Campo de R -> “Ctrl + Alt + i”
## [1] 4.341003 4.935195 4.927159 4.373786 4.841381 4.523921 5.359896 5.975686
## [9] 4.216795 4.003530 4.939138 5.053085 5.704492 5.668258 4.373992 5.181186
## [17] 5.538549 4.315173 4.419808 4.001687 4.769849 4.693921 5.907368 5.379174
Campo de ecuación \(\LaTeX\) \[t=\frac{\bar x-\mu}{s/\sqrt{n}}\] ## Creación de datos
# Redondear a 2 decimales
diam = round(diam,2)
#Generador de Niveles
orient = gl(n =2, k =12, length = 24, labels= c("Ecuatorial","Longitudinal"))
df = data.frame(orient,diam)
#Mostrar la parte superior de los datos
head(df)## orient diam
## 1 Ecuatorial 4.34
## 2 Ecuatorial 4.94
## 3 Ecuatorial 4.93
## 4 Ecuatorial 4.37
## 5 Ecuatorial 4.84
## 6 Ecuatorial 4.52
Resumen estadístico descriptivo
Agregar promedio a las cajas
## Ecuatorial Longitudinal
## 4.790833 4.995833
# Boxplot + medias (puntos de color negro)
boxplot(diam~orient, horizontal = T, col=c("Gray","Lightblue"), xlab= "Diametro (cm)",ylab="Orientación")
points(y=1:2, x=mt, pch=1, col="blue", cex=2)
rug(diam[which(orient=="Ecuatorial")],lwd = 2, side = 3, col="purple")
rug(diam[which(orient=="Longitudinal")],lwd = 2, side = 1, col="red")# Densidad
set.seed(1234)
# Generación de datos
diam = runif(n = 240,min = 4,max = 6)
orient = gl(n = 2,k = 120,length = 240,labels = c("ecuatorial","longitudinal"))# Usando ggplot2
# Grafico de densidades
ggplot(df,aes(x=diam,fill=orient))+
geom_density(alpha=0.4)## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Grafico de violines (Variabilidad)
ggplot(df,aes(x=diam,fill=orient,y=orient))+
geom_violin(alpha=0.4)# Grafico de puntos
df2=split(diam,orient)
df2 = data.frame(ecuatorial=df2$ecuatorial,
longitudinal = df2$longitudinal)
ggplot(df2,aes(x=ecuatorial,
y=longitudinal))+ geom_point(size=2)Investigar Bihistograma, labels y como interpretarlo (Quiz)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 240 4.98 0.57 4.99 4.97 0.7 4.02 6 1.98 0.11 -1.14 0.04
##
## Descriptive statistics by group
## group: ecuatorial
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 120 4.85 0.57 4.65 4.83 0.6 4.02 5.98 1.97 0.34 -1.18 0.05
## ------------------------------------------------------------
## group: longitudinal
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 120 5.1 0.53 5.13 5.11 0.65 4.04 6 1.95 -0.05 -0.96 0.05
\[\%CV = \frac{s}{\bar{x}}\times 100\]
#Función para calcular un indice de variación
fun_cv = function(data){
media = mean(data)
desv = sd(data)
if(media==0 & desv==0){
print("Indeterminación")
}else{
cv = (desv/media) * 100
return(cv)
}
}
# Evaluar la función
cat("% de Coeficiente de variación, ecuatorial",fun_cv(df2$ecuatorial))## % de Coeficiente de variación, ecuatorial 11.7698
## % de Coeficiente de variación, longitudinal 10.44618