  1.0453  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.03582    0.12906    3.96345  39.021 2.83e-06
## companyLeaningRight           -0.04305    0.05230 2390.46237  -0.823   0.4105
## actionI                       -0.09505    0.05274 2393.37112  -1.802   0.0716
## companyLeaningRight:actionI   -0.05954    0.07425 2391.93529  -0.802   0.4227
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                     .  
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.203              
## actionI     -0.201  0.496       
## cmpnyLnnR:I  0.143 -0.704 -0.710
mod_pol_dyNorm <- lmer(dyNorm ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10563.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8990 -0.4750  0.0638  0.5926  3.6060 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.92469  0.9616  
##  social_issue  (Intercept) 0.05648  0.2377  
##  Residual                  1.09266  1.0453  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.11359    0.15464    8.16969  33.068 5.42e-10
## companyLeaningRight           -0.04305    0.05230 2390.45245  -0.823   0.4105
## actionI                       -0.09508    0.05274 2393.36207  -1.803   0.0715
## pol                           -0.01898    0.02081  796.81051  -0.912   0.3620
## companyLeaningRight:actionI   -0.05951    0.07425 2391.92592  -0.801   0.4230
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                     .  
## pol                            
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.169                     
## actionI     -0.168  0.496              
## pol         -0.551  0.000  0.001       
## cmpnyLnnR:I  0.119 -0.704 -0.710  0.000
mod_gen_dyNorm <- lmer(dyNorm ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10563.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8990 -0.4750  0.0638  0.5926  3.6060 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.92469  0.9616  
##  social_issue  (Intercept) 0.05648  0.2377  
##  Residual                  1.09266  1.0453  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    5.11359    0.15464    8.16969  33.068 5.42e-10
## companyLeaningRight           -0.04305    0.05230 2390.45245  -0.823   0.4105
## actionI                       -0.09508    0.05274 2393.36207  -1.803   0.0715
## pol                           -0.01898    0.02081  796.81051  -0.912   0.3620
## companyLeaningRight:actionI   -0.05951    0.07425 2391.92592  -0.801   0.4230
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                     .  
## pol                            
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.169                     
## actionI     -0.168  0.496              
## pol         -0.551  0.000  0.001       
## cmpnyLnnR:I  0.119 -0.704 -0.710  0.000
# Driving others to support cause
mod_OMotivate <- lmer(OMotivate ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_OMotivate)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OMotivate ~ companyLeaning * action + (1 | participantID) + (1 |  
##     social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10878.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9198 -0.4763  0.0642  0.5619  3.1120 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.98247  0.9912  
##  social_issue  (Intercept) 0.02822  0.1680  
##  Residual                  1.22035  1.1047  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.96223    0.09905    5.17358  50.099 3.75e-08
## companyLeaningRight           -0.26187    0.05527 2390.55174  -4.738 2.28e-06
## actionI                       -0.33245    0.05572 2394.68401  -5.966 2.79e-09
## companyLeaningRight:actionI   -0.28226    0.07846 2392.94760  -3.597 0.000328
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.279              
## actionI     -0.277  0.496       
## cmpnyLnnR:I  0.197 -0.704 -0.710
mod_pol_OMotivate <- lmer(OMotivate ~ companyLeaning*action + pol + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_OMotivate)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OMotivate ~ companyLeaning * action + pol + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10860.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9150 -0.4795  0.0758  0.5634  3.1472 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.94537  0.9723  
##  social_issue  (Intercept) 0.02835  0.1684  
##  Residual                  1.22034  1.1047  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.52944    0.13185   16.00797  34.353  < 2e-16
## companyLeaningRight           -0.26187    0.05527 2390.59448  -4.738 2.28e-06
## actionI                       -0.33232    0.05572 2394.72783  -5.964 2.82e-09
## pol                            0.10565    0.02126  796.94458   4.969 8.26e-07
## companyLeaningRight:actionI   -0.28239    0.07846 2392.98643  -3.599 0.000326
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## pol                         ***
## companyLeaningRight:actionI ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol   
## cmpnyLnngRg -0.210                     
## actionI     -0.208  0.496              
## pol         -0.661  0.000  0.001       
## cmpnyLnnR:I  0.148 -0.704 -0.710  0.000
mod_pol_OMotivate <- lmer(OMotivate ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_pol_OMotivate)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## OMotivate ~ companyLeaning * action + pol + SGen + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10248.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2073 -0.5151  0.0401  0.5678  3.9412 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.65929  0.8120  
##  social_issue  (Intercept) 0.01412  0.1188  
##  Residual                  1.04479  1.0221  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    2.91452    0.12256   43.83925  23.780  < 2e-16
## companyLeaningRight            0.02289    0.05227 2427.86756   0.438 0.661555
## actionI                       -0.01700    0.05294 2442.25465  -0.321 0.748143
## pol                            0.10441    0.01824  786.02234   5.723 1.49e-08
## SGen                           0.35258    0.01341 3186.96582  26.291  < 2e-16
## companyLeaningRight:actionI   -0.27301    0.07259 2382.12076  -3.761 0.000173
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                        
## pol                         ***
## SGen                        ***
## companyLeaningRight:actionI ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.308                            
## actionI     -0.316  0.520                     
## pol         -0.608 -0.001  0.000              
## SGen        -0.501  0.207  0.228 -0.003       
## cmpnyLnnR:I  0.145 -0.688 -0.690  0.000  0.004
# Genuinely care about cause
mod_gen <- lmer(SGen ~ companyLeaning*action + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## SGen ~ companyLeaning * action + (1 | participantID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12007.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10336 -0.65538 -0.01925  0.65306  3.03902 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 1.05521  1.0272  
##  social_issue  (Intercept) 0.02946  0.1716  
##  Residual                  1.85185  1.3608  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    4.59481    0.10490    5.72893  43.803 1.85e-08
## companyLeaningRight           -0.80761    0.06808 2390.82664 -11.862  < 2e-16
## actionI                       -0.89976    0.06862 2395.22969 -13.111  < 2e-16
## companyLeaningRight:actionI   -0.02131    0.09665 2393.77087  -0.221    0.825
##                                
## (Intercept)                 ***
## companyLeaningRight         ***
## actionI                     ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.325              
## actionI     -0.322  0.496       
## cmpnyLnnR:I  0.229 -0.704 -0.710
gjg_mod <- gjg_long %>% filter(pol == 4)

mod_pol_gen <- lmer(SRelImport ~ companyLeaning + action*pol + action*SRelImport + (1 | participantID) + (1 | social_issue) + (1 | company), data = gjg_mod)
summary(mod_pol_gen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SRelImport ~ companyLeaning + action * pol + action * SRelImport +  
##     (1 | participantID) + (1 | social_issue) + (1 | company)
##    Data: gjg_mod
## 
## REML criterion at convergence: 2305.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.62878 -0.44995  0.05967  0.43721  2.83223 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.28237  0.5314  
##  company       (Intercept) 0.02814  0.1678  
##  social_issue  (Intercept) 0.22776  0.4772  
##  Residual                  1.01738  1.0087  
## Number of obs: 748, groups:  participantID, 187; company, 13; social_issue, 4
## 
## Fixed effects:
##                      Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           3.84561    0.25842   3.80420  14.881 0.000164 ***
## companyLeaningRight   0.03665    0.12151   2.95633   0.302 0.782895    
## actionI              -3.00363    0.15277 683.74921 -19.661  < 2e-16 ***
## SRelImport:actionI    0.79150    0.03466 705.73222  22.839  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI
## cmpnyLnngRg -0.223              
## actionI     -0.065 -0.008       
## SRlImprt:cI -0.003 -0.002 -0.871
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients

6.4 Genuine Line

6.4.1 Each Factor

plot_list <- list(plot_cooker(gjg_long, condition, selfPercep_z, "Perception of company"),
                         plot_cooker(gjg_long, condition, otherPercep_z, "Others' perception of company"),
                         plot_cooker(gjg_long, condition, issueImport_z, "Importance of cause"),
                         plot_cooker(gjg_long, condition, externalMotive_z, "External Motives"),
                         plot_cooker(gjg_long, condition, selfishMotive_z, "Selfish Motives"),
                         plot_cooker(gjg_long, condition, driveAction_z, "Motivate Others to Act")
                        )

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 3, nrow = 2)
plot_arranged

by_line(gjg_long, SGen, selfPercep_z, "Genuine", "", "Condition", "Perception of company")

by_line(gjg_long, SGen, otherPercep_z, "Genuine", "", "Condition", "Others' perception of company")

by_line(gjg_long, SGen, issueImport_z, "Genuine", "", "Condition", "Importance of cause")

by_line(gjg_long, SGen, externalMotive_z, "Genuine", "", "Condition", "External Motives")

by_line(gjg_long, SGen, selfishMotive_z, "Genuine", "", "Condition", "Selfish Motives")

by_line(gjg_long, SGen, driveAction_z, "Genuine", "", "Condition", "Motivate Others to Act")

# Factor 1
mod_gen_selfPercep <- lmer(selfPercep_z ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen_selfPercep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## selfPercep_z ~ companyLeaning * action + pol + SGen + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 4402.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1349 -0.5994  0.0479  0.5979  3.9222 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.044527 0.21101 
##  social_issue  (Intercept) 0.001702 0.04126 
##  Residual                  0.194742 0.44130 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 -1.582e+00  4.332e-02  4.250e+01 -36.514  < 2e-16
## companyLeaningRight         -1.127e-02  2.249e-02  2.433e+03  -0.501  0.61633
## actionI                      6.997e-02  2.275e-02  2.451e+03   3.076  0.00212
## pol                          1.775e-02  5.806e-03  7.764e+02   3.058  0.00231
## SGen                         3.978e-01  5.287e-03  2.977e+03  75.247  < 2e-16
## companyLeaningRight:actionI -4.831e-03  3.133e-02  2.374e+03  -0.154  0.87748
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                     ** 
## pol                         ** 
## SGen                        ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.356                            
## actionI     -0.365  0.516                     
## pol         -0.547 -0.001  0.000              
## SGen        -0.559  0.190  0.210 -0.003       
## cmpnyLnnR:I  0.178 -0.691 -0.693 -0.001  0.003
# Factor 2
mod_gen_otherPercep <- lmer(otherPercep_z ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen_otherPercep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## otherPercep_z ~ companyLeaning * action + pol + SGen + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 7504.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3296 -0.4565  0.0856  0.5765  3.8493 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.23203  0.48169 
##  social_issue  (Intercept) 0.00284  0.05329 
##  Residual                  0.45974  0.67804 
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   -0.95147    0.07264  108.38126 -13.098  < 2e-16
## companyLeaningRight           -0.08052    0.03465 2435.59235  -2.324   0.0202
## actionI                        0.05901    0.03506 2449.56888   1.683   0.0924
## pol                            0.06740    0.01120  789.84313   6.018 2.71e-09
## SGen                           0.18629    0.00872 3180.89076  21.362  < 2e-16
## companyLeaningRight:actionI   -0.02179    0.04813 2386.93793  -0.453   0.6509
##                                
## (Intercept)                 ***
## companyLeaningRight         *  
## actionI                     .  
## pol                         ***
## SGen                        ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.340                            
## actionI     -0.350  0.519                     
## pol         -0.630 -0.001  0.000              
## SGen        -0.550  0.203  0.225 -0.003       
## cmpnyLnnR:I  0.163 -0.689 -0.691  0.000  0.003
# Factor 3
mod_gen_issueImport <- lmer(issueImport_z ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen_issueImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## issueImport_z ~ companyLeaning * action + pol + SGen + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 4964.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3066 -0.5714 -0.0009  0.5522  4.2118 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.1408   0.3752  
##  social_issue  (Intercept) 0.1029   0.3208  
##  Residual                  0.1937   0.4401  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 -1.396e+00  1.674e-01  3.539e+00  -8.341  0.00189
## companyLeaningRight          7.291e-02  2.252e-02  2.420e+03   3.238  0.00122
## actionI                      9.581e-02  2.282e-02  2.430e+03   4.199 2.78e-05
## pol                          2.297e-01  8.271e-03  7.809e+02  27.765  < 2e-16
## SGen                         1.077e-01  5.845e-03  3.170e+03  18.422  < 2e-16
## companyLeaningRight:actionI -4.485e-02  3.126e-02  2.375e+03  -1.434  0.15157
##                                
## (Intercept)                 ** 
## companyLeaningRight         ** 
## actionI                     ***
## pol                         ***
## SGen                        ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.098                            
## actionI     -0.100  0.520                     
## pol         -0.202 -0.001  0.000              
## SGen        -0.160  0.210  0.230 -0.002       
## cmpnyLnnR:I  0.046 -0.688 -0.690  0.000  0.004
# Factor 4
mod_gen_externalMotive <- lmer(externalMotive_z ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen_externalMotive)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: externalMotive_z ~ companyLeaning * action + pol + SGen + (1 |  
##     participantID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 6530.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3488 -0.5940  0.0071  0.6000  3.9775 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.28435  0.5332  
##  social_issue  (Intercept) 0.01283  0.1133  
##  Residual                  0.30174  0.5493  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  4.332e-01  8.537e-02  1.457e+01   5.075  0.00015
## companyLeaningRight         -1.777e-02  2.813e-02  2.425e+03  -0.632  0.52774
## actionI                      1.510e-01  2.851e-02  2.435e+03   5.296 1.29e-07
## pol                         -4.335e-04  1.141e-02  7.904e+02  -0.038  0.96970
## SGen                        -1.298e-01  7.444e-03  3.121e+03 -17.437  < 2e-16
## companyLeaningRight:actionI -4.698e-02  3.902e-02  2.385e+03  -1.204  0.22874
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                     ***
## pol                            
## SGen                        ***
## companyLeaningRight:actionI    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.243                            
## actionI     -0.249  0.521                     
## pol         -0.546  0.000  0.000              
## SGen        -0.399  0.214  0.234 -0.002       
## cmpnyLnnR:I  0.112 -0.687 -0.689  0.000  0.004
# Factor 5
mod_gen_selfishMotive <- lmer(selfishMotive_z ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen_selfishMotive)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: selfishMotive_z ~ companyLeaning * action + pol + SGen + (1 |  
##     participantID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 7129
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0591 -0.4639  0.0854  0.5461  3.8055 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.29951  0.5473  
##  social_issue  (Intercept) 0.01159  0.1077  
##  Residual                  0.37616  0.6133  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  7.762e-01  8.685e-02  1.854e+01   8.938 3.82e-08
## companyLeaningRight         -6.274e-02  3.139e-02  2.434e+03  -1.999 0.045767
## actionI                      1.167e-01  3.180e-02  2.445e+03   3.671 0.000247
## pol                          6.305e-03  1.193e-02  7.962e+02   0.529 0.597263
## SGen                        -2.116e-01  8.204e-03  3.159e+03 -25.795  < 2e-16
## companyLeaningRight:actionI -1.305e-01  4.356e-02  2.391e+03  -2.996 0.002760
##                                
## (Intercept)                 ***
## companyLeaningRight         *  
## actionI                     ***
## pol                            
## SGen                        ***
## companyLeaningRight:actionI ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.264                            
## actionI     -0.271  0.520                     
## pol         -0.562 -0.001  0.000              
## SGen        -0.433  0.211  0.232 -0.002       
## cmpnyLnnR:I  0.123 -0.688 -0.690  0.000  0.004
gjg_long$SRelImport
##    [1] 7 7 6 3 2 6 5 1 1 4 5 6 4 5 5 6 2 5 4 6 2 6 6 6 5 6 5 1 6 4 4 6 2 4 6 7 4
##   [38] 5 6 7 5 5 6 5 4 4 3 2 6 5 5 7 4 5 4 4 4 4 2 3 7 7 5 5 4 6 7 4 6 6 2 5 3 4
##   [75] 7 4 4 1 4 4 1 3 5 5 6 6 5 2 3 6 4 4 4 4 4 3 3 5 4 4 6 4 4 5 1 5 5 1 1 3 6
##  [112] 6 3 4 2 5 1 1 2 6 2 4 5 6 5 5 4 1 1 4 4 6 2 4 6 7 4 3 5 6 1 4 6 5 3 4 1 1
##  [149] 6 5 4 4 3 6 4 4 3 4 1 2 1 6 3 4 1 4 1 4 5 6 3 4 3 3 5 4 4 1 4 2 1 1 4 4 3
##  [186] 3 6 1 1 1 1 2 4 4 2 3 1 3 4 6 5 4 3 5 1 5 3 1 1 3 5 6 3 3 2 6 1 1 1 5 1 3
##  [223] 5 5 6 6 4 1 3 3 4 5 1 3 6 6 3 5 4 6 1 4 6 4 3 2 1 1 5 5 4 5 4 5 4 4 1 4 1
##  [260] 1 1 6 6 3 4 4 1 2 5 6 1 4 2 3 5 4 4 1 2 2 1 2 5 4 1 2 6 1 1 6 1 1 3 4 2 1
##  [297] 1 2 4 5 7 4 6 4 5 5 7 1 5 4 7 6 7 7 6 7 2 5 5 7 1 6 7 6 4 5 7 1 4 4 4 7 2
##  [334] 5 5 7 4 7 4 7 2 6 7 5 6 6 2 1 7 7 6 7 6 3 5 6 5 3 2 3 2 3 5 6 4 6 6 6 6 7
##  [371] 1 4 6 5 6 1 7 1 6 3 1 5 5 4 1 1 6 1 5 7 1 2 4 4 2 3 1 5 7 5 5 4 6 7 6 5 1
##  [408] 5 6 6 6 4 5 4 6 4 5 5 7 5 4 4 6 4 4 2 4 5 4 6 4 6 6 4 2 6 6 4 4 6 4 5 6 1
##  [445] 4 5 6 6 4 1 6 4 5 7 6 4 3 6 7 6 6 3 3 3 7 4 6 4 1 4 7 4 1 2 5 7 6 7 4 5 3
##  [482] 5 6 3 5 4 1 5 7 6 7 2 5 4 5 4 4 6 6 6 5 2 5 6 5 4 1 4 6 3 6 3 2 4 5 4 4 3
##  [519] 6 5 1 4 5 4 2 1 1 5 4 6 1 6 1 4 4 4 5 1 1 2 4 3 6 1 2 3 6 6 4 1 1 3 4 7 4
##  [556] 3 2 4 7 5 5 2 4 3 4 2 5 3 1 1 6 2 1 1 2 1 4 3 4 4 3 5 2 1 4 2 4 4 4 1 2 1
##  [593] 5 2 1 3 1 6 5 4 5 1 4 6 5 4 1 5 5 4 6 2 2 2 5 4 3 3 6 5 1 4 1 4 1 1 1 4 4
##  [630] 6 1 5 1 4 1 4 1 2 2 3 4 2 7 1 3 3 6 5 4 1 1 1 4 4 4 3 1 4 7 4 3 2 6 2 4 2
##  [667] 5 3 1 1 6 2 1 1 2 1 6 1 3 3 3 4 1 1 4 2 1 4 4 1 3 1 4 1 1 3 1 5 6 5 4 5 7
##  [704] 6 6 6 1 4 5 6 7 4 5 7 7 5 6 5 7 5 3 2 6 6 1 1 4 6 6 6 5 7 4 5 6 7 7 2 4 7
##  [741] 5 5 7 1 4 5 6 6 5 4 2 7 5 7 5 4 4 6 7 6 6 3 7 5 3 4 7 3 1 4 7 4 2 2 5 5 6
##  [778] 4 2 7 3 6 7 1 4 3 1 7 6 2 5 2 6 2 1 4 6 4 5 7 2 1 7 4 4 5 5 3 2 4 6 6 4 5
##  [815] 6 2 6 1 5 6 7 4 7 6 3 4 7 6 7 6 7 6 4 5 4 7 7 4 6 5 5 5 4 5 6 4 7 6 6 6 5
##  [852] 5 6 5 4 2 5 5 4 2 3 6 5 4 4 2 5 6 7 4 7 7 4 2 7 4 4 1 4 2 5 4 5 6 4 7 3 3
##  [889] 5 1 4 6 5 6 4 5 4 2 4 4 4 1 3 5 4 1 4 4 1 1 4 6 5 4 4 5 1 5 1 3 6 6 4 5 7
##  [926] 3 6 6 6 6 1 4 6 4 4 2 6 5 3 3 6 5 5 4 2 5 3 7 1 5 5 1 4 3 6 4 1 5 4 4 1 2
##  [963] 3 4 1 4 1 4 3 3 4 4 1 1 4 5 2 2 1 1 1 5 1 5 5 4 1 3 3 2 1 4 4 3 1 1 5 3 2
## [1000] 1 1 4 1 1 4 4 1 4 4 1 1 4 6 3 4 4 5 1 5 1 2 5 6 4 5 7 1 6 6 6 7 1 4 6 4 5
## [1037] 1 6 5 1 3 4 4 4 4 1 4 3 7 1 5 4 1 1 2 4 2 1 5 4 4 1 3 6 4 1 4 1 4 3 2 4 3
## [1074] 1 1 4 4 1 2 1 1 1 4 1 5 4 4 1 3 3 1 1 4 4 2 1 1 5 2 1 1 1 1 1 4 7 7 3 5 6
## [1111] 5 5 4 7 7 4 6 7 1 4 5 3 5 6 7 3 5 5 4 7 7 6 5 7 6 6 6 4 7 5 3 2 4 7 6 5 5
## [1148] 7 4 7 5 7 6 5 1 6 4 3 2 7 3 4 1 7 5 4 3 6 1 5 6 6 6 6 4 4 1 7 7 6 6 3 1 7
## [1185] 2 6 6 4 2 2 4 1 1 3 4 3 6 1 6 2 2 7 7 6 6 5 6 5 7 7 5 6 6 4 4 4 5 5 5 7 1
## [1222] 5 7 4 7 5 4 6 6 4 4 6 5 4 4 5 2 3 6 6 5 4 6 4 4 6 1 7 4 7 5 5 4 4 7 3 4 5
## [1259] 3 6 1 1 6 3 6 4 1 5 6 4 4 6 5 4 5 2 5 4 1 1 4 3 4 3 4 4 6 5 4 6 4 6 5 3 3
## [1296] 5 4 5 1 1 3 1 4 4 3 6 4 5 3 7 6 5 4 5 4 1 5 5 4 3 2 5 4 4 4 6 2 3 6 5 4 4
## [1333] 6 4 1 4 6 1 3 6 5 4 4 6 1 2 5 1 6 2 4 2 5 4 1 6 2 4 5 2 3 1 1 5 1 7 1 1 4
## [1370] 2 1 4 4 4 1 4 1 2 2 1 1 3 1 4 2 4 4 4 6 4 5 4 2 3 3 4 5 1 4 1 1 1 1 4 4 1
## [1407] 5 4 3 3 7 7 4 4 6 4 1 5 5 1 1 4 6 4 4 4 6 1 1 6 5 4 4 6 5 1 2 4 1 3 6 4 4
## [1444] 2 6 1 3 4 1 6 2 4 1 5 4 1 4 1 4 7 1 1 1 1 5 1 5 1 1 3 1 1 4 4 4 1 4 1 2 2
## [1481] 1 1 2 1 2 1 4 4 4 6 4 6 4 1 3 4 1 4 1 2 1 1 1 1 1 4 1 6 7 6 1 6 7 5 6 7 2
## [1518] 5 7 7 1 5 4 1 7 7 4 6 6 1 6 6 6 5 7 4 3 4 7 3 4 7 5 5 7 6 7 5 5 1 7 5 6 3
## [1555] 6 4 3 6 4 4 3 2 7 1 5 4 2 7 4 1 4 7 2 7 6 5 7 5 2 6 4 4 1 3 1 5 3 1 4 5 3
## [1592] 5 5 5 7 4 4 5 7 2 5 4 2 3 2 5 6 5 4 6 7 7 5 4 5 7 4 4 5 5 6 4 2 5 6 4 6 6
## [1629] 7 6 4 5 4 4 1 6 7 6 6 6 6 5 7 6 5 5 5 7 4 5 7 5 7 3 4 3 5 5 4 5 3 5 2 6 6
## [1666] 1 5 1 5 1 5 7 2 1 1 2 2 4 4 5 5 6 1 4 3 5 4 4 4 4 7 2 5 1 4 4 4 7 7 7 4 5
## [1703] 5 4 2 5 6 4 5 5 4 2 4 4 7 4 4 4 4 6 2 1 4 6 4 4 6 6 4 4 4 4 2 1 5 7 5 6 4
## [1740] 4 4 6 6 6 3 4 6 4 3 7 5 4 1 4 2 5 4 4 4 4 4 2 4 5 1 2 2 4 1 1 4 1 1 1 1 1
## [1777] 4 4 4 4 6 1 2 1 5 4 1 3 3 4 6 4 1 2 4 4 6 5 4 3 4 5 1 1 3 5 4 6 6 4 1 4 2
## [1814] 5 4 4 4 4 6 2 1 4 6 3 5 5 3 4 3 3 4 2 1 5 6 5 5 4 7 4 4 6 5 3 4 6 4 1 6 5
## [1851] 4 1 4 1 4 4 4 3 4 4 1 2 4 1 1 1 4 1 2 4 1 1 1 1 1 4 4 4 3 5 1 2 1 3 4 1 3
## [1888] 2 4 1 4 1 2 4 4 6 5 1 3 2 6 3 1 2 5 3 6 7 7 7 4 6 6 5 4 5 6 7 6 7 7 7 7 7
## [1925] 4 5 7 3 6 5 3 2 6 7 7 7 4 6 6 5 7 6 4 7 6 4 6 6 3 7 6 4 7 7 5 7 5 5 5 6 7
## [1962] 6 1 6 2 5 1 3 6 6 1 1 6 2 5 6 6 5 6 1 5 3 6 5 3 7 4 6 7 3 1 4 7 5 6 6 3 6
## [1999] 5 2 3 1 4 5 2 5 4 4 3 3 6 4 4 5 4 3 6 5 6 6 6 5 5 5 4 2 2 7 7 5 5 6 5 4 2
## [2036] 5 6 5 5 5 5 4 1 3 4 5 4 3 1 3 6 4 6 4 5 6 5 4 4 2 3 4 4 3 3 1 6 5 4 4 2 5
## [2073] 4 4 4 6 4 3 4 5 3 4 3 4 4 6 4 4 1 6 4 2 6 7 4 4 1 5 4 6 2 3 4 3 3 1 2 6 4
## [2110] 3 1 6 4 4 4 1 2 5 1 3 4 6 4 5 4 3 1 2 6 7 1 5 4 2 2 2 3 6 4 4 2 1 4 1 1 4
## [2147] 4 6 2 1 3 2 4 4 4 4 5 5 4 2 2 1 4 3 3 3 1 5 4 4 4 2 1 6 3 2 2 4 2 3 4 1 4
## [2184] 2 2 4 4 4 3 1 1 1 2 4 5 4 1 1 3 3 6 1 3 4 4 3 1 1 4 4 4 1 7 4 4 4 2 2 4 5
## [2221] 1 3 5 4 5 4 5 1 1 5 7 1 5 4 1 1 1 2 6 4 4 1 1 4 1 1 3 4 3 1 1 1 3 4 4 4 4
## [2258] 5 5 4 2 2 1 4 3 1 3 1 2 3 4 3 2 1 5 3 2 1 4 2 2 1 1 2 2 1 4 5 4 5 1 1 1 1
## [2295] 4 5 4 1 1 3 2 6 1 1 4 4 2 1 3 6 4 7 1 6 5 4 7 2 1 7 7 2 6 7 6 5 4 5 3 3 6
## [2332] 7 4 7 7 4 4 4 4 5 5 5 6 4 5 7 4 7 6 7 6 1 2 6 5 7 5 6 7 6 7 4 2 3 7 4 4 5
## [2369] 1 6 5 4 7 2 4 5 4 4 4 5 5 4 3 1 6 7 5 7 4 4 3 2 6 3 4 6 5 4 4 3 3 6 4 3 3
## [2406] 5 5 6 7 4 4 3 4 7 4 5 5 5 3 6 4 6 2 5 5 5 6 6 6 4 4 6 7 1 6 2 1 4 5 6 4 4
## [2443] 4 5 5 4 3 4 5 7 5 4 4 3 5 6 2 6 4 6 4 4 7 5 4 5 6 6 1 4 4 3 3 4 5 4 4 1 1
## [2480] 6 7 6 4 3 5 4 4 6 5 4 1 2 3 6 1 5 5 5 1 4 4 4 3 7 1 3 4 5 1 3 7 4 5 4 5 4
## [2517] 3 1 6 1 7 2 4 6 6 4 4 3 6 1 1 6 1 1 4 5 6 4 4 2 5 6 4 1 1 3 6 4 4 1 2 4 4
## [2554] 1 2 4 5 4 4 6 3 4 4 4 6 1 3 3 4 3 2 5 4 4 1 1 1 6 6 4 2 5 1 5 5 4 3 1 1 5
## [2591] 2 1 4 4 7 2 1 4 4 1 4 1 3 2 3 1 3 7 4 5 4 4 4 2 1 6 1 7 3 3 6 6 4 4 3 5 1
## [2628] 1 6 1 1 4 4 6 4 4 2 6 6 4 1 1 3 4 3 4 1 2 4 3 1 1 4 5 4 4 6 3 4 4 4 6 1 3
## [2665] 3 1 3 2 6 3 4 1 1 1 6 5 4 1 5 1 5 3 4 4 1 1 5 1 1 4 4 4 1 4 4 4 1 4 2 7 4
## [2702] 6 2 4 7 4 5 7 5 7 6 1 6 1 1 3 4 7 7 4 7 4 7 5 1 7 2 2 4 6 5 5 7 2 7 5 4 1
## [2739] 1 6 6 5 5 3 3 6 6 1 6 5 7 4 5 7 7 4 6 7 6 1 4 6 1 7 4 7 7 4 4 2 6 5 6 7 5
## [2776] 5 2 3 7 6 4 3 2 6 6 1 6 7 6 1 4 4 2 1 7 1 6 5 6 4 2 5 3 4 4 6 4 6 7 3 4 4
## [2813] 6 1 5 6 6 5 6 4 4 3 4 4 3 6 4 4 7 5 6 1 6 5 1 3 6 6 5 4 5 6 1 3 7 4 5 4 5
## [2850] 2 4 5 4 6 5 5 5 4 1 2 7 4 6 6 4 1 5 3 5 2 4 6 4 1 6 4 5 4 1 6 3 5 1 5 4 1
## [2887] 3 4 4 2 5 4 4 3 6 1 5 7 5 4 1 3 4 4 5 5 1 6 5 1 4 5 4 1 4 5 6 5 6 4 4 3 4
## [2924] 4 1 6 4 4 6 4 5 1 6 4 1 3 6 5 4 3 3 6 3 3 7 4 3 5 5 1 3 3 1 3 3 4 6 1 4 2
## [2961] 4 1 4 7 4 1 5 3 4 1 1 6 4 1 5 4 4 4 1 4 1 4 1 5 5 1 2 4 4 1 1 1 4 2 5 1 5
## [2998] 7 5 4 1 4 3 2 3 5 1 6 5 1 4 5 4 1 4 5 4 6 6 4 4 2 4 4 1 5 4 4 7 4 4 1 6 4
## [3035] 1 1 6 4 4 3 3 5 1 3 4 4 2 1 5 1 2 2 1 3 2 4 6 1 2 1 4 2 4 7 2 1 5 1 4 1 1
## [3072] 6 4 1 5 4 3 3 1 3 1 3 1 4 5 1 5 4 4 1 1 1 3 2 5 1 5 5 7 4 5 5 2 4 7 5 1 6
## [3109] 7 1 6 6 7 4 6 6 7 4 6 5 6 7 5 4 1 7 6 7 6 7 5 1 7 6 1 3 5 6 5 4 6 7 5 4 5
## [3146] 5 4 5 7 2 6 4 6 6 5 5 6 4 4 3 4 7 5 6 3 6 7 7 7 2 3 7 5 2 6 5 7 6 6 5 2 3
## [3183] 4 6 4 1 1 7 4 3 2 4 4 6 5 1
# Factor 6
mod_gen_driveAction <- lmer(driveAction_z ~ companyLeaning*action + pol + SGen + (1 | participantID) + (1 | social_issue), data = gjg_long)
summary(mod_gen_driveAction)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## driveAction_z ~ companyLeaning * action + pol + SGen + (1 | participantID) +  
##     (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 3550
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7559 -0.4990  0.0297  0.5630  3.9194 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  participantID (Intercept) 0.106840 0.3269  
##  social_issue  (Intercept) 0.006006 0.0775  
##  Residual                  0.119794 0.3461  
## Number of obs: 3196, groups:  participantID, 799; social_issue, 4
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 -1.168e+00  5.543e-02  1.188e+01 -21.061 8.93e-11
## companyLeaningRight          2.317e-02  1.772e-02  2.422e+03   1.307  0.19124
## actionI                      6.114e-03  1.796e-02  2.432e+03   0.340  0.73356
## pol                          1.833e-02  7.033e-03  7.868e+02   2.606  0.00933
## SGen                         2.955e-01  4.671e-03  3.134e+03  63.272  < 2e-16
## companyLeaningRight:actionI -7.338e-02  2.459e-02  2.381e+03  -2.985  0.00287
##                                
## (Intercept)                 ***
## companyLeaningRight            
## actionI                        
## pol                         ** 
## SGen                        ***
## companyLeaningRight:actionI ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cmpnLR actinI pol    SGen  
## cmpnyLnngRg -0.235                            
## actionI     -0.241  0.521                     
## pol         -0.519  0.000  0.000              
## SGen        -0.386  0.213  0.233 -0.002       
## cmpnyLnnR:I  0.109 -0.687 -0.689  0.000  0.004

6.4.2 Tests

7 In Po