Summary of Idea
We want to understand the psychology behind selecting people for diversity initiatives. My lay theory is that people think that disadvantaged group members (DGM) are best-suited for taking on diversity initiatives. However, it is not clear why.
Predictions
- Managers are more likely to solicit voice from a marginalized (vs. non-marginalized) person about ``DEI work’’ - i.e., work that is meant to improve DEI in the organization.
- They make this choice because they believe that DGM would provide more useful input. By useful input, we mean:
- 2a. Creativity
- 2b. Expertise
- 2c. Perceptions of Solicitee’s Interest
Contributions
1. Voice Solicitation
- This allows us to also develop theory about who people choose to solicit voice from.
- 1a. This allows us to show that people seek to solicit voice from
people who they think are most likely to provide meaningful input.
- 1b. Past work has focused on why we would (or would) not
solicit voice, and the outcomes of soliciting voice, but not
who we choose to solicit voice from.
- Moreover, we are able to identify a misperception between what CAN be contributed, and the target’s actual ability to contribute.
2. Diversity Work
- We propose an under-theorized prescriptive norm: That DGM should do diversity work.
- 1a. We identify what drives this norm: primarily, beliefs
about:
++ Creativity.
++ Expertise.
++ Perceptions of Solicitee’s Interest.
- We can also illustrate how there is a possible misperception between what CAN be contributed, and the target’s actual ability to contribute.
Study Summaries
Pilot 1
I asked participants to imagine that they are going to make recommendations to a CEO about “leading teams into the 21st century”. I manipulated if the team was focused on making strategic marketing improvements or gender diversity improvements.
I presented four candidates: Bill, Thomas, Jessica, and Kathleen. Each candidate also had a piece of information: e.g., “leads new recruit day”, and a position e.g., “market specialist”. I counterbalanced these across candidates.
For each candidate, I asked participants to:
- Indicate if they saw the candidate has having the right job fit -
Indicate if they think it would be helpful to solicit the candidate’s
voice
Finally, I asked participants to indicate which candidate they would want to select.
Measures
Job Fit Items. 1. [Female Candidate’s Name Here]’s abilities fit the demands of this task force. 2. [Female Candidate’s Name Here] has the right skills and abilities for participating in this task force. 3. There is a good match between the requirements of this task force and [Feale Candidate’s Name Here]’s skills. 4. [Female Candidate’s Name Here]’s abilities and training are a good fit with the requirements of the task force. 5. [Female Candidate’s Name Here]’s personal abilities and education provide a good match with the demands that this task force would place on him.
Voice Solicitation Items. 1. I would ask [Male Candidate’s Name Here] to tell me about things that he thinks would be helpful for this task force. 2. I would ask [Male Candidate’s Name Here] personally to tell me about what he has done in a similar task force. 3. I would seek out advice related to this task force from [Male Candidate’s Name Here]. 4. I would ask [Male Candidate’s Name Here] personally what skills he has that I may not know about which could contribute to this task force.
Graphs
Likert Variables - VS and JF
Likert Variables - Considerations
Ordinal Variables
Correlations
Condition | Woman VS | Woman JF | Man VS | Man JF | Bill JF | Bill VS | Thomas JF | Thomas VS | Kathleen JF | Kathleen VS | Jessica JF | Jessica VS | Qualif. | Skills | Fit w/ Needs | Div. | Gend. | Workloads | Standing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Condition | ||||||||||||||||||||
Woman VS | 0.18* | |||||||||||||||||||
Woman JF | 0.19** | 0.67*** | ||||||||||||||||||
Man VS | -0.19* | 0.32*** | 0.02 | |||||||||||||||||
Man JF | -0.20** | -0.01 | 0.11 | 0.55*** | ||||||||||||||||
Bill JF | -0.10 | -0.09 | 0.04 | 0.45*** | 0.81*** | |||||||||||||||
Bill VS | -0.12 | 0.20** | -0.03 | 0.83*** | 0.52*** | 0.68*** | ||||||||||||||
Thomas JF | -0.23** | 0.08 | 0.13 | 0.43*** | 0.77*** | 0.26*** | 0.12 | |||||||||||||
Thomas VS | -0.19** | 0.33*** | 0.07 | 0.82*** | 0.39*** | 0.05 | 0.35*** | 0.60*** | ||||||||||||
Kathleen JF | 0.14 | 0.49*** | 0.71*** | 0.03 | 0.14 | 0.00 | -0.03 | 0.23** | 0.08 | |||||||||||
Kathleen VS | 0.09 | 0.85*** | 0.50*** | 0.35*** | 0.02 | -0.10 | 0.20** | 0.14 | 0.38*** | 0.63*** | ||||||||||
Jessica JF | 0.15* | 0.52*** | 0.78*** | 0.01 | 0.03 | 0.06 | -0.01 | -0.01 | 0.02 | 0.12 | 0.15* | |||||||||
Jessica VS | 0.22** | 0.86*** | 0.64*** | 0.20** | -0.03 | -0.05 | 0.14 | 0.00 | 0.19* | 0.21** | 0.45*** | 0.72*** | ||||||||
Qualifications | -0.17* | 0.24** | 0.20** | 0.23** | 0.08 | 0.08 | 0.17* | 0.04 | 0.21** | 0.14 | 0.24** | 0.16* | 0.17* | |||||||
Skills | -0.17* | 0.28*** | 0.22** | 0.19* | 0.08 | 0.07 | 0.15* | 0.06 | 0.16* | 0.16* | 0.22** | 0.17* | 0.25*** | 0.69*** | ||||||
Fit w/ Needs | -0.08 | 0.21** | 0.18* | 0.18* | 0.06 | 0.11 | 0.19* | -0.01 | 0.12 | 0.07 | 0.15* | 0.19** | 0.21** | 0.75*** | 0.61*** | |||||
Diversity | 0.41*** | 0.27*** | 0.26*** | -0.21** | -0.23** | -0.28*** | -0.31*** | -0.07 | -0.04 | 0.24** | 0.21** | 0.15* | 0.24** | 0.01 | 0.01 | 0.09 | ||||
Gender | 0.55*** | 0.24** | 0.25*** | -0.28*** | -0.24** | -0.26*** | -0.33*** | -0.12 | -0.12 | 0.19* | 0.16* | 0.19* | 0.24*** | -0.17* | -0.13 | -0.05 | 0.76*** | |||
Workloads | 0.06 | 0.21** | 0.16* | 0.19* | 0.13 | 0.06 | 0.09 | 0.15* | 0.22** | 0.07 | 0.17* | 0.16* | 0.18* | 0.25*** | 0.23** | 0.19** | 0.25*** | 0.21** | ||
Standing | 0.03 | 0.16* | 0.13 | 0.16* | 0.15* | 0.10 | 0.10 | 0.15* | 0.17* | 0.14 | 0.16* | 0.07 | 0.11 | 0.36*** | 0.26*** | 0.24** | 0.21** | 0.15* | 0.60*** | |
Interest in Goals | 0.11 | 0.29*** | 0.22** | 0.16* | 0.02 | 0.00 | 0.11 | 0.03 | 0.16* | 0.15* | 0.19** | 0.18* | 0.30*** | 0.40*** | 0.36*** | 0.41*** | 0.34*** | 0.20** | 0.54*** | 0.49*** |
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = chose_woman_bin ~ cond_num + (woman_jf) +
## (standing), data = dei1_clean)
##
## The DV (Y) was chose_woman_bin . The IV (X) was cond_num . The mediating variable(s) = woman_jf standing .
##
## Total effect(c) of cond_num on chose_woman_bin = 0.27 S.E. = 0.06 t = 4.26 df= 179 with p = 3.3e-05
## Direct effect (c') of cond_num on chose_woman_bin removing woman_jf standing = 0.2 S.E. = 0.06 t = 3.45 df= 177 with p = 0.00069
## Indirect effect (ab) of cond_num on chose_woman_bin through woman_jf standing = 0.07
## Mean bootstrapped indirect effect = 0.07 with standard error = 0.03 Lower CI = 0.01 Upper CI = 0.14
## R = 0.55 R2 = 0.3 F = 25.55 on 3 and 177 DF p-value: 1.02e-16
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = chose_woman_bin ~ cond_num + (woman_jf) +
## (gender), data = dei1_clean)
##
## The DV (Y) was chose_woman_bin . The IV (X) was cond_num . The mediating variable(s) = woman_jf gender .
##
## Total effect(c) of cond_num on chose_woman_bin = 0.27 S.E. = 0.06 t = 4.26 df= 179 with p = 3.3e-05
## Direct effect (c') of cond_num on chose_woman_bin removing woman_jf gender = 0.06 S.E. = 0.07 t = 0.87 df= 177 with p = 0.38
## Indirect effect (ab) of cond_num on chose_woman_bin through woman_jf gender = 0.22
## Mean bootstrapped indirect effect = 0.22 with standard error = 0.05 Lower CI = 0.12 Upper CI = 0.33
## R = 0.59 R2 = 0.34 F = 30.8 on 3 and 177 DF p-value: 1.85e-19
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = chose_woman_bin ~ cond_num + (woman_jf) +
## (diversity), data = dei1_clean)
##
## The DV (Y) was chose_woman_bin . The IV (X) was cond_num . The mediating variable(s) = woman_jf diversity .
##
## Total effect(c) of cond_num on chose_woman_bin = 0.27 S.E. = 0.06 t = 4.26 df= 179 with p = 3.3e-05
## Direct effect (c') of cond_num on chose_woman_bin removing woman_jf diversity = 0.13 S.E. = 0.06 t = 2.14 df= 177 with p = 0.034
## Indirect effect (ab) of cond_num on chose_woman_bin through woman_jf diversity = 0.14
## Mean bootstrapped indirect effect = 0.14 with standard error = 0.04 Lower CI = 0.06 Upper CI = 0.23
## R = 0.56 R2 = 0.31 F = 26.59 on 3 and 177 DF p-value: 2.79e-17
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = woman_vs ~ cond_num + (woman_jf) + (gender),
## data = dei1_clean)
##
## The DV (Y) was woman_vs . The IV (X) was cond_num . The mediating variable(s) = woman_jf gender .
##
## Total effect(c) of cond_num on woman_vs = 0.34 S.E. = 0.15 t = 2.35 df= 179 with p = 0.02
## Direct effect (c') of cond_num on woman_vs removing woman_jf gender = 0.03 S.E. = 0.13 t = 0.22 df= 177 with p = 0.82
## Indirect effect (ab) of cond_num on woman_vs through woman_jf gender = 0.31
## Mean bootstrapped indirect effect = 0.31 with standard error = 0.12 Lower CI = 0.09 Upper CI = 0.54
## R = 0.68 R2 = 0.46 F = 50.15 on 3 and 177 DF p-value: 3.62e-28
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = woman_vs ~ cond_num + (woman_jf) + (diversity),
## data = dei1_clean)
##
## The DV (Y) was woman_vs . The IV (X) was cond_num . The mediating variable(s) = woman_jf diversity .
##
## Total effect(c) of cond_num on woman_vs = 0.34 S.E. = 0.15 t = 2.35 df= 179 with p = 0.02
## Direct effect (c') of cond_num on woman_vs removing woman_jf diversity = 0.02 S.E. = 0.12 t = 0.19 df= 177 with p = 0.85
## Indirect effect (ab) of cond_num on woman_vs through woman_jf diversity = 0.32
## Mean bootstrapped indirect effect = 0.32 with standard error = 0.11 Lower CI = 0.11 Upper CI = 0.54
## R = 0.68 R2 = 0.46 F = 51.08 on 3 and 177 DF p-value: 1.54e-28
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
Important Analyses
Participants in the diversity condition were more likely to choose a woman than participants in the strategy condition.
##
## Call:
## lm(formula = chose_woman_bin ~ condition, data = dei1_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8478 -0.5730 0.1522 0.4270 0.4270
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.84783 0.04520 18.757 < 2e-16 ***
## conditionstrategy -0.27479 0.06446 -4.263 3.26e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4335 on 179 degrees of freedom
## Multiple R-squared: 0.09217, Adjusted R-squared: 0.0871
## F-statistic: 18.17 on 1 and 179 DF, p-value: 3.258e-05
## condition
## chose_woman diversity strategy
## No 0.07734807 0.20994475
## Yes 0.43093923 0.28176796
Pilot 2 - Gender Typed Tasks
I asked participants to evaluate four roles. I adapted each job role from Heilman et al. (2004) - financial planning analyst (which they found was considered to be masculine), employee assistant analyst (which they found was considered to be feminine), and training analyst (which they found was considered to be neutral: i.e., in between masculine and feminine). Using these three roles as templates, I made a “gender diversity training analyst” role.
Goal
I predicted that people think a candidate’s gender is more relevant for the DEI position than other positions. The other items were filler to distract participants from the DEI items.
Study Description
For each role, I asked participants to imagine that they were hiring for that role
Then, I asked participants the following:
1. Nationwide, what percentage of people in each role do you think are
women?
2. To what extent do you think that other people see each role as more
masculine or feminine (1 = Very Masculine, 3 = Slightly Masculine, 4 =
Neither masculine nor feminine, 5 = Slightly feminine, 7 = Very
Feminine; I adapted this from Heilman et al., 2004)?
3. What is the ideal gender that you think others have in mind when
hiring for these positions (1 = Male, 2 = Female, 3 = Non-binary, 4 =
Not listed, 5 = Does Not Matter)?
4. How important do you think it is that the person in this position is
a woman?
Here are the Roles (and their descriptions which I included):
Financial Planning Analyst:.
Providing financial planning information to employees. Informing
employees about within-company benefit options through individual
appointments and in-house workshops.
Locating out-of-company sources that can aid them in mapping out
long-term financial strategies for themselves and their families.
Being good with numbers and knowledgeable about banking, insurance,
accounting, and bond and equity investment.
Staying abreast of programs and practices within the industry concerning
life insurance and mortgage assistance.
Employee Assistance Analyst:.
Providing assistance to employees with personal and family
problems.
Counseling employees about mental health problems through individual
appointments and in-house workshop.
Referring employees to professionals who can aid them in coping with
issues affecting their work performance.
Having good interpersonal skills, sensitivity to the concerns of others,
and the ability to build trusting relationships.
Staying updated of programs and practices within the industry concerning
on-site day care.
Training Analyst:.
Providing skill training to employees who seek to upgrade their roles
within the company.
Informing employees about job advancement opportunities through
individual appointments and in-house workshops.
Referring employees to professionals who can aid them in developing
longterm career goals.
Good communication skills and knowledgeable about job and career
planning.
Is up-to-date with programs and practices within the industry concerning
paid leave for taking courses.
Gender Diversity, Equity, and Inclusion
Analyst:.
Providing training to employees about how to make the workplace better
for women.
Giving information to employees about upcoming company-wide events
intended to honor, or promote, women.
Referring employees to professionals who can offer additional
information about creating a diverse and inclusive environment.
Good communication skills, ability to navigate difficult conversations,
and knowledgeable about the issues that women face in the
workplace.
Stays current on programs and practices within the industry concerning
practices for enhancing gender equity.
Qualifications:
I also asked them to report how important it was that the candidate
possess the following characteristics (scale was 1 = Not at all
important to 7 = Very important):
- Prior Experience.
- Time in similar roles.
- Prior performance in similar roles.
- The candidate’s gender.
- The candidate’s ethnicity.
- The candidate’s ability to connect with other people on the
team.
- The candidate’s ability to connect with other people in the
organization.
- The candidate’s comfort working with numbers.
- The candidate’s creativity.
- The candidate’s interpersonal warmth.
Next step:
Use these findings to justify the following study design:
1. I tell participants that their organization recently decided a new
initiative, and I would like to know who they will solicit voice from.
2. I present three candidates, each with different experiences.
3. I manipulate:
- The focus of the initiative (DEI vs. Financial planning).
4. I measure:
- If participants pick the woman to so solicit voice in the DEI
(vs. finacical planning) condition.
- How interested participants think the woman is in each condition (I
expect people to assume she is more interested in the DEI condition,
relative to the financial planning condition).
Works Cited/Studies Referenced
Heilman, M. E., Wallen, A. S., Fuchs, D., & Tamkins, M. M. (2004). Penalties for success: reactions to women who succeed at male gender-typed tasks. Journal of applied psychology, 89(3), 416.
Participant Summary
I collected data from 102 part-/and full-time workers on Prolific
Nationwide, what percentage of people in each role do you think are women?
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 Role 3 297 81.85 1.29e-38 * 0.279
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.766 8.99e-05 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 Role 0.866 2.6, 257.22 8.35e-34 * 0.891 2.67, 264.77 1.02e-34
## p[HF]<.05
## 1 *
Graph of “nationwide, what percentage of people in each role do you think are women?”
To what extent do you think that other people see each role as more masculine or feminine?
To what extent do you think that other people see each role as more masculine or feminine (1 = Very Masculine, 3 = Slightly Masculine, 4 = Neither masculine nor feminine, 5 = Slightly feminine, 7 = Very Feminine; I adapted this from Heilman et al., 2004)
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 Role 3 297 143.128 2.23e-57 * 0.499
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.798 0.000507 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 Role 0.86 2.58, 255.52 9.34e-50 * 0.885 2.66, 262.96 4.01e-51
## p[HF]<.05
## 1 *
Graphs of “to what extent do you think that other people see each role as more masculine or feminine?”
What is the ideal gender that you think others have in mind when hiring for these positions?
As a note: In the below analyses, I coded “1” if the participant said that women were the ideal candidates, and “0” if they did not select “woman”.
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 Role 3 297 64.352 4.39e-32 * 0.277
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.612 3.57e-09 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 Role 0.814 2.44, 241.87 1.29e-26 * 0.837 2.51, 248.44 2.88e-27
## p[HF]<.05
## 1 *
Graphs
As a note: In the below analyses, I coded “1” if the participant said that women were the ideal candidates, and “0” if they did not select “woman”.
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 Role 3 297 58.201 1.27e-29 * 0.241
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.291 2.29e-24 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 Role 0.68 2.04, 201.92 5.78e-21 * 0.694 2.08, 206.2 2.35e-21
## p[HF]<.05
## 1 *
Graphs
How important do you think it is that the person in this position is a woman?
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 Role 3 297 53.492 1.13e-27 * 0.145
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.206 1.65e-31 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 Role 0.501 1.5, 148.65 4.09e-15 * 0.507 1.52, 150.43 2.89e-15
## p[HF]<.05
## 1 *
Graphs
Candidate Qualifications
I asked all participants, for each position, to indicate how much
they think the following qualifications are important for the
position:
- Prior Experience.
- Time in similar roles.
- Prior performance in similar roles.
- The candidate’s gender.
- The candidate’s ethnicity.
- The candidate’s ability to connect with other people on the
team.
- The candidate’s ability to connect with other people in the
organization.
- The candidate’s comfort working with numbers.
- The candidate’s creativity.
- The candidate’s interpersonal warmth.
## $`Educ. Experience Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 5.01 1.52 0.152
## 2 2. emp_assist (fem) 100 5.18 1.39 0.139
## 3 3. financial (masc) 100 5.79 1.2 0.12
## 4 4. training (neutral) 100 5.34 1.24 0.124
##
## $`Educ. Experience Anova Table`
## $`Educ. Experience Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 10.322 1.75e-06 * 0.045
##
##
## $`Educ. Experience T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) -1.220370 1.000000
## 2 Value 1. dei 3. financial (masc) -4.502120 0.000110
## 3 Value 1. dei 4. training (neutral) -2.309605 0.138000
## 4 Value 2. emp_assist (fem) 3. financial (masc) -4.151010 0.000421
## 5 Value 2. emp_assist (fem) 4. training (neutral) -1.237705 1.000000
## 6 Value 3. financial (masc) 4. training (neutral) 3.013559 0.020000
## p.adj.signif
## 1 ns
## 2 ***
## 3 ns
## 4 ***
## 5 ns
## 6 *
##
## $`Graph of Educ. Experience`
##
## $`Time in Similar Roles Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 5.44 1.29 0.129
## 2 2. emp_assist (fem) 100 5.66 1.10 0.110
## 3 3. financial (masc) 100 6 0.974 0.0974
## 4 4. training (neutral) 100 5.78 1.02 0.102
##
## $`Time in Similar Roles Anova Table`
## $`Time in Similar Roles Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 9.065 9.24e-06 * 0.033
##
##
## $`Time in Similar Roles T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) -1.911347 0.353000
## 2 Value 1. dei 3. financial (masc) -4.265453 0.000274
## 3 Value 1. dei 4. training (neutral) -2.985014 0.021000
## 4 Value 2. emp_assist (fem) 3. financial (masc) -3.279020 0.009000
## 5 Value 2. emp_assist (fem) 4. training (neutral) -1.330268 1.000000
## 6 Value 3. financial (masc) 4. training (neutral) 2.198224 0.182000
## p.adj.signif
## 1 ns
## 2 ***
## 3 *
## 4 **
## 5 ns
## 6 ns
##
## $`Graph of Time in Similar Roles`
##
## $`Prior Performance Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 5.74 1.28 0.128
## 2 2. emp_assist (fem) 100 5.92 1.02 0.102
## 3 3. financial (masc) 100 6.14 0.932 0.0932
## 4 4. training (neutral) 100 5.93 1.02 0.102
##
## $`Prior Performance Anova Table`
## $`Prior Performance Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 4.724 0.003 * 0.017
##
##
## $`Prior Performance T-test Results`
## .y. group1 group2 statistic p.adj p.adj.signif
## 1 Value 1. dei 2. emp_assist (fem) -1.7173369 0.534 ns
## 2 Value 1. dei 3. financial (masc) -3.1078186 0.015 *
## 3 Value 1. dei 4. training (neutral) -1.6619611 0.598 ns
## 4 Value 2. emp_assist (fem) 3. financial (masc) -2.3182232 0.135 ns
## 5 Value 2. emp_assist (fem) 4. training (neutral) -0.1119519 1.000 ns
## 6 Value 3. financial (masc) 4. training (neutral) 2.0629295 0.250 ns
##
## $`Graph of Prior Performance`
##
## $`Gender Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 3.86 2.23 0.223
## 2 2. emp_assist (fem) 100 2.07 1.55 0.155
## 3 3. financial (masc) 100 1.77 1.30 0.130
## 4 4. training (neutral) 100 1.81 1.38 0.138
##
## $`Gender Anova Table`
## $`Gender Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 74.417 6.37e-36 * 0.215
##
##
## $`Gender T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) 8.3168398 3.00e-12
## 2 Value 1. dei 3. financial (masc) 9.5295797 6.96e-15
## 3 Value 1. dei 4. training (neutral) 9.5232113 7.20e-15
## 4 Value 2. emp_assist (fem) 3. financial (masc) 3.1640537 1.20e-02
## 5 Value 2. emp_assist (fem) 4. training (neutral) 3.6139853 3.00e-03
## 6 Value 3. financial (masc) 4. training (neutral) -0.5424067 1.00e+00
## p.adj.signif
## 1 ****
## 2 ****
## 3 ****
## 4 *
## 5 **
## 6 ns
##
## $`Graph of Gender`
##
## $`Ethnicity Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 2.76 1.98 0.198
## 2 2. emp_assist (fem) 100 1.89 1.49 0.149
## 3 3. financial (masc) 100 1.69 1.31 0.131
## 4 4. training (neutral) 100 1.71 1.27 0.127
##
## $`Ethnicity Anova Table`
## $`Ethnicity Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 33.8 8.01e-19 * 0.076
##
##
## $`Ethnicity T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) 5.5495385 1.44e-06
## 2 Value 1. dei 3. financial (masc) 6.4024464 3.09e-08
## 3 Value 1. dei 4. training (neutral) 6.8187394 4.40e-09
## 4 Value 2. emp_assist (fem) 3. financial (masc) 2.5272706 7.90e-02
## 5 Value 2. emp_assist (fem) 4. training (neutral) 2.6191046 6.10e-02
## 6 Value 3. financial (masc) 4. training (neutral) -0.3229866 1.00e+00
## p.adj.signif
## 1 ****
## 2 ****
## 3 ****
## 4 ns
## 5 ns
## 6 ns
##
## $`Graph of Ethnicity`
##
## $`Ability to connect with others on the team Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 5.99 1.18 0.119
## 2 2. emp_assist (fem) 100 6.15 1.09 0.109
## 3 3. financial (masc) 100 4.96 1.38 0.138
## 4 4. training (neutral) 100 5.98 1.12 0.112
##
## $`Ability to connect with others on the team Anova Table`
## $`Ability to connect with others on the team Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 34.847 2.52e-19 * 0.136
##
##
## $`Ability to connect with others on the team T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) -1.16905750 1.00e+00
## 2 Value 1. dei 3. financial (masc) 6.99079408 1.94e-09
## 3 Value 1. dei 4. training (neutral) 0.08439677 1.00e+00
## 4 Value 2. emp_assist (fem) 3. financial (masc) 8.26180445 3.95e-12
## 5 Value 2. emp_assist (fem) 4. training (neutral) 2.02011705 2.77e-01
## 6 Value 3. financial (masc) 4. training (neutral) -7.17705385 7.98e-10
## p.adj.signif
## 1 ns
## 2 ****
## 3 ns
## 4 ****
## 5 ns
## 6 ****
##
## $`Graph of Ability to connect with others on the team`
##
## $`Ability to connect with others in the org. Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 6.04 1.20 0.120
## 2 2. emp_assist (fem) 100 6.14 1.05 0.105
## 3 3. financial (masc) 100 5 1.41 0.141
## 4 4. training (neutral) 100 6.04 1.05 0.105
##
## $`Ability to connect with others in the org. Anova Table`
## $`Ability to connect with others in the org. Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 36.77 3.09e-20 * 0.135
##
##
## $`Ability to connect with others in the org. T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) -0.8500751 1.00e+00
## 2 Value 1. dei 3. financial (masc) 6.8857382 3.20e-09
## 3 Value 1. dei 4. training (neutral) 0.0000000 1.00e+00
## 4 Value 2. emp_assist (fem) 3. financial (masc) 7.6466574 8.16e-11
## 5 Value 2. emp_assist (fem) 4. training (neutral) 1.2953633 1.00e+00
## 6 Value 3. financial (masc) 4. training (neutral) -7.5501729 1.31e-10
## p.adj.signif
## 1 ns
## 2 ****
## 3 ns
## 4 ****
## 5 ns
## 6 ****
##
## $`Graph of Ability to connect with others in the org.`
##
## $`Comfort with numbers Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 3.55 2.02 0.202
## 2 2. emp_assist (fem) 100 3.52 1.87 0.187
## 3 3. financial (masc) 100 6.26 1.18 0.118
## 4 4. training (neutral) 100 4.04 1.81 0.181
##
## $`Comfort with numbers Anova Table`
## $`Comfort with numbers Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 86.297 3.54e-40 * 0.295
##
##
## $`Comfort with numbers T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) 0.2382942 1.00e+00
## 2 Value 1. dei 3. financial (masc) -10.2458686 1.91e-16
## 3 Value 1. dei 4. training (neutral) -3.7068343 2.00e-03
## 4 Value 2. emp_assist (fem) 3. financial (masc) -11.1743458 1.84e-18
## 5 Value 2. emp_assist (fem) 4. training (neutral) -3.8461804 1.00e-03
## 6 Value 3. financial (masc) 4. training (neutral) 9.6023397 4.84e-15
## p.adj.signif
## 1 ns
## 2 ****
## 3 **
## 4 ****
## 5 **
## 6 ****
##
## $`Graph of Comfort with numbers`
##
## $`Creativity Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 5.18 1.43 0.143
## 2 2. emp_assist (fem) 100 4.88 1.40 0.140
## 3 3. financial (masc) 100 4.29 1.52 0.152
## 4 4. training (neutral) 100 4.99 1.37 0.137
##
## $`Creativity Anova Table`
## $`Creativity Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 12.031 1.87e-07 * 0.052
##
##
## $`Creativity T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) 1.9389414 3.32e-01
## 2 Value 1. dei 3. financial (masc) 4.7899163 3.52e-05
## 3 Value 1. dei 4. training (neutral) 1.2941487 1.00e+00
## 4 Value 2. emp_assist (fem) 3. financial (masc) 3.8525462 1.00e-03
## 5 Value 2. emp_assist (fem) 4. training (neutral) -0.8883594 1.00e+00
## 6 Value 3. financial (masc) 4. training (neutral) -4.1697838 3.92e-04
## p.adj.signif
## 1 ns
## 2 ****
## 3 ns
## 4 **
## 5 ns
## 6 ***
##
## $`Graph of Creativity`
##
## $`Interpersonal warmth Means + SDs`
## # A tibble: 4 × 5
## condition n mean sd se
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 1. dei 100 6.01 1.23 0.123
## 2 2. emp_assist (fem) 100 6.27 1.14 0.114
## 3 3. financial (masc) 100 4.46 1.44 0.145
## 4 4. training (neutral) 100 5.88 1.17 0.117
##
## $`Interpersonal warmth Anova Table`
## $`Interpersonal warmth Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition 3 297 76.769 8.69e-37 * 0.243
##
##
## $`Interpersonal warmth T-test Results`
## .y. group1 group2 statistic p.adj
## 1 Value 1. dei 2. emp_assist (fem) -2.596854 6.50e-02
## 2 Value 1. dei 3. financial (masc) 9.739324 2.43e-15
## 3 Value 1. dei 4. training (neutral) 1.260452 1.00e+00
## 4 Value 2. emp_assist (fem) 3. financial (masc) 11.403985 5.86e-19
## 5 Value 2. emp_assist (fem) 4. training (neutral) 4.006858 7.14e-04
## 6 Value 3. financial (masc) 4. training (neutral) -9.432639 1.13e-14
## p.adj.signif
## 1 ns
## 2 ****
## 3 ns
## 4 ****
## 5 ***
## 6 ****
##
## $`Graph of Interpersonal warmth`
Does participant’s gender matter?
In the following analyses, I tested if my findings varied by the participant’s gender.
(By Participant’s Gender): Nationwide, what percentage of people in each role do you think are women?
## ANOVA Table (type II tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 1.794 1.83e-01 0.010
## 2 Role 3 294 81.283 2.55e-38 * 0.281
## 3 ParticipantGender:Role 3 294 0.314 8.15e-01 0.002
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.765 9.41e-05 *
## 2 ParticipantGender:Role 0.765 9.41e-05 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 Role 0.865 2.59, 254.3 1.66e-33 * 0.891
## 2 ParticipantGender:Role 0.865 2.59, 254.3 7.86e-01 0.891
## DF[HF] p[HF] p[HF]<.05
## 1 2.67, 261.83 2.03e-34 *
## 2 2.67, 261.83 7.92e-01
(By Participant’s Gender): To what extent do you think that other people see each role as more masculine or feminine?
To what extent do you think that other people see each role as more masculine or feminine (1 = Very Masculine, 3 = Slightly Masculine, 4 = Neither masculine nor feminine, 5 = Slightly feminine, 7 = Very Feminine; I adapted this from Heilman et al., 2004)
(By Participant’s Gender): What is the ideal gender that you think others have in mind when hiring for these positions?
If the woman is selected, DV is coded as 1. If any of the others were selected, they were coded as 0.
If the man is selected, DV is coded as 1. If any of the others were selected, they were coded as 0.
(By Participant’s Gender): How important do you think it is that the person in this position is a woman?
## ANOVA Table (type II tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 0.001 9.75e-01 7.19e-06
## 2 Role 3 294 54.370 5.50e-28 * 1.46e-01
## 3 ParticipantGender:Role 3 294 2.625 5.10e-02 8.00e-03
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 Role 0.205 2.97e-31 *
## 2 ParticipantGender:Role 0.205 2.97e-31 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 Role 0.501 1.5, 147.21 2.81e-15 * 0.507
## 2 ParticipantGender:Role 0.501 1.5, 147.21 9.10e-02 0.507
## DF[HF] p[HF] p[HF]<.05
## 1 1.52, 148.99 1.96e-15 *
## 2 1.52, 148.99 9.00e-02
Candidate Qualifications
I asked all participants, for each position, to indicate how much
they think the following qualifications are important for the
position:
- Prior Experience.
- Time in similar roles.
- Prior performance in similar roles.
- The candidate’s gender.
- The candidate’s ethnicity.
- The candidate’s ability to connect with other people on the
team.
- The candidate’s ability to connect with other people in the
organization.
- The candidate’s comfort working with numbers.
- The candidate’s creativity.
- The candidate’s interpersonal warmth.
## $`Educ. Experience Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 5.04 1.43 0.202
## 2 Male 1. dei 50 4.98 1.62 0.229
## 3 Female 2. emp_assist (fem) 50 5.24 1.45 0.205
## 4 Male 2. emp_assist (fem) 50 5.12 1.34 0.189
## 5 Female 3. financial (masc) 50 5.9 1.20 0.170
## 6 Male 3. financial (masc) 50 5.68 1.20 0.170
## 7 Female 4. training (neutral) 50 5.32 1.30 0.184
## 8 Male 4. training (neutral) 50 5.36 1.19 0.168
##
## $`Educ. Experience Anova Table`
## $`Educ. Experience Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 0.203 6.53e-01 0.001
## 2 condition 3 294 10.246 1.95e-06 * 0.045
## 3 ParticipantGender:condition 3 294 0.271 8.46e-01 0.001
##
##
## $`Educ. Experience T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 0.1929857 0.848 ns
## 2 2. emp_assist (fem) Value Female Male 0.4565217 0.650 ns
## 3 3. financial (masc) Value Female Male 0.9119613 0.366 ns
## 4 4. training (neutral) Value Female Male -0.1565639 0.876 ns
##
## $`Graph of Educ. Experience`
##
## $`Time in Similar Roles Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 5.54 1.22 0.172
## 2 Male 1. dei 50 5.34 1.36 0.193
## 3 Female 2. emp_assist (fem) 50 5.68 1.04 0.147
## 4 Male 2. emp_assist (fem) 50 5.64 1.17 0.166
## 5 Female 3. financial (masc) 50 6.02 0.958 0.135
## 6 Male 3. financial (masc) 50 5.98 1 0.141
## 7 Female 4. training (neutral) 50 5.66 1.10 0.155
## 8 Male 4. training (neutral) 50 5.9 0.931 0.132
##
## $`Time in Similar Roles Anova Table`
## $`Time in Similar Roles Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 0.003 9.55e-01 2.08e-05
## 2 condition 3 294 9.101 8.86e-06 * 3.30e-02
## 3 ParticipantGender:condition 3 294 1.393 2.45e-01 5.00e-03
##
##
## $`Time in Similar Roles T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 0.6931033 0.492 ns
## 2 2. emp_assist (fem) Value Female Male 0.1871497 0.852 ns
## 3 3. financial (masc) Value Female Male 0.2021568 0.841 ns
## 4 4. training (neutral) Value Female Male -1.2310418 0.224 ns
##
## $`Graph of Time in Similar Roles`
##
## $`Prior Performance Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 6 1.11 0.157
## 2 Male 1. dei 50 5.48 1.40 0.198
## 3 Female 2. emp_assist (fem) 50 6.02 1 0.141
## 4 Male 2. emp_assist (fem) 50 5.82 1.04 0.148
## 5 Female 3. financial (masc) 50 6.26 0.853 0.121
## 6 Male 3. financial (masc) 50 6.02 1 0.141
## 7 Female 4. training (neutral) 50 5.92 1.14 0.161
## 8 Male 4. training (neutral) 50 5.94 0.89 0.126
##
## $`Prior Performance Anova Table`
## $`Prior Performance Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 1.923 0.169 0.012
## 2 condition 3 294 4.781 0.003 * 0.018
## 3 ParticipantGender:condition 3 294 2.196 0.089 0.008
##
##
## $`Prior Performance T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 1.91589562 0.061 ns
## 2 2. emp_assist (fem) Value Female Male 0.95257934 0.345 ns
## 3 3. financial (masc) Value Female Male 1.28759261 0.204 ns
## 4 4. training (neutral) Value Female Male -0.09571098 0.924 ns
##
## $`Graph of Prior Performance`
##
## $`Gender Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 3.82 2.23 0.315
## 2 Male 1. dei 50 3.9 2.25 0.318
## 3 Female 2. emp_assist (fem) 50 1.88 1.44 0.203
## 4 Male 2. emp_assist (fem) 50 2.26 1.65 0.233
## 5 Female 3. financial (masc) 50 1.54 1.18 0.167
## 6 Male 3. financial (masc) 50 2 1.38 0.196
## 7 Female 4. training (neutral) 50 1.44 0.993 0.140
## 8 Male 4. training (neutral) 50 2.18 1.61 0.228
##
## $`Gender Anova Table`
## $`Gender Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 2.506 1.17e-01 0.016
## 2 condition 3 294 74.706 6.07e-36 * 0.219
## 3 ParticipantGender:condition 3 294 1.384 2.48e-01 0.005
##
##
## $`Gender T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male -0.1928331 0.848 ns
## 2 2. emp_assist (fem) Value Female Male -1.2517682 0.217 ns
## 3 3. financial (masc) Value Female Male -1.9638528 0.055 ns
## 4 4. training (neutral) Value Female Male -2.9746544 0.005 **
##
## $`Graph of Gender`
##
## $`Ethnicity Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 2.58 1.88 0.265
## 2 Male 1. dei 50 2.94 2.07 0.293
## 3 Female 2. emp_assist (fem) 50 1.68 1.27 0.179
## 4 Male 2. emp_assist (fem) 50 2.1 1.67 0.236
## 5 Female 3. financial (masc) 50 1.46 1.11 0.157
## 6 Male 3. financial (masc) 50 1.92 1.46 0.206
## 7 Female 4. training (neutral) 50 1.44 0.993 0.140
## 8 Male 4. training (neutral) 50 1.98 1.45 0.205
##
## $`Ethnicity Anova Table`
## $`Ethnicity Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 2.817 9.60e-02 0.021000
## 2 condition 3 294 33.522 1.15e-18 * 0.078000
## 3 ParticipantGender:condition 3 294 0.186 9.06e-01 0.000468
##
##
## $`Ethnicity T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male -0.9294907 0.357 ns
## 2 2. emp_assist (fem) Value Female Male -1.5074743 0.138 ns
## 3 3. financial (masc) Value Female Male -1.9786277 0.054 ns
## 4 4. training (neutral) Value Female Male -2.4157424 0.020 *
##
## $`Graph of Ethnicity`
##
## $`Ability to connect with others on the team Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 6.2 0.969 0.137
## 2 Male 1. dei 50 5.78 1.34 0.190
## 3 Female 2. emp_assist (fem) 50 6.4 0.99 0.140
## 4 Male 2. emp_assist (fem) 50 5.9 1.13 0.160
## 5 Female 3. financial (masc) 50 5.22 1.34 0.190
## 6 Male 3. financial (masc) 50 4.7 1.39 0.196
## 7 Female 4. training (neutral) 50 6.12 1.08 0.153
## 8 Male 4. training (neutral) 50 5.84 1.15 0.162
##
## $`Ability to connect with others on the team Anova Table`
## $`Ability to connect with others on the team Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 6.094 1.50e-02 * 0.033
## 2 condition 3 294 34.617 3.45e-19 * 0.140
## 3 ParticipantGender:condition 3 294 0.345 7.93e-01 0.002
##
##
## $`Ability to connect with others on the team T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 1.632427 0.109 ns
## 2 2. emp_assist (fem) Value Female Male 2.200431 0.032 *
## 3 3. financial (masc) Value Female Male 1.733412 0.089 ns
## 4 4. training (neutral) Value Female Male 1.154620 0.254 ns
##
## $`Graph of Ability to connect with others on the team`
##
## $`Ability to connect with others in the org. Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 6.36 0.921 0.130
## 2 Male 1. dei 50 5.72 1.36 0.192
## 3 Female 2. emp_assist (fem) 50 6.44 0.884 0.125
## 4 Male 2. emp_assist (fem) 50 5.84 1.13 0.160
## 5 Female 3. financial (masc) 50 5.32 1.32 0.186
## 6 Male 3. financial (masc) 50 4.68 1.45 0.205
## 7 Female 4. training (neutral) 50 6.22 0.932 0.132
## 8 Male 4. training (neutral) 50 5.86 1.14 0.162
##
## $`Ability to connect with others in the org. Anova Table`
## $`Ability to connect with others in the org. Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 10.456 2.00e-03 * 0.056
## 2 condition 3 294 36.611 3.93e-20 * 0.142
## 3 ParticipantGender:condition 3 294 0.572 6.34e-01 0.003
##
##
## $`Ability to connect with others in the org. T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 2.762276 0.008 **
## 2 2. emp_assist (fem) Value Female Male 2.884572 0.006 **
## 3 3. financial (masc) Value Female Male 2.199040 0.033 *
## 4 4. training (neutral) Value Female Male 1.786201 0.080 ns
##
## $`Graph of Ability to connect with others in the org.`
##
## $`Comfort with numbers Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 3.5 1.92 0.271
## 2 Male 1. dei 50 3.6 2.13 0.301
## 3 Female 2. emp_assist (fem) 50 3.42 1.94 0.274
## 4 Male 2. emp_assist (fem) 50 3.62 1.82 0.257
## 5 Female 3. financial (masc) 50 6.54 0.838 0.119
## 6 Male 3. financial (masc) 50 5.98 1.39 0.197
## 7 Female 4. training (neutral) 50 4.04 1.83 0.259
## 8 Male 4. training (neutral) 50 4.04 1.81 0.256
##
## $`Comfort with numbers Anova Table`
## $`Comfort with numbers Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 0.066 7.98e-01 0.000351
## 2 condition 3 294 86.717 3.23e-40 * 0.297000
## 3 ParticipantGender:condition 3 294 1.482 2.20e-01 0.007000
##
##
## $`Comfort with numbers T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male -0.2431200 0.809 ns
## 2 2. emp_assist (fem) Value Female Male -0.5400617 0.592 ns
## 3 3. financial (masc) Value Female Male 2.1493089 0.037 *
## 4 4. training (neutral) Value Female Male 0.0000000 1.000 ns
##
## $`Graph of Comfort with numbers`
##
## $`Creativity Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 5.36 1.47 0.207
## 2 Male 1. dei 50 5 1.38 0.196
## 3 Female 2. emp_assist (fem) 50 5.14 1.50 0.212
## 4 Male 2. emp_assist (fem) 50 4.62 1.24 0.176
## 5 Female 3. financial (masc) 50 4.58 1.37 0.194
## 6 Male 3. financial (masc) 50 4 1.62 0.229
## 7 Female 4. training (neutral) 50 5.16 1.38 0.195
## 8 Male 4. training (neutral) 50 4.82 1.35 0.191
##
## $`Creativity Anova Table`
## $`Creativity Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 4.671 3.30e-02 * 0.025
## 2 condition 3 294 11.944 2.11e-07 * 0.053
## 3 ParticipantGender:condition 3 294 0.284 8.37e-01 0.001
##
##
## $`Creativity T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 1.242964 0.220 ns
## 2 2. emp_assist (fem) Value Female Male 1.791214 0.079 ns
## 3 3. financial (masc) Value Female Male 1.837198 0.072 ns
## 4 4. training (neutral) Value Female Male 1.111567 0.272 ns
##
## $`Graph of Creativity`
##
## $`Interpersonal warmth Means + SDs`
## # A tibble: 8 × 6
## ParticipantGender condition n mean sd se
## <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Female 1. dei 50 6.44 0.837 0.118
## 2 Male 1. dei 50 5.58 1.40 0.198
## 3 Female 2. emp_assist (fem) 50 6.66 0.745 0.105
## 4 Male 2. emp_assist (fem) 50 5.88 1.32 0.187
## 5 Female 3. financial (masc) 50 4.88 1.36 0.193
## 6 Male 3. financial (masc) 50 4.04 1.41 0.200
## 7 Female 4. training (neutral) 50 6.08 1.21 0.171
## 8 Male 4. training (neutral) 50 5.68 1.10 0.155
##
## $`Interpersonal warmth Anova Table`
## $`Interpersonal warmth Anova Table`$ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 ParticipantGender 1 98 16.359 1.05e-04 * 0.084
## 2 condition 3 294 77.049 8.45e-37 * 0.261
## 3 ParticipantGender:condition 3 294 1.360 2.55e-01 0.006
##
##
## $`Interpersonal warmth T-test Results`
## condition .y. group1 group2 statistic p.adj p.adj.signif
## 1 1. dei Value Female Male 3.822396 0.000374 ***
## 2 2. emp_assist (fem) Value Female Male 3.575737 0.000797 ***
## 3 3. financial (masc) Value Female Male 2.864240 0.006000 **
## 4 4. training (neutral) Value Female Male 1.595448 0.117000 ns
##
## $`Graph of Interpersonal warmth`
Pilot 3 - DEI Leader Evaluations
We followed the protocol in Study 3 of Harrison & Martin
(2022):
We told participants that there were increasing demands to
improve:
- diversity equity and inclusion for women at work (Diversity
condition)
- general support for employees in the workplace (Employee
Assistance Condition)
- efficiency of financial accounting practices (Financial
Planning Condition)
We used the materials developed in the previous study to describe the roles. We asked participants to evaluate how likely they would be to solicit voice from three people: Peter Abignale, Phillip Dunn, and Judith Clark.
Along with Voice Solicitation, I collected the following:
> Exploratory items.
- I think that employee is probably curious about this role (“curious”)
- I think that employee probably has some good ideas about this role (“ideas”)
- I think that employee is probably interested in learning more about this role (“learning”)
- I think that employee probably would want to have this role (“have”)
Support for social justice.
I got this measure from here:
Saguy, T., Fernández, S., Branscombe, N. R., & Shany, A. (2020).
Justice Agents: Discriminated Group Members Are Perceived to be Highly
Committed to Social Justice. Personality and Social Psychology Bulletin,
46(1), 155–167. https://doi.org/10.1177/0146167219845922
- I think that employee supports the idea of conditions.
- I think that employee is likely to talk to their coworkers about conditions.
- I think that employee probably worries about conditions language.
- I think that issues related to conditions language are present in employee’s mind and heart.
H1a: Do people solicit voice from the woman more in the DEI condition, compared to the other conditions?
DV | IV | Analyses |
---|---|---|
Voice solicitation to Judith Clark | Focus of initiative | One-way between subjects ANOVA |
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 2 52.9 26.456 14.93 9.18e-07 ***
## Residuals 197 349.1 1.772
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = jc_vs_tot ~ condition, data = deileader1_clean)
##
## $condition
## diff lwr upr p adj
## fin_plan-emp_assist -0.2245687 -0.7578774 0.3087401 0.5812541
## gdei-emp_assist 0.9870414 0.4364029 1.5376799 0.0001043
## gdei-fin_plan 1.2116100 0.6591167 1.7641034 0.0000016
H1b: In the DEI condition, do people solicit voice more from the woman than the men?
DV | IV | Filter | Analyses |
---|---|---|---|
Voice solicitation (across employees) | Specific Employee | Only data in the “Gender Diversity Initiative” Condition | One-way within subjects ANOVA |
Who would participants select for the position?
Using the “select” variable (which is coded “1” if participants selected the woman, and “0” if participants did not) I tested if participants were more likely to choose the woman.
DV | IV | Analyses |
---|---|---|
Selected a woman (vs. not) | Manipulation | Binary logistic regression |
##
## Call:
## lm(formula = select ~ condition_recoded, data = deileader1_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.80328 -0.22857 -0.07246 0.19672 0.92754
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.80328 0.04707 17.067 < 2e-16 ***
## condition_recoded2. Financial Planning -0.73081 0.06460 -11.312 < 2e-16 ***
## condition_recoded3. Employee Assist -0.57471 0.06439 -8.926 3.09e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3676 on 197 degrees of freedom
## Multiple R-squared: 0.4149, Adjusted R-squared: 0.409
## F-statistic: 69.86 on 2 and 197 DF, p-value: < 2.2e-16
Exploratory - Voice Solicitation
Curious
DV | Mediator | IV |
---|---|---|
Solicited Voice (Likert) | I think that Judith Clark is probably curious about this role | Binary condition variable |
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = jc_vs_tot ~ cond_num_bin + (jc_curious), data = deileader1_clean)
##
## The DV (Y) was jc_vs_tot . The IV (X) was cond_num_bin . The mediating variable(s) = jc_curious .
##
## Total effect(c) of cond_num_bin on jc_vs_tot = 1.1 S.E. = 0.2 t = 5.37 df= 198 with p = 2.2e-07
## Direct effect (c') of cond_num_bin on jc_vs_tot removing jc_curious = 0.56 S.E. = 0.17 t = 3.27 df= 197 with p = 0.0013
## Indirect effect (ab) of cond_num_bin on jc_vs_tot through jc_curious = 0.54
## Mean bootstrapped indirect effect = 0.54 with standard error = 0.14 Lower CI = 0.27 Upper CI = 0.83
## R = 0.67 R2 = 0.44 F = 78.19 on 2 and 197 DF p-value: 2.36e-33
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
Ideas
DV | Mediator | IV |
---|---|---|
Solicited Voice (Likert) | I think that Judith Clark probably has some good ideas about this role | Binary condition variable |
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = jc_vs_tot ~ cond_num_bin + (jc_ideas), data = deileader1_clean)
##
## The DV (Y) was jc_vs_tot . The IV (X) was cond_num_bin . The mediating variable(s) = jc_ideas .
##
## Total effect(c) of cond_num_bin on jc_vs_tot = 1.1 S.E. = 0.2 t = 5.37 df= 198 with p = 2.2e-07
## Direct effect (c') of cond_num_bin on jc_vs_tot removing jc_ideas = 0.34 S.E. = 0.13 t = 2.53 df= 197 with p = 0.012
## Indirect effect (ab) of cond_num_bin on jc_vs_tot through jc_ideas = 0.76
## Mean bootstrapped indirect effect = 0.75 with standard error = 0.16 Lower CI = 0.45 Upper CI = 1.08
## R = 0.81 R2 = 0.66 F = 191.58 on 2 and 197 DF p-value: 3.77e-58
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
Learning
DV | Mediator | IV |
---|---|---|
Solicited Voice (Likert) | I think that Judith Clark is probably interested in learning more about this role | Binary condition variable |
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = jc_vs_tot ~ cond_num_bin + (jc_learning),
## data = deileader1_clean)
##
## The DV (Y) was jc_vs_tot . The IV (X) was cond_num_bin . The mediating variable(s) = jc_learning .
##
## Total effect(c) of cond_num_bin on jc_vs_tot = 1.1 S.E. = 0.2 t = 5.37 df= 198 with p = 2.2e-07
## Direct effect (c') of cond_num_bin on jc_vs_tot removing jc_learning = 0.65 S.E. = 0.16 t = 4 df= 197 with p = 9.1e-05
## Indirect effect (ab) of cond_num_bin on jc_vs_tot through jc_learning = 0.45
## Mean bootstrapped indirect effect = 0.45 with standard error = 0.14 Lower CI = 0.2 Upper CI = 0.72
## R = 0.7 R2 = 0.48 F = 92.72 on 2 and 197 DF p-value: 1.87e-37
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
Have
DV | Mediator | IV |
---|---|---|
Solicited Voice (Likert) | I think that Judith Clark probably would want to have this role | Binary condition variable |
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = jc_vs_tot ~ cond_num_bin + (jc_have), data = deileader1_clean)
##
## The DV (Y) was jc_vs_tot . The IV (X) was cond_num_bin . The mediating variable(s) = jc_have .
##
## Total effect(c) of cond_num_bin on jc_vs_tot = 1.1 S.E. = 0.2 t = 5.37 df= 198 with p = 2.2e-07
## Direct effect (c') of cond_num_bin on jc_vs_tot removing jc_have = 0.72 S.E. = 0.17 t = 4.16 df= 197 with p = 4.7e-05
## Indirect effect (ab) of cond_num_bin on jc_vs_tot through jc_have = 0.38
## Mean bootstrapped indirect effect = 0.38 with standard error = 0.12 Lower CI = 0.14 Upper CI = 0.63
## R = 0.64 R2 = 0.41 F = 67.1 on 2 and 197 DF p-value: 6.16e-30
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
All on Voice Solicitation
psych::mediate(jc_vs_tot~cond_num_bin+(jc_sj_tot)+(jc_curious)+(jc_learning)+(jc_ideas)+(jc_have), data = deileader1_clean)
##
## Mediation/Moderation Analysis
## Call: psych::mediate(y = jc_vs_tot ~ cond_num_bin + (jc_sj_tot) + (jc_curious) +
## (jc_learning) + (jc_ideas) + (jc_have), data = deileader1_clean)
##
## The DV (Y) was jc_vs_tot . The IV (X) was cond_num_bin . The mediating variable(s) = jc_sj_tot jc_curious jc_learning jc_ideas jc_have .
##
## Total effect(c) of cond_num_bin on jc_vs_tot = 1.1 S.E. = 0.2 t = 5.37 df= 198 with p = 2.2e-07
## Direct effect (c') of cond_num_bin on jc_vs_tot removing jc_sj_tot jc_curious jc_learning jc_ideas jc_have = 0.33 S.E. = 0.13 t = 2.45 df= 193 with p = 0.015
## Indirect effect (ab) of cond_num_bin on jc_vs_tot through jc_sj_tot jc_curious jc_learning jc_ideas jc_have = 0.77
## Mean bootstrapped indirect effect = 0.77 with standard error = 0.17 Lower CI = 0.43 Upper CI = 1.1
## R = 0.82 R2 = 0.68 F = 68.09 on 6 and 193 DF p-value: 9.1e-49
##
## To see the longer output, specify short = FALSE in the print statement or ask for the summary
Mixed Models ANOVAs
Voice Solicitation
DV | Between-subjects IV | Within-subjects IV |
---|---|---|
Selected a woman (vs. not) | Initiatives Manipulation | Employee |
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition_f 2 197 1.730 1.80e-01 0.008
## 2 employee_f 2 394 5.951 3.00e-03 * 0.015
## 3 condition_f:employee_f 4 394 23.503 1.92e-17 * 0.110
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 employee_f 0.844 6.4e-08 *
## 2 condition_f:employee_f 0.844 6.4e-08 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 employee_f 0.865 1.73, 340.98 4.00e-03 * 0.872
## 2 condition_f:employee_f 0.865 3.46, 340.98 2.05e-15 * 0.872
## DF[HF] p[HF] p[HF]<.05
## 1 1.74, 343.73 4.00e-03 *
## 2 3.49, 343.73 1.61e-15 *
Justice
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition_f 2 197 6.824 1.00e-03 * 0.034
## 2 employee_f 2 394 21.290 1.66e-09 * 0.050
## 3 condition_f:employee_f 4 394 23.736 1.33e-17 * 0.105
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 employee_f 0.925 0.000467 *
## 2 condition_f:employee_f 0.925 0.000467 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 employee_f 0.93 1.86, 366.42 5.32e-09 * 0.938
## 2 condition_f:employee_f 0.93 3.72, 366.42 1.54e-16 * 0.938
## DF[HF] p[HF] p[HF]<.05
## 1 1.88, 369.77 4.62e-09 *
## 2 3.75, 369.77 1.15e-16 *
Exploratory Analyses
## $`ideas anova`
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition_f 2 197 6.781 1.00e-03 * 0.030
## 2 employee_f 2 394 9.153 1.30e-04 * 0.025
## 3 condition_f:employee_f 4 394 26.466 1.86e-19 * 0.130
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 employee_f 0.877 2.54e-06 *
## 2 condition_f:employee_f 0.877 2.54e-06 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 employee_f 0.89 1.78, 350.79 2.54e-04 * 0.898
## 2 condition_f:employee_f 0.89 3.56, 350.79 1.38e-17 * 0.898
## DF[HF] p[HF] p[HF]<.05
## 1 1.8, 353.77 2.43e-04 *
## 2 3.59, 353.77 1.02e-17 *
##
##
## $`ideas posthoc`
## # A tibble: 6 × 8
## condition_f group1 group2 statistic df p p.adj p.adj.signif
## <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Employee Assistanc… Judit… Peter… -1.28 69 2.06e-1 6.18e-1 ns
## 2 Employee Assistanc… Judit… Phill… -1.17 69 2.47e-1 7.41e-1 ns
## 3 Financial Planning… Judit… Peter… -0.785 68 4.35e-1 1 e+0 ns
## 4 Financial Planning… Judit… Phill… -6.74 68 4.16e-9 1.25e-8 ****
## 5 Gender Diversity C… Judit… Peter… 6.20 60 5.64e-8 1.69e-7 ****
## 6 Gender Diversity C… Judit… Phill… 6.78 60 5.99e-9 1.80e-8 ****
##
## $`ideas graph`
##
## $`curious anova`
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition_f 2 197 4.030 1.90e-02 * 0.021
## 2 employee_f 2 394 30.004 7.44e-13 * 0.068
## 3 condition_f:employee_f 4 394 20.648 1.84e-15 * 0.092
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 employee_f 0.95 0.007 *
## 2 condition_f:employee_f 0.95 0.007 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 employee_f 0.953 1.91, 375.32 2.33e-12 * 0.962
## 2 condition_f:employee_f 0.953 3.81, 375.32 7.70e-15 * 0.962
## DF[HF] p[HF] p[HF]<.05
## 1 1.92, 378.89 1.87e-12 *
## 2 3.85, 378.89 5.86e-15 *
##
##
## $`curious posthoc`
## # A tibble: 6 × 8
## condition_f group1 group2 statistic df p p.adj p.adj.signif
## <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Employee Assista… Judit… Peter… 1.20 69 2.35e- 1 7.05e- 1 ns
## 2 Employee Assista… Judit… Phill… -0.597 69 5.52e- 1 1 e+ 0 ns
## 3 Financial Planni… Judit… Peter… 1.23 68 2.22e- 1 6.66e- 1 ns
## 4 Financial Planni… Judit… Phill… -4.92 68 5.73e- 6 1.72e- 5 ****
## 5 Gender Diversity… Judit… Peter… 7.54 60 3.04e-10 9.12e-10 ****
## 6 Gender Diversity… Judit… Phill… 6.49 60 1.86e- 8 5.58e- 8 ****
##
## $`curious graph`
##
## $`learning anova`
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition_f 2 197 7.361 8.26e-04 * 0.036
## 2 employee_f 2 394 21.074 2.02e-09 * 0.050
## 3 condition_f:employee_f 4 394 19.141 2.12e-14 * 0.088
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 employee_f 0.924 0.000437 *
## 2 condition_f:employee_f 0.924 0.000437 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 employee_f 0.929 1.86, 366.21 6.44e-09 * 0.938
## 2 condition_f:employee_f 0.929 3.72, 366.21 1.51e-13 * 0.938
## DF[HF] p[HF] p[HF]<.05
## 1 1.88, 369.55 5.6e-09 *
## 2 3.75, 369.55 1.2e-13 *
##
##
## $`learning posthoc`
## # A tibble: 6 × 8
## condition_f group1 group2 statistic df p p.adj p.adj.signif
## <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Employee Assistanc… Judit… Peter… 0.668 69 5.06e-1 1 e+0 ns
## 2 Employee Assistanc… Judit… Phill… 0 69 1 e+0 1 e+0 ns
## 3 Financial Planning… Judit… Peter… 1.11 68 2.73e-1 8.19e-1 ns
## 4 Financial Planning… Judit… Phill… -4.79 68 9.54e-6 2.86e-5 ****
## 5 Gender Diversity C… Judit… Peter… 6.83 60 4.94e-9 1.48e-8 ****
## 6 Gender Diversity C… Judit… Phill… 6.74 60 6.92e-9 2.08e-8 ****
##
## $`learning graph`
##
## $`have anova`
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 condition_f 2 197 5.716 4.00e-03 * 0.031
## 2 employee_f 2 394 30.257 5.97e-13 * 0.065
## 3 condition_f:employee_f 4 394 20.817 1.40e-15 * 0.088
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 employee_f 0.933 0.001 *
## 2 condition_f:employee_f 0.933 0.001 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe
## 1 employee_f 0.937 1.87, 369.36 2.73e-12 * 0.946
## 2 condition_f:employee_f 0.937 3.75, 369.36 9.42e-15 * 0.946
## DF[HF] p[HF] p[HF]<.05
## 1 1.89, 372.79 2.21e-12 *
## 2 3.78, 372.79 7.22e-15 *
##
##
## $`have posthoc`
## # A tibble: 6 × 8
## condition_f group1 group2 statistic df p p.adj p.adj.signif
## <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Employee Assista… Judit… Peter… 1.13 69 2.64e- 1 7.92e- 1 ns
## 2 Employee Assista… Judit… Phill… 0.674 69 5.03e- 1 1 e+ 0 ns
## 3 Financial Planni… Judit… Peter… 1.61 68 1.11e- 1 3.33e- 1 ns
## 4 Financial Planni… Judit… Phill… -4.61 68 1.81e- 5 5.43e- 5 ****
## 5 Gender Diversity… Judit… Peter… 8.00 60 4.88e-11 1.46e-10 ****
## 6 Gender Diversity… Judit… Phill… 6.74 60 6.85e- 9 2.06e- 8 ****
##
## $`have graph`