Code
library(ggdist)
library(ggbeeswarm)
library(patchwork)
library(PupillometryR)
library(janitor)
library(ggthemes)
library(tidyquant)
library(tidylog)
library(flextable)
library(tidyverse)library(ggdist)
library(ggbeeswarm)
library(patchwork)
library(PupillometryR)
library(janitor)
library(ggthemes)
library(tidyquant)
library(tidylog)
library(flextable)
library(tidyverse)iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.
data("iris")
iris %>% head(5) %>% flextable::flextable()Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
Different ways to communicate the normality, skewness and kurtosis of continuous variables by a grouping/ cluster/ treatment variable.
Usually, before perform any hypothesis test its recommend to Explore the nature of the outcome variable to acertain the above issues revolving around normality.
# Histogram
theme_set(theme_light())
iris %>% ggplot(aes(x = Sepal.Length,fill = Species, color = Species)) +
geom_histogram(alpha = 0.5,position = position_stack()) +
theme(legend.position = c(.90, .85))
# Density plot
theme_set(theme_pander())
iris %>% ggplot(aes(x = Sepal.Length,fill = Species, color = Species)) +
geom_density(alpha = 0.5) + theme(legend.position = c(.90, .85))
# Box plot
theme_set(theme_bw())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
geom_boxplot(alpha = 0.5,width = 0.3) +
theme(legend.position = "none")
# Violin plot
theme_set(theme_minimal())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
geom_violin(alpha = 0.5,width = 0.5) +
theme(legend.position = "none")
# Dot plot
theme_set(theme_minimal())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
geom_dots(alpha = 0.5,dotsize = 0.5) +
theme(legend.position = "none")
# Beeswarm plot
theme_set(theme_minimal())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
geom_beeswarm(alpha = 0.5) +
theme(legend.position = "none")
# Jitter/strip plot
theme_set(theme_classic())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
geom_jitter(alpha = 0.6,position = position_jitter(width = 0.12)) +
theme(legend.position = "none")
# Eye plot
theme_set(theme_light())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
stat_eye(alpha = 0.3) +
theme(legend.position = "none")
# Half eye plot
theme_set(theme_pander())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
stat_halfeye(alpha = 0.3, justification = -0.1) +
theme(legend.position = "none")
# Rain drop plot
theme_set(theme_bw())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
stat_halfeye(alpha = 0.3, justification = -0.1,adjust = 0.4) +
geom_boxplot(width = 0.1, alpha = 0.4) +
stat_dots(side = "left", justification = 1.1,dotsize = 0.5,alpha = 0.5,adjust = 0.4) +
coord_flip() +
theme(legend.position = "none")
# Flat violin
theme_set(theme_minimal())
iris %>% ggplot(aes(x = Species,y = Sepal.Length,fill = Species, color = Species)) +
geom_flat_violin(alpha = 0.5,adjust = 0.5) +
stat_dots(side = "left", justification = 1.1,dotsize = 0.5,alpha = 0.5,adjust = 0.4) +
coord_flip() +
theme(legend.position = "none")
# Fill Density plot
theme_set(theme_pander())
iris %>% ggplot(aes(x = Sepal.Length,fill = Species, color = Species)) +
geom_density(alpha = 0.5,position = "fill") + theme(legend.position = c(.90, .85))