La base de datos para el siguiente análsisi es extraÃdo de Yahoo Finance (a través de la técnica scraping) y trata sobre el precio de las acciones de McDonalds.
#install.packages('quantmod') # librerÃa para hacer scraping
#install.packages('tseries')
#install.packages('timeSeries')
#install.packages('forecast')
#install.packages('xts')
#install.packages('ggplot2')
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(tseries)
library(timeSeries)
## Loading required package: timeDate
##
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
##
## time<-
library(forecast)
library(xts)
library(ggplot2)
MCD <- getSymbols('MCD', src='yahoo', from = as.Date("2020-12-01"),to=as.Date("2023-07-01"), auto.assign = FALSE)
Graficando la serie
chartSeries(MCD, name="MCD", subset="last 6 months", theme=chartTheme("white"))
Datos de yahoo finance:
data_MCD <- data.frame(MCD, tiempo = as.Date(rownames(data.frame(MCD))))
head(data_MCD)
## MCD.Open MCD.High MCD.Low MCD.Close MCD.Volume MCD.Adjusted
## 2020-12-01 218.88 218.93 215.53 216.14 4224800 204.4019
## 2020-12-02 214.00 214.40 209.13 210.86 6223700 199.4086
## 2020-12-03 210.94 213.23 210.56 211.51 3732500 200.0233
## 2020-12-04 211.60 213.38 210.10 210.74 3151100 199.2951
## 2020-12-07 208.53 209.11 206.19 208.89 3826000 197.5456
## 2020-12-08 206.55 209.10 206.41 208.39 2709400 197.0727
## tiempo
## 2020-12-01 2020-12-01
## 2020-12-02 2020-12-02
## 2020-12-03 2020-12-03
## 2020-12-04 2020-12-04
## 2020-12-07 2020-12-07
## 2020-12-08 2020-12-08
attach(data_MCD)
Separando la serie close:
base1 = data.frame(tiempo, MCD.Close)
names (base1) = c("tiempo","MCD")
base1 <- na.omit(base1) #eliminando datos ominitidos "NA"
#base1
head(base1, n = 10)
## tiempo MCD
## 1 2020-12-01 216.14
## 2 2020-12-02 210.86
## 3 2020-12-03 211.51
## 4 2020-12-04 210.74
## 5 2020-12-07 208.89
## 6 2020-12-08 208.39
## 7 2020-12-09 208.69
## 8 2020-12-10 208.04
## 9 2020-12-11 207.76
## 10 2020-12-14 211.92
Graficando la serie
ggplot(base1, aes(x = tiempo, y = MCD)) + geom_line() + geom_smooth(se = FALSE)+ labs(title = "Precio de las acciones de McDonalds", x = "Fecha", y = "Precio / Acción")
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
MCD_ma = ts(na.omit(base1$MCD), frequency=30)
decomp = stl(MCD_ma, s.window="periodic")
deseasonal_base1 <- seasadj(decomp)
plot(decomp)
adf.test(MCD_ma, alternative = "stationary")
##
## Augmented Dickey-Fuller Test
##
## data: MCD_ma
## Dickey-Fuller = -3.3386, Lag order = 8, p-value = 0.06403
## alternative hypothesis: stationary
Contraste de hipótesis:
pp.test(MCD_ma, alternative = "stationary")
##
## Phillips-Perron Unit Root Test
##
## data: MCD_ma
## Dickey-Fuller Z(alpha) = -22.498, Truncation lag parameter = 6, p-value
## = 0.04244
## alternative hypothesis: stationary
Contraste de hipótesis:
Las ACF proporcionan información sobre cómo una observación influye en las siguientes.
Acf(MCD_ma, main='')
Pacf(MCD_ma, main='')
Para realizar un modelo ARIMA, la serie temporal debe ser estacionaria. Para conseguir esta estacionariedad, la diferenciaremos.
MCD_d1 = diff(deseasonal_base1, differences = 1)
plot(MCD_d1)
Para comprobar que la serie es, efectivamente, estacionaria, hacemos de nuevo el test aumentado de Dickey-Fuller.
adf.test(MCD_d1, alternative = "stationary")
## Warning in adf.test(MCD_d1, alternative = "stationary"): p-value smaller than
## printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: MCD_d1
## Dickey-Fuller = -8.4168, Lag order = 8, p-value = 0.01
## alternative hypothesis: stationary
modeloarima<-auto.arima(MCD_ma, seasonal=FALSE)
modeloarima
## Series: MCD_ma
## ARIMA(1,1,0)
##
## Coefficients:
## ar1
## -0.0077
## s.e. 0.0394
##
## sigma^2 = 6.976: log likelihood = -1548.33
## AIC=3100.65 AICc=3100.67 BIC=3109.6
tsdisplay(residuals(modeloarima), lag.max=10, main='(0,1,0) Model Residuals')
prediccion <- forecast(modeloarima, h=30)
plot(prediccion)
tail(prediccion$mean,30)
## Time Series:
## Start = c(22, 20)
## End = c(23, 19)
## Frequency = 30
## [1] 298.3798 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800
## [9] 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800
## [17] 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800
## [25] 298.3800 298.3800 298.3800 298.3800 298.3800 298.3800