library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.3.1
## corrplot 0.92 loaded
library(corrgram)
## Warning: package 'corrgram' was built under R version 4.3.1
library(ROCR)
## Warning: package 'ROCR' was built under R version 4.3.1
library(psych)
## Warning: package 'psych' was built under R version 4.3.1
##
## Attaching package: 'psych'
##
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(reshape2)
##
## Attaching package: 'reshape2'
##
## The following object is masked from 'package:tidyr':
##
## smiths
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
##
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
##
## The following object is masked from 'package:datasets':
##
## sleep
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:psych':
##
## outlier
##
## The following object is masked from 'package:dplyr':
##
## combine
##
## The following object is masked from 'package:ggplot2':
##
## margin
library(mlbench)
## Warning: package 'mlbench' was built under R version 4.3.1
library(caret)
## Loading required package: lattice
##
## Attaching package: 'lattice'
##
## The following object is masked from 'package:corrgram':
##
## panel.fill
##
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
library(e1071)
library(AppliedPredictiveModeling)
## Warning: package 'AppliedPredictiveModeling' was built under R version 4.3.1
library(imbalance)
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
##
## The following object is masked from 'package:corrgram':
##
## baseball
##
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
##
## The following object is masked from 'package:purrr':
##
## compact
library(dplyr)
library(naivebayes)
## Warning: package 'naivebayes' was built under R version 4.3.1
## naivebayes 0.9.7 loaded
library(rpart)
library(LogicReg)
## Warning: package 'LogicReg' was built under R version 4.3.1
## Loading required package: survival
##
## Attaching package: 'survival'
##
## The following object is masked from 'package:caret':
##
## cluster
library(kernlab)
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:psych':
##
## alpha
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## alpha
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.1
library(openxlsx)
library(skimr)
library(ada)
library(validate)
## Warning: package 'validate' was built under R version 4.3.1
##
## Attaching package: 'validate'
##
## The following object is masked from 'package:dplyr':
##
## expr
##
## The following object is masked from 'package:ggplot2':
##
## expr
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.3.1
library(themis)
## Warning: package 'themis' was built under R version 4.3.1
## Loading required package: recipes
##
## Attaching package: 'recipes'
##
## The following object is masked from 'package:VIM':
##
## prepare
##
## The following object is masked from 'package:stringr':
##
## fixed
##
## The following object is masked from 'package:stats':
##
## step
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:validate':
##
## number_format
##
## The following object is masked from 'package:kernlab':
##
## alpha
##
## The following objects are masked from 'package:psych':
##
## alpha, rescale
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
library(hrbrthemes)
## Warning: package 'hrbrthemes' was built under R version 4.3.1
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(dplyr)
library(tidyr)
library(viridis)
## Loading required package: viridisLite
##
## Attaching package: 'viridis'
##
## The following object is masked from 'package:scales':
##
## viridis_pal
df<-read.csv("D:/Smatic/Soal Babak Semifinal Olimpiade SMATIC 4.0/Data/student-mat.csv",sep = ";")
df<-df%>%
mutate_at(c("school","sex","address","famsize","Pstatus",
"Medu","Fedu","Mjob","Fjob","reason","guardian","traveltime",
"studytime","failures","schoolsup","famsup","paid","activities","nursery",
"higher","internet","romantic","famrel",
"freetime","goout","Dalc","Walc","health"),as.factor)
df<-df%>%
mutate(y=ifelse(G3>9,"PASS","FAIL"))%>%
mutate_at("y",as.factor)
variabel<-c("Age","Absences","G1","G2","G3")
Minimum<-df%>%
dplyr::select(age,absences,G1,G2,G3)%>%
apply(2,min)
Median<-df%>%
dplyr::select(age,absences,G1,G2,G3)%>%
apply(2,median)
Maximum<-df%>%
dplyr::select(age,absences,G1,G2,G3)%>%
apply(2,max)
SD<-df%>%
dplyr::select(age,absences,G1,G2,G3)%>%
apply(2,sd)
Rataan<-df%>%
dplyr::select(age,absences,G1,G2,G3)%>%
apply(2,mean)
data_summary<-data.frame(variabel,Minimum,Median,Maximum,SD,Rataan)
rownames(data_summary)<-NULL
data_summary[,2:6]<-round(data_summary[,2:6],2)
data_summary
hist(df$age)
hist(df$absences)
hist(df$G1)
hist(df$G2)
hist(df$G3)
skew(df$age)
## [1] 0.4627348
df%>%
dplyr::group_by(df$school)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$sex)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$address)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$paid)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$schoolsup)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$nursery)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$famsup)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$activities)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$romantic)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$famsize)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$Pstatus)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
df%>%
dplyr::group_by(df$internet)%>%
dplyr::summarise(g1=mean(G1),g2=mean(G2),g3=mean(G3),n=n())
par(mfrow=c(2,2))
df%>%
dplyr::group_by(Mjob)%>%
dplyr::summarize(g1=mean(G1),g2=mean(G2),g3=mean(G3))%>%
ggplot(aes(x=Mjob))+geom_line(aes(y=g1),color="#B31312",group=1,lwd=2)+geom_line(aes(y=g2),color="#19A7CE",group=1,lwd=2)+geom_line(aes(y=g3),color="#8B1874",group=1,lwd=2)+
labs(title = "Pengaruh Pekerjaan Ibu terhadap Prestasi Siswa",y="Nilai Ujian Matematika",subtitle = "merah = G1, biru = G2, ungu = G3")
df%>%
dplyr::group_by(Medu)%>%
dplyr::summarize(g1=mean(G1),g2=mean(G2),g3=mean(G3))%>%
ggplot(aes(x=Medu))+geom_line(aes(y=g1),color="#B31312",group=1,lwd=2)+geom_line(aes(y=g2),color="#19A7CE",group=1,lwd=2)+geom_line(aes(y=g3),color="#8B1874",group=1,lwd=2)+
labs(title = "Pengaruh Pendidikan Ibu terhadap Prestasi Siswa",y="Nilai Ujian Matematika",subtitle = "merah = G1, biru = G2, ungu = G3")
df%>%
dplyr::group_by(Fjob)%>%
dplyr::summarize(g1=mean(G1),g2=mean(G2),g3=mean(G3))%>%
ggplot(aes(x=Fjob))+geom_line(aes(y=g1),color="#B31312",group=1,lwd=2)+geom_line(aes(y=g2),color="#19A7CE",group=1,lwd=2)+geom_line(aes(y=g3),color="#8B1874",group=1,lwd=2)+
labs(title = "Pengaruh Pekerjaan Ayah terhadap Prestasi Siswa",y="Nilai Ujian Matematika",subtitle = "merah = G1, biru = G2, ungu = G3")
df%>%
dplyr::group_by(Fedu)%>%
dplyr::summarize(g1=mean(G1),g2=mean(G2),g3=mean(G3))%>%
ggplot(aes(x=Fedu))+geom_line(aes(y=g1),color="#B31312",group=1,lwd=2)+geom_line(aes(y=g2),color="#19A7CE",group=1,lwd=2)+geom_line(aes(y=g3),color="#8B1874",group=1,lwd=2)+
labs(title = "Pengaruh Pendidikan Ayah terhadap Prestasi Siswa",y="Nilai Ujian Matematika",subtitle = "merah = G1, biru = G2, ungu = G3")
Analisis Korelasi
Periksa korelasi antar fitur.
df
cordata <- data.matrix(df[,c(1,2,3,4,5,6,7,33)])
cormat <- round(cor(cordata, method = "pearson"),2)
melted_cormat <- melt(cormat)
# Peroleh segitiga bawah dari matriks korelasi
get_lower_tri<-function(cormat){
cormat[upper.tri(cormat)] <- NA
return(cormat)
}
# Peroleh segitiga atas dari matriks korelasi
get_upper_tri <- function(cormat){
cormat[lower.tri(cormat)]<- NA
return(cormat)
}
upper_tri <- get_upper_tri(cormat)
# Atur matriks korelasi
melted_cormat <- melt(upper_tri, na.rm = TRUE)
# Buat ggheatmap
ggheatmap <- ggplot(melted_cormat, aes(Var2, Var1, fill = value))+
geom_tile(color = "white")+
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") +
theme_minimal()+ # minimal theme
theme(axis.text.x = element_text(angle = 45, vjust = 1,
size = 9, hjust = 1))+
coord_fixed()
ggheatmap +
geom_text(aes(Var2, Var1, label = value), color = "black", size = 2) +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
legend.justification = c(1, 0),
legend.position = c(0.6, 0.7),
legend.direction = "horizontal")+
guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
title.position = "top", title.hjust = 0.5))
cordata <- data.matrix(df[,c(8,9,10,11,12,13,14,33)])
cormat <- round(cor(cordata, method = "pearson"),2)
melted_cormat <- melt(cormat)
# Peroleh segitiga bawah dari matriks korelasi
get_lower_tri<-function(cormat){
cormat[upper.tri(cormat)] <- NA
return(cormat)
}
# Peroleh segitiga atas dari matriks korelasi
get_upper_tri <- function(cormat){
cormat[lower.tri(cormat)]<- NA
return(cormat)
}
upper_tri <- get_upper_tri(cormat)
# Atur matriks korelasi
melted_cormat <- melt(upper_tri, na.rm = TRUE)
# Buat ggheatmap
ggheatmap <- ggplot(melted_cormat, aes(Var2, Var1, fill = value))+
geom_tile(color = "white")+
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") +
theme_minimal()+ # minimal theme
theme(axis.text.x = element_text(angle = 45, vjust = 1,
size = 9, hjust = 1))+
coord_fixed()
ggheatmap +
geom_text(aes(Var2, Var1, label = value), color = "black", size = 2) +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
legend.justification = c(1, 0),
legend.position = c(0.6, 0.7),
legend.direction = "horizontal")+
guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
title.position = "top", title.hjust = 0.5))
cordata <- data.matrix(df[,c(15,16,17,18,19,20,21,22,23,33)])
cormat <- round(cor(cordata, method = "pearson"),2)
melted_cormat <- melt(cormat)
# Peroleh segitiga bawah dari matriks korelasi
get_lower_tri<-function(cormat){
cormat[upper.tri(cormat)] <- NA
return(cormat)
}
# Peroleh segitiga atas dari matriks korelasi
get_upper_tri <- function(cormat){
cormat[lower.tri(cormat)]<- NA
return(cormat)
}
upper_tri <- get_upper_tri(cormat)
# Atur matriks korelasi
melted_cormat <- melt(upper_tri, na.rm = TRUE)
# Buat ggheatmap
ggheatmap <- ggplot(melted_cormat, aes(Var2, Var1, fill = value))+
geom_tile(color = "white")+
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") +
theme_minimal()+ # minimal theme
theme(axis.text.x = element_text(angle = 45, vjust = 1,
size = 9, hjust = 1))+
coord_fixed()
ggheatmap +
geom_text(aes(Var2, Var1, label = value), color = "black", size = 2) +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
legend.justification = c(1, 0),
legend.position = c(0.6, 0.7),
legend.direction = "horizontal")+
guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
title.position = "top", title.hjust = 0.5))
cordata <- data.matrix(df[,c(24,25,26,27,28,29,30,31,32,33)])
cormat <- round(cor(cordata, method = "pearson"),2)
melted_cormat <- melt(cormat)
# Peroleh segitiga bawah dari matriks korelasi
get_lower_tri<-function(cormat){
cormat[upper.tri(cormat)] <- NA
return(cormat)
}
# Peroleh segitiga atas dari matriks korelasi
get_upper_tri <- function(cormat){
cormat[lower.tri(cormat)]<- NA
return(cormat)
}
upper_tri <- get_upper_tri(cormat)
# Atur matriks korelasi
melted_cormat <- melt(upper_tri, na.rm = TRUE)
# Buat ggheatmap
ggheatmap <- ggplot(melted_cormat, aes(Var2, Var1, fill = value))+
geom_tile(color = "white")+
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") +
theme_minimal()+ # minimal theme
theme(axis.text.x = element_text(angle = 45, vjust = 1,
size = 9, hjust = 1))+
coord_fixed()
ggheatmap +
geom_text(aes(Var2, Var1, label = value), color = "black", size = 2) +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
legend.justification = c(1, 0),
legend.position = c(0.6, 0.7),
legend.direction = "horizontal")+
guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
title.position = "top", title.hjust = 0.5))
table(df$y)
##
## FAIL PASS
## 130 265
prop.table(table(df$y))
##
## FAIL PASS
## 0.3291139 0.6708861
p<-ggplot(df,aes(x=y,fill=y))+
geom_bar()+labs(title = "Jumlah Siswa Berdasarkan Klasifikasi Erasmus",y="Jumlah Siswa",x="Keterangan")+
scale_fill_manual(values=c("#B70404","#1D267D"))
p
set.seed(1234)
id_train <- createDataPartition(df$y,
p = 0.9,
list = F)
data_train <- df[id_train,]
data_valid <- df[-id_train,]
set.seed(123)
train_control <- trainControl(
method = "repeatedcv",
number = 10,
repeats = 2,
search = "random",
verboseIter = T
)
set.seed(1234)
modelxgboost <-caret::train(y~school+sex+age+address+famsize+Pstatus+Medu+Fedu+Mjob+Fjob+reason+
guardian+traveltime+studytime+failures+schoolsup+famsup+paid+
activities+nursery+higher+internet+romantic+famrel+freetime+
goout+Dalc+Walc+health+absences+G1+G2,
trControl = train_control,
tuneLength = 10,
data = data_train,
method = "xgbTree")
## + Fold01.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold01.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold01.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold01.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold01.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold01.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold01.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold01.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold01.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold01.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold01.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold01.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold01.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold01.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold01.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold01.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold01.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold01.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold01.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold01.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold02.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold02.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold02.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold02.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold02.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold02.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold02.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold02.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold02.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold02.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold02.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold02.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold02.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold02.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold02.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold02.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold02.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold02.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold02.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold02.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold03.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold03.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold03.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold03.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold03.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold03.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold03.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold03.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold03.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold03.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold03.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold03.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold03.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold03.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold03.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold03.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold03.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold03.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold03.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold03.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold04.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold04.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold04.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold04.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold04.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold04.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold04.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold04.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold04.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold04.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold04.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold04.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold04.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold04.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold04.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold04.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold04.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold04.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold04.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold04.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold05.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold05.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold05.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold05.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold05.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold05.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold05.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold05.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold05.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold05.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold05.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold05.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold05.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold05.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold05.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold05.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold05.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold05.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold05.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold05.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold06.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold06.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold06.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold06.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold06.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold06.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold06.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold06.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold06.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold06.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold06.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold06.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold06.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold06.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold06.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold06.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold06.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold06.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold06.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold06.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold07.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold07.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold07.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold07.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold07.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold07.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold07.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold07.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold07.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold07.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold07.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold07.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold07.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold07.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold07.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold07.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold07.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold07.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold07.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold07.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold08.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold08.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold08.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold08.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold08.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold08.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold08.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold08.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold08.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold08.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold08.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold08.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold08.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold08.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold08.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold08.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold08.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold08.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold08.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold08.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold09.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold09.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold09.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold09.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold09.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold09.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold09.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold09.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold09.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold09.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold09.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold09.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold09.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold09.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold09.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold09.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold09.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold09.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold09.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold09.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold10.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold10.Rep1: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold10.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold10.Rep1: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold10.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold10.Rep1: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold10.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold10.Rep1: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold10.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold10.Rep1: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold10.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold10.Rep1: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold10.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold10.Rep1: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold10.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold10.Rep1: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold10.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold10.Rep1: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold10.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold10.Rep1: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold01.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold01.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold01.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold01.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold01.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold01.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold01.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold01.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold01.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold01.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold01.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold01.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold01.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold01.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold01.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold01.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold01.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold01.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold01.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold01.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold02.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold02.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold02.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold02.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold02.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold02.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold02.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold02.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold02.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold02.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold02.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold02.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold02.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold02.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold02.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold02.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold02.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold02.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold02.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold02.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold03.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold03.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold03.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold03.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold03.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold03.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold03.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold03.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold03.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold03.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold03.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold03.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold03.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold03.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold03.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold03.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold03.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold03.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold03.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold03.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold04.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold04.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold04.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold04.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold04.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold04.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold04.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold04.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold04.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold04.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold04.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold04.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold04.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold04.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold04.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold04.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold04.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold04.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold04.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold04.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold05.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold05.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold05.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold05.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold05.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold05.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold05.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold05.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold05.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold05.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold05.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold05.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold05.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold05.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold05.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold05.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold05.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold05.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold05.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold05.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold06.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold06.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold06.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold06.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold06.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold06.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold06.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold06.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold06.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold06.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold06.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold06.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold06.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold06.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold06.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold06.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold06.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold06.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold06.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold06.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold07.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold07.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold07.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold07.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold07.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold07.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold07.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold07.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold07.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold07.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold07.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold07.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold07.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold07.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold07.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold07.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold07.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold07.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold07.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold07.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold08.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold08.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold08.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold08.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold08.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold08.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold08.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold08.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold08.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold08.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold08.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold08.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold08.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold08.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold08.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold08.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold08.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold08.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold08.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold08.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold09.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold09.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold09.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold09.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold09.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold09.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold09.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold09.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold09.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold09.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold09.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold09.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold09.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold09.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold09.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold09.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold09.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold09.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold09.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold09.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## + Fold10.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## - Fold10.Rep2: eta=0.02842, max_depth= 6, gamma=8.074, colsample_bytree=0.6062, min_child_weight=16, subsample=0.5382, nrounds=918
## + Fold10.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## - Fold10.Rep2: eta=0.10948, max_depth= 4, gamma=3.298, colsample_bytree=0.3612, min_child_weight=16, subsample=0.6039, nrounds=934
## + Fold10.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## - Fold10.Rep2: eta=0.12155, max_depth= 5, gamma=6.771, colsample_bytree=0.4976, min_child_weight=16, subsample=0.6582, nrounds=900
## + Fold10.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## - Fold10.Rep2: eta=0.15603, max_depth= 8, gamma=4.850, colsample_bytree=0.6005, min_child_weight= 7, subsample=0.3971, nrounds= 98
## + Fold10.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## - Fold10.Rep2: eta=0.15985, max_depth= 6, gamma=6.464, colsample_bytree=0.4239, min_child_weight=18, subsample=0.4905, nrounds=623
## + Fold10.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## - Fold10.Rep2: eta=0.18350, max_depth= 4, gamma=3.118, colsample_bytree=0.5869, min_child_weight= 5, subsample=0.7514, nrounds=905
## + Fold10.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## - Fold10.Rep2: eta=0.27420, max_depth=10, gamma=5.533, colsample_bytree=0.3295, min_child_weight= 5, subsample=0.3025, nrounds=101
## + Fold10.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## - Fold10.Rep2: eta=0.30488, max_depth= 8, gamma=6.218, colsample_bytree=0.5018, min_child_weight=16, subsample=0.9448, nrounds=645
## + Fold10.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## - Fold10.Rep2: eta=0.45604, max_depth= 4, gamma=5.020, colsample_bytree=0.5016, min_child_weight= 7, subsample=0.3570, nrounds=400
## + Fold10.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## - Fold10.Rep2: eta=0.59530, max_depth= 4, gamma=2.439, colsample_bytree=0.3699, min_child_weight= 9, subsample=0.9239, nrounds=103
## Aggregating results
## Selecting tuning parameters
## Fitting nrounds = 645, max_depth = 8, eta = 0.305, gamma = 6.22, colsample_bytree = 0.502, min_child_weight = 16, subsample = 0.945 on full training set
modelxgboost
## eXtreme Gradient Boosting
##
## 356 samples
## 32 predictor
## 2 classes: 'FAIL', 'PASS'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 2 times)
## Summary of sample sizes: 320, 321, 320, 320, 320, 322, ...
## Resampling results across tuning parameters:
##
## eta max_depth gamma colsample_bytree min_child_weight
## 0.02841639 6 8.073523 0.6061839 16
## 0.10947663 4 3.297702 0.3611996 16
## 0.12154757 5 6.770945 0.4975844 16
## 0.15602708 8 4.849912 0.6004801 7
## 0.15984682 6 6.464061 0.4238746 18
## 0.18349865 4 3.118243 0.5869087 5
## 0.27419880 10 5.533336 0.3295120 5
## 0.30487682 8 6.218192 0.5018184 16
## 0.45604271 4 5.019975 0.5015734 7
## 0.59529810 4 2.439288 0.3698599 9
## subsample nrounds Accuracy Kappa
## 0.5382000 918 0.9145938 0.8100444
## 0.6039323 934 0.9160621 0.8146312
## 0.6582023 900 0.9174113 0.8172683
## 0.3971310 98 0.9188002 0.8227077
## 0.4904833 623 0.7392367 0.2322857
## 0.7513715 905 0.9201914 0.8235712
## 0.3025394 101 0.9159827 0.8157416
## 0.9448004 645 0.9216176 0.8286691
## 0.3569615 400 0.9202288 0.8253158
## 0.9239354 103 0.9145542 0.8121408
##
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were nrounds = 645, max_depth = 8, eta
## = 0.3048768, gamma = 6.218192, colsample_bytree = 0.5018184,
## min_child_weight = 16 and subsample = 0.9448004.
confusion_matrix<-caret::confusionMatrix(data = predict(modelxgboost,
data_valid),
data_valid$y,
positive = "FAIL")
Accuracy<-confusion_matrix[["overall"]]["Accuracy"] #Penghitungan Accuracy
Precision<-confusion_matrix[["byClass"]]["Pos Pred Value"] #Penghitungan Presisi
Recall<-confusion_matrix[["byClass"]]["Sensitivity"] #Penghitungan Recall/Sensitivity
F1_Score1<-(2*Precision*Recall)/(Precision+Recall) #Penghitungan F1 Score
data_metric_xg<-data.frame(Metric=c("Akurasi","Presisi","Recall","F1_Score"),Nilai=c(Accuracy,Precision,Recall,F1_Score1))
data_metric_xg
modelxgboost$bestTune
set.seed(1234)
train_control <- trainControl(
method = "repeatedcv",
number = 10,
repeats = 2,
search = "random",
verboseIter = T
)
set.seed(1234)
model_adaboost <- caret::train(y~school+sex+age+address+famsize+Pstatus+Medu+Fedu+Mjob+Fjob+reason+
guardian+traveltime+studytime+failures+schoolsup+famsup+paid+
activities+nursery+higher+internet+romantic+famrel+freetime+
goout+Dalc+Walc+health+absences+G1+G2,
trControl = train_control,
tuneLength = 10,
data = data_train,
method = "AdaBoost.M1")
## + Fold01.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold01.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold01.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold01.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold01.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold01.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold01.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold01.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold01.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold01.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold01.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold01.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold01.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold01.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold01.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold01.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold01.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold01.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold02.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold02.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold02.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold02.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold02.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold02.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold02.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold02.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold02.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold02.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold02.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold02.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold02.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold02.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold02.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold02.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold02.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold02.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold03.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold03.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold03.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold03.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold03.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold03.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold03.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold03.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold03.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold03.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold03.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold03.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold03.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold03.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold03.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold03.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold03.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold03.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold04.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold04.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold04.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold04.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold04.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold04.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold04.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold04.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold04.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold04.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold04.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold04.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold04.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold04.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold04.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold04.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold04.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold04.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold05.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold05.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold05.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold05.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold05.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold05.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold05.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold05.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold05.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold05.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold05.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold05.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold05.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold05.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold05.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold05.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold05.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold05.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold06.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold06.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold06.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold06.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold06.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold06.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold06.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold06.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold06.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold06.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold06.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold06.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold06.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold06.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold06.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold06.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold06.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold06.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold07.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold07.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold07.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold07.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold07.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold07.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold07.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold07.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold07.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold07.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold07.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold07.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold07.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold07.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold07.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold07.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold07.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold07.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold08.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold08.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold08.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold08.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold08.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold08.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold08.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold08.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold08.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold08.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold08.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold08.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold08.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold08.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold08.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold08.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold08.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold08.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold09.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold09.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold09.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold09.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold09.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold09.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold09.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold09.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold09.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold09.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold09.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold09.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold09.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold09.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold09.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold09.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold09.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold09.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold10.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold10.Rep1: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold10.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold10.Rep1: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold10.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold10.Rep1: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold10.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold10.Rep1: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold10.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold10.Rep1: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold10.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold10.Rep1: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold10.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold10.Rep1: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold10.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold10.Rep1: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold10.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold10.Rep1: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold01.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold01.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold01.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold01.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold01.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold01.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold01.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold01.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold01.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold01.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold01.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold01.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold01.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold01.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold01.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold01.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold01.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold01.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold02.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold02.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold02.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold02.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold02.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold02.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold02.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold02.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold02.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold02.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold02.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold02.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold02.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold02.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold02.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold02.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold02.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold02.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold03.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold03.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold03.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold03.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold03.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold03.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold03.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold03.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold03.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold03.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold03.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold03.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold03.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold03.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold03.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold03.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold03.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold03.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold04.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold04.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold04.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold04.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold04.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold04.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold04.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold04.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold04.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold04.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold04.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold04.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold04.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold04.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold04.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold04.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold04.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold04.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold05.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold05.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold05.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold05.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold05.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold05.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold05.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold05.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold05.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold05.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold05.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold05.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold05.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold05.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold05.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold05.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold05.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold05.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold06.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold06.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold06.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold06.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold06.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold06.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold06.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold06.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold06.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold06.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold06.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold06.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold06.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold06.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold06.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold06.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold06.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold06.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold07.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold07.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold07.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold07.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold07.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold07.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold07.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold07.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold07.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold07.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold07.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold07.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold07.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold07.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold07.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold07.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold07.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold07.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold08.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold08.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold08.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold08.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold08.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold08.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold08.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold08.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold08.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold08.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold08.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold08.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold08.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold08.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold08.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold08.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold08.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold08.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold09.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold09.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold09.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold09.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold09.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold09.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold09.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold09.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold09.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold09.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold09.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold09.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold09.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold09.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold09.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold09.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold09.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold09.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## + Fold10.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## - Fold10.Rep2: coeflearn=Breiman, maxdepth=14, mfinal=38
## + Fold10.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## - Fold10.Rep2: coeflearn=Breiman, maxdepth=24, mfinal= 4
## + Fold10.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## - Fold10.Rep2: coeflearn=Freund, maxdepth= 4, mfinal=86
## + Fold10.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## - Fold10.Rep2: coeflearn=Freund, maxdepth=30, mfinal=98
## + Fold10.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## - Fold10.Rep2: coeflearn=Zhu, maxdepth= 4, mfinal=90
## + Fold10.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## - Fold10.Rep2: coeflearn=Zhu, maxdepth=14, mfinal= 9
## + Fold10.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## - Fold10.Rep2: coeflearn=Zhu, maxdepth=15, mfinal=22
## + Fold10.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## - Fold10.Rep2: coeflearn=Zhu, maxdepth=20, mfinal= 5
## + Fold10.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## - Fold10.Rep2: coeflearn=Zhu, maxdepth=21, mfinal=70
## Aggregating results
## Selecting tuning parameters
## Fitting mfinal = 22, maxdepth = 15, coeflearn = Zhu on full training set
model_adaboost$bestTune
confusion_matrix<-caret::confusionMatrix(data = predict(model_adaboost,
data_valid),
data_valid$y,
positive = "FAIL")
Accuracy<-confusion_matrix[["overall"]]["Accuracy"] #Penghitungan Accuracy
Precision<-confusion_matrix[["byClass"]]["Pos Pred Value"] #Penghitungan Presisi
Recall<-confusion_matrix[["byClass"]]["Sensitivity"] #Penghitungan Recall/Sensitivity
F1_Score2<-(2*Precision*Recall)/(Precision+Recall) #Penghitungan F1 Score
data_metric_ada<-data.frame(Metric=c("Akurasi","Presisi","Recall","F1_Score"),Nilai=c(Accuracy,Precision,Recall,F1_Score2))
data_metric_ada
set.seed(1234)
train_control <- trainControl(
method = "repeatedcv",
number = 10,
repeats = 2,
search = "random",
verboseIter = T
)
set.seed(1234)
model_rf <- caret::train(y~school+sex+age+address+famsize+Pstatus+Medu+Fedu+Mjob+Fjob+reason+
guardian+traveltime+studytime+failures+schoolsup+famsup+paid+
activities+nursery+higher+internet+romantic+famrel+freetime+
goout+Dalc+Walc+health+absences+G1+G2,
trControl = train_control,
tuneLength = 10,
data = data_train,
method = "rf")
## + Fold01.Rep1: mtry=22
## - Fold01.Rep1: mtry=22
## + Fold01.Rep1: mtry= 9
## - Fold01.Rep1: mtry= 9
## + Fold01.Rep1: mtry= 5
## - Fold01.Rep1: mtry= 5
## + Fold01.Rep1: mtry=38
## - Fold01.Rep1: mtry=38
## + Fold01.Rep1: mtry=16
## - Fold01.Rep1: mtry=16
## + Fold01.Rep1: mtry= 4
## - Fold01.Rep1: mtry= 4
## + Fold01.Rep1: mtry=70
## - Fold01.Rep1: mtry=70
## + Fold01.Rep1: mtry=14
## - Fold01.Rep1: mtry=14
## + Fold01.Rep1: mtry=56
## - Fold01.Rep1: mtry=56
## + Fold01.Rep1: mtry=62
## - Fold01.Rep1: mtry=62
## + Fold02.Rep1: mtry=22
## - Fold02.Rep1: mtry=22
## + Fold02.Rep1: mtry= 9
## - Fold02.Rep1: mtry= 9
## + Fold02.Rep1: mtry= 5
## - Fold02.Rep1: mtry= 5
## + Fold02.Rep1: mtry=38
## - Fold02.Rep1: mtry=38
## + Fold02.Rep1: mtry=16
## - Fold02.Rep1: mtry=16
## + Fold02.Rep1: mtry= 4
## - Fold02.Rep1: mtry= 4
## + Fold02.Rep1: mtry=70
## - Fold02.Rep1: mtry=70
## + Fold02.Rep1: mtry=14
## - Fold02.Rep1: mtry=14
## + Fold02.Rep1: mtry=56
## - Fold02.Rep1: mtry=56
## + Fold02.Rep1: mtry=62
## - Fold02.Rep1: mtry=62
## + Fold03.Rep1: mtry=22
## - Fold03.Rep1: mtry=22
## + Fold03.Rep1: mtry= 9
## - Fold03.Rep1: mtry= 9
## + Fold03.Rep1: mtry= 5
## - Fold03.Rep1: mtry= 5
## + Fold03.Rep1: mtry=38
## - Fold03.Rep1: mtry=38
## + Fold03.Rep1: mtry=16
## - Fold03.Rep1: mtry=16
## + Fold03.Rep1: mtry= 4
## - Fold03.Rep1: mtry= 4
## + Fold03.Rep1: mtry=70
## - Fold03.Rep1: mtry=70
## + Fold03.Rep1: mtry=14
## - Fold03.Rep1: mtry=14
## + Fold03.Rep1: mtry=56
## - Fold03.Rep1: mtry=56
## + Fold03.Rep1: mtry=62
## - Fold03.Rep1: mtry=62
## + Fold04.Rep1: mtry=22
## - Fold04.Rep1: mtry=22
## + Fold04.Rep1: mtry= 9
## - Fold04.Rep1: mtry= 9
## + Fold04.Rep1: mtry= 5
## - Fold04.Rep1: mtry= 5
## + Fold04.Rep1: mtry=38
## - Fold04.Rep1: mtry=38
## + Fold04.Rep1: mtry=16
## - Fold04.Rep1: mtry=16
## + Fold04.Rep1: mtry= 4
## - Fold04.Rep1: mtry= 4
## + Fold04.Rep1: mtry=70
## - Fold04.Rep1: mtry=70
## + Fold04.Rep1: mtry=14
## - Fold04.Rep1: mtry=14
## + Fold04.Rep1: mtry=56
## - Fold04.Rep1: mtry=56
## + Fold04.Rep1: mtry=62
## - Fold04.Rep1: mtry=62
## + Fold05.Rep1: mtry=22
## - Fold05.Rep1: mtry=22
## + Fold05.Rep1: mtry= 9
## - Fold05.Rep1: mtry= 9
## + Fold05.Rep1: mtry= 5
## - Fold05.Rep1: mtry= 5
## + Fold05.Rep1: mtry=38
## - Fold05.Rep1: mtry=38
## + Fold05.Rep1: mtry=16
## - Fold05.Rep1: mtry=16
## + Fold05.Rep1: mtry= 4
## - Fold05.Rep1: mtry= 4
## + Fold05.Rep1: mtry=70
## - Fold05.Rep1: mtry=70
## + Fold05.Rep1: mtry=14
## - Fold05.Rep1: mtry=14
## + Fold05.Rep1: mtry=56
## - Fold05.Rep1: mtry=56
## + Fold05.Rep1: mtry=62
## - Fold05.Rep1: mtry=62
## + Fold06.Rep1: mtry=22
## - Fold06.Rep1: mtry=22
## + Fold06.Rep1: mtry= 9
## - Fold06.Rep1: mtry= 9
## + Fold06.Rep1: mtry= 5
## - Fold06.Rep1: mtry= 5
## + Fold06.Rep1: mtry=38
## - Fold06.Rep1: mtry=38
## + Fold06.Rep1: mtry=16
## - Fold06.Rep1: mtry=16
## + Fold06.Rep1: mtry= 4
## - Fold06.Rep1: mtry= 4
## + Fold06.Rep1: mtry=70
## - Fold06.Rep1: mtry=70
## + Fold06.Rep1: mtry=14
## - Fold06.Rep1: mtry=14
## + Fold06.Rep1: mtry=56
## - Fold06.Rep1: mtry=56
## + Fold06.Rep1: mtry=62
## - Fold06.Rep1: mtry=62
## + Fold07.Rep1: mtry=22
## - Fold07.Rep1: mtry=22
## + Fold07.Rep1: mtry= 9
## - Fold07.Rep1: mtry= 9
## + Fold07.Rep1: mtry= 5
## - Fold07.Rep1: mtry= 5
## + Fold07.Rep1: mtry=38
## - Fold07.Rep1: mtry=38
## + Fold07.Rep1: mtry=16
## - Fold07.Rep1: mtry=16
## + Fold07.Rep1: mtry= 4
## - Fold07.Rep1: mtry= 4
## + Fold07.Rep1: mtry=70
## - Fold07.Rep1: mtry=70
## + Fold07.Rep1: mtry=14
## - Fold07.Rep1: mtry=14
## + Fold07.Rep1: mtry=56
## - Fold07.Rep1: mtry=56
## + Fold07.Rep1: mtry=62
## - Fold07.Rep1: mtry=62
## + Fold08.Rep1: mtry=22
## - Fold08.Rep1: mtry=22
## + Fold08.Rep1: mtry= 9
## - Fold08.Rep1: mtry= 9
## + Fold08.Rep1: mtry= 5
## - Fold08.Rep1: mtry= 5
## + Fold08.Rep1: mtry=38
## - Fold08.Rep1: mtry=38
## + Fold08.Rep1: mtry=16
## - Fold08.Rep1: mtry=16
## + Fold08.Rep1: mtry= 4
## - Fold08.Rep1: mtry= 4
## + Fold08.Rep1: mtry=70
## - Fold08.Rep1: mtry=70
## + Fold08.Rep1: mtry=14
## - Fold08.Rep1: mtry=14
## + Fold08.Rep1: mtry=56
## - Fold08.Rep1: mtry=56
## + Fold08.Rep1: mtry=62
## - Fold08.Rep1: mtry=62
## + Fold09.Rep1: mtry=22
## - Fold09.Rep1: mtry=22
## + Fold09.Rep1: mtry= 9
## - Fold09.Rep1: mtry= 9
## + Fold09.Rep1: mtry= 5
## - Fold09.Rep1: mtry= 5
## + Fold09.Rep1: mtry=38
## - Fold09.Rep1: mtry=38
## + Fold09.Rep1: mtry=16
## - Fold09.Rep1: mtry=16
## + Fold09.Rep1: mtry= 4
## - Fold09.Rep1: mtry= 4
## + Fold09.Rep1: mtry=70
## - Fold09.Rep1: mtry=70
## + Fold09.Rep1: mtry=14
## - Fold09.Rep1: mtry=14
## + Fold09.Rep1: mtry=56
## - Fold09.Rep1: mtry=56
## + Fold09.Rep1: mtry=62
## - Fold09.Rep1: mtry=62
## + Fold10.Rep1: mtry=22
## - Fold10.Rep1: mtry=22
## + Fold10.Rep1: mtry= 9
## - Fold10.Rep1: mtry= 9
## + Fold10.Rep1: mtry= 5
## - Fold10.Rep1: mtry= 5
## + Fold10.Rep1: mtry=38
## - Fold10.Rep1: mtry=38
## + Fold10.Rep1: mtry=16
## - Fold10.Rep1: mtry=16
## + Fold10.Rep1: mtry= 4
## - Fold10.Rep1: mtry= 4
## + Fold10.Rep1: mtry=70
## - Fold10.Rep1: mtry=70
## + Fold10.Rep1: mtry=14
## - Fold10.Rep1: mtry=14
## + Fold10.Rep1: mtry=56
## - Fold10.Rep1: mtry=56
## + Fold10.Rep1: mtry=62
## - Fold10.Rep1: mtry=62
## + Fold01.Rep2: mtry=22
## - Fold01.Rep2: mtry=22
## + Fold01.Rep2: mtry= 9
## - Fold01.Rep2: mtry= 9
## + Fold01.Rep2: mtry= 5
## - Fold01.Rep2: mtry= 5
## + Fold01.Rep2: mtry=38
## - Fold01.Rep2: mtry=38
## + Fold01.Rep2: mtry=16
## - Fold01.Rep2: mtry=16
## + Fold01.Rep2: mtry= 4
## - Fold01.Rep2: mtry= 4
## + Fold01.Rep2: mtry=70
## - Fold01.Rep2: mtry=70
## + Fold01.Rep2: mtry=14
## - Fold01.Rep2: mtry=14
## + Fold01.Rep2: mtry=56
## - Fold01.Rep2: mtry=56
## + Fold01.Rep2: mtry=62
## - Fold01.Rep2: mtry=62
## + Fold02.Rep2: mtry=22
## - Fold02.Rep2: mtry=22
## + Fold02.Rep2: mtry= 9
## - Fold02.Rep2: mtry= 9
## + Fold02.Rep2: mtry= 5
## - Fold02.Rep2: mtry= 5
## + Fold02.Rep2: mtry=38
## - Fold02.Rep2: mtry=38
## + Fold02.Rep2: mtry=16
## - Fold02.Rep2: mtry=16
## + Fold02.Rep2: mtry= 4
## - Fold02.Rep2: mtry= 4
## + Fold02.Rep2: mtry=70
## - Fold02.Rep2: mtry=70
## + Fold02.Rep2: mtry=14
## - Fold02.Rep2: mtry=14
## + Fold02.Rep2: mtry=56
## - Fold02.Rep2: mtry=56
## + Fold02.Rep2: mtry=62
## - Fold02.Rep2: mtry=62
## + Fold03.Rep2: mtry=22
## - Fold03.Rep2: mtry=22
## + Fold03.Rep2: mtry= 9
## - Fold03.Rep2: mtry= 9
## + Fold03.Rep2: mtry= 5
## - Fold03.Rep2: mtry= 5
## + Fold03.Rep2: mtry=38
## - Fold03.Rep2: mtry=38
## + Fold03.Rep2: mtry=16
## - Fold03.Rep2: mtry=16
## + Fold03.Rep2: mtry= 4
## - Fold03.Rep2: mtry= 4
## + Fold03.Rep2: mtry=70
## - Fold03.Rep2: mtry=70
## + Fold03.Rep2: mtry=14
## - Fold03.Rep2: mtry=14
## + Fold03.Rep2: mtry=56
## - Fold03.Rep2: mtry=56
## + Fold03.Rep2: mtry=62
## - Fold03.Rep2: mtry=62
## + Fold04.Rep2: mtry=22
## - Fold04.Rep2: mtry=22
## + Fold04.Rep2: mtry= 9
## - Fold04.Rep2: mtry= 9
## + Fold04.Rep2: mtry= 5
## - Fold04.Rep2: mtry= 5
## + Fold04.Rep2: mtry=38
## - Fold04.Rep2: mtry=38
## + Fold04.Rep2: mtry=16
## - Fold04.Rep2: mtry=16
## + Fold04.Rep2: mtry= 4
## - Fold04.Rep2: mtry= 4
## + Fold04.Rep2: mtry=70
## - Fold04.Rep2: mtry=70
## + Fold04.Rep2: mtry=14
## - Fold04.Rep2: mtry=14
## + Fold04.Rep2: mtry=56
## - Fold04.Rep2: mtry=56
## + Fold04.Rep2: mtry=62
## - Fold04.Rep2: mtry=62
## + Fold05.Rep2: mtry=22
## - Fold05.Rep2: mtry=22
## + Fold05.Rep2: mtry= 9
## - Fold05.Rep2: mtry= 9
## + Fold05.Rep2: mtry= 5
## - Fold05.Rep2: mtry= 5
## + Fold05.Rep2: mtry=38
## - Fold05.Rep2: mtry=38
## + Fold05.Rep2: mtry=16
## - Fold05.Rep2: mtry=16
## + Fold05.Rep2: mtry= 4
## - Fold05.Rep2: mtry= 4
## + Fold05.Rep2: mtry=70
## - Fold05.Rep2: mtry=70
## + Fold05.Rep2: mtry=14
## - Fold05.Rep2: mtry=14
## + Fold05.Rep2: mtry=56
## - Fold05.Rep2: mtry=56
## + Fold05.Rep2: mtry=62
## - Fold05.Rep2: mtry=62
## + Fold06.Rep2: mtry=22
## - Fold06.Rep2: mtry=22
## + Fold06.Rep2: mtry= 9
## - Fold06.Rep2: mtry= 9
## + Fold06.Rep2: mtry= 5
## - Fold06.Rep2: mtry= 5
## + Fold06.Rep2: mtry=38
## - Fold06.Rep2: mtry=38
## + Fold06.Rep2: mtry=16
## - Fold06.Rep2: mtry=16
## + Fold06.Rep2: mtry= 4
## - Fold06.Rep2: mtry= 4
## + Fold06.Rep2: mtry=70
## - Fold06.Rep2: mtry=70
## + Fold06.Rep2: mtry=14
## - Fold06.Rep2: mtry=14
## + Fold06.Rep2: mtry=56
## - Fold06.Rep2: mtry=56
## + Fold06.Rep2: mtry=62
## - Fold06.Rep2: mtry=62
## + Fold07.Rep2: mtry=22
## - Fold07.Rep2: mtry=22
## + Fold07.Rep2: mtry= 9
## - Fold07.Rep2: mtry= 9
## + Fold07.Rep2: mtry= 5
## - Fold07.Rep2: mtry= 5
## + Fold07.Rep2: mtry=38
## - Fold07.Rep2: mtry=38
## + Fold07.Rep2: mtry=16
## - Fold07.Rep2: mtry=16
## + Fold07.Rep2: mtry= 4
## - Fold07.Rep2: mtry= 4
## + Fold07.Rep2: mtry=70
## - Fold07.Rep2: mtry=70
## + Fold07.Rep2: mtry=14
## - Fold07.Rep2: mtry=14
## + Fold07.Rep2: mtry=56
## - Fold07.Rep2: mtry=56
## + Fold07.Rep2: mtry=62
## - Fold07.Rep2: mtry=62
## + Fold08.Rep2: mtry=22
## - Fold08.Rep2: mtry=22
## + Fold08.Rep2: mtry= 9
## - Fold08.Rep2: mtry= 9
## + Fold08.Rep2: mtry= 5
## - Fold08.Rep2: mtry= 5
## + Fold08.Rep2: mtry=38
## - Fold08.Rep2: mtry=38
## + Fold08.Rep2: mtry=16
## - Fold08.Rep2: mtry=16
## + Fold08.Rep2: mtry= 4
## - Fold08.Rep2: mtry= 4
## + Fold08.Rep2: mtry=70
## - Fold08.Rep2: mtry=70
## + Fold08.Rep2: mtry=14
## - Fold08.Rep2: mtry=14
## + Fold08.Rep2: mtry=56
## - Fold08.Rep2: mtry=56
## + Fold08.Rep2: mtry=62
## - Fold08.Rep2: mtry=62
## + Fold09.Rep2: mtry=22
## - Fold09.Rep2: mtry=22
## + Fold09.Rep2: mtry= 9
## - Fold09.Rep2: mtry= 9
## + Fold09.Rep2: mtry= 5
## - Fold09.Rep2: mtry= 5
## + Fold09.Rep2: mtry=38
## - Fold09.Rep2: mtry=38
## + Fold09.Rep2: mtry=16
## - Fold09.Rep2: mtry=16
## + Fold09.Rep2: mtry= 4
## - Fold09.Rep2: mtry= 4
## + Fold09.Rep2: mtry=70
## - Fold09.Rep2: mtry=70
## + Fold09.Rep2: mtry=14
## - Fold09.Rep2: mtry=14
## + Fold09.Rep2: mtry=56
## - Fold09.Rep2: mtry=56
## + Fold09.Rep2: mtry=62
## - Fold09.Rep2: mtry=62
## + Fold10.Rep2: mtry=22
## - Fold10.Rep2: mtry=22
## + Fold10.Rep2: mtry= 9
## - Fold10.Rep2: mtry= 9
## + Fold10.Rep2: mtry= 5
## - Fold10.Rep2: mtry= 5
## + Fold10.Rep2: mtry=38
## - Fold10.Rep2: mtry=38
## + Fold10.Rep2: mtry=16
## - Fold10.Rep2: mtry=16
## + Fold10.Rep2: mtry= 4
## - Fold10.Rep2: mtry= 4
## + Fold10.Rep2: mtry=70
## - Fold10.Rep2: mtry=70
## + Fold10.Rep2: mtry=14
## - Fold10.Rep2: mtry=14
## + Fold10.Rep2: mtry=56
## - Fold10.Rep2: mtry=56
## + Fold10.Rep2: mtry=62
## - Fold10.Rep2: mtry=62
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 38 on full training set
model_rf$bestTune
confusion_matrix<-caret::confusionMatrix(data = predict(model_rf,
data_valid),
data_valid$y,
positive = "FAIL")
Accuracy<-confusion_matrix[["overall"]]["Accuracy"] #Penghitungan Accuracy
Precision<-confusion_matrix[["byClass"]]["Pos Pred Value"] #Penghitungan Presisi
Recall<-confusion_matrix[["byClass"]]["Sensitivity"] #Penghitungan Recall/Sensitivity
F1_Score3<-(2*Precision*Recall)/(Precision+Recall) #Penghitungan F1 Score
data_metric_rf<-data.frame(Metric=c("Akurasi","Presisi","Recall","F1_Score"),Nilai=c(Accuracy,Precision,Recall,F1_Score3))
data_metric_rf
plot(varImp(model_rf),main="Variable Importance with Random Forest")
varImp(model_rf)
## rf variable importance
##
## only 20 most important variables shown (out of 71)
##
## Overall
## G2 100.0000
## G1 34.5588
## absences 3.9020
## age 3.8326
## Fjobother 2.9629
## famsizeLE3 1.5126
## famrel4 1.4498
## failures2 1.3884
## Fedu2 1.2191
## goout5 1.0805
## activitiesyes 1.0510
## schoolsupyes 1.0377
## Fedu1 1.0170
## romanticyes 0.9926
## famrel5 0.9452
## Dalc3 0.9133
## studytime3 0.9000
## health5 0.8489
## paidyes 0.8160
## freetime4 0.8114
variabel<-c("G2","G1","absences","age","Fjob","famsize","famrel","failures","fedu","goout","activities","schoolsup")
importance<-c(100,34.56,3.9,3.83,2.96,1.51,1.45,1.39,1.21,1.08,1.05,1.04)
dataimportance<-data.frame(variabel,importance)
ggplot(dataimportance)+
geom_col(aes(x=importance,y=fct_reorder(variabel,importance),fill=importance))+labs(title = "Variable Important Plot",y="Variabel")+scale_color_manual(values = "blue")
#G2,G1,absences,age,Fjob,famsize,famrel,failures,Fedu,goout,activities,schoolsupyes
set.seed(1234)
train_control <- trainControl(
method = "repeatedcv",
number = 10,
repeats = 2,
search = "random",
verboseIter = T
)
set.seed(1234)
model_rf_best <- caret::train(y~G1+G2+absences+age+Fjob+famsize+famrel+failures+
Fedu+goout+activities+schoolsup,
trControl = train_control,
tuneLength = 10,
data = data_train,
method = "rf")
## + Fold01.Rep1: mtry=26
## - Fold01.Rep1: mtry=26
## + Fold01.Rep1: mtry=22
## - Fold01.Rep1: mtry=22
## + Fold01.Rep1: mtry= 5
## - Fold01.Rep1: mtry= 5
## + Fold01.Rep1: mtry=12
## - Fold01.Rep1: mtry=12
## + Fold01.Rep1: mtry=15
## - Fold01.Rep1: mtry=15
## + Fold01.Rep1: mtry= 9
## - Fold01.Rep1: mtry= 9
## + Fold01.Rep1: mtry= 6
## - Fold01.Rep1: mtry= 6
## + Fold01.Rep1: mtry=16
## - Fold01.Rep1: mtry=16
## + Fold01.Rep1: mtry= 4
## - Fold01.Rep1: mtry= 4
## + Fold02.Rep1: mtry=26
## - Fold02.Rep1: mtry=26
## + Fold02.Rep1: mtry=22
## - Fold02.Rep1: mtry=22
## + Fold02.Rep1: mtry= 5
## - Fold02.Rep1: mtry= 5
## + Fold02.Rep1: mtry=12
## - Fold02.Rep1: mtry=12
## + Fold02.Rep1: mtry=15
## - Fold02.Rep1: mtry=15
## + Fold02.Rep1: mtry= 9
## - Fold02.Rep1: mtry= 9
## + Fold02.Rep1: mtry= 6
## - Fold02.Rep1: mtry= 6
## + Fold02.Rep1: mtry=16
## - Fold02.Rep1: mtry=16
## + Fold02.Rep1: mtry= 4
## - Fold02.Rep1: mtry= 4
## + Fold03.Rep1: mtry=26
## - Fold03.Rep1: mtry=26
## + Fold03.Rep1: mtry=22
## - Fold03.Rep1: mtry=22
## + Fold03.Rep1: mtry= 5
## - Fold03.Rep1: mtry= 5
## + Fold03.Rep1: mtry=12
## - Fold03.Rep1: mtry=12
## + Fold03.Rep1: mtry=15
## - Fold03.Rep1: mtry=15
## + Fold03.Rep1: mtry= 9
## - Fold03.Rep1: mtry= 9
## + Fold03.Rep1: mtry= 6
## - Fold03.Rep1: mtry= 6
## + Fold03.Rep1: mtry=16
## - Fold03.Rep1: mtry=16
## + Fold03.Rep1: mtry= 4
## - Fold03.Rep1: mtry= 4
## + Fold04.Rep1: mtry=26
## - Fold04.Rep1: mtry=26
## + Fold04.Rep1: mtry=22
## - Fold04.Rep1: mtry=22
## + Fold04.Rep1: mtry= 5
## - Fold04.Rep1: mtry= 5
## + Fold04.Rep1: mtry=12
## - Fold04.Rep1: mtry=12
## + Fold04.Rep1: mtry=15
## - Fold04.Rep1: mtry=15
## + Fold04.Rep1: mtry= 9
## - Fold04.Rep1: mtry= 9
## + Fold04.Rep1: mtry= 6
## - Fold04.Rep1: mtry= 6
## + Fold04.Rep1: mtry=16
## - Fold04.Rep1: mtry=16
## + Fold04.Rep1: mtry= 4
## - Fold04.Rep1: mtry= 4
## + Fold05.Rep1: mtry=26
## - Fold05.Rep1: mtry=26
## + Fold05.Rep1: mtry=22
## - Fold05.Rep1: mtry=22
## + Fold05.Rep1: mtry= 5
## - Fold05.Rep1: mtry= 5
## + Fold05.Rep1: mtry=12
## - Fold05.Rep1: mtry=12
## + Fold05.Rep1: mtry=15
## - Fold05.Rep1: mtry=15
## + Fold05.Rep1: mtry= 9
## - Fold05.Rep1: mtry= 9
## + Fold05.Rep1: mtry= 6
## - Fold05.Rep1: mtry= 6
## + Fold05.Rep1: mtry=16
## - Fold05.Rep1: mtry=16
## + Fold05.Rep1: mtry= 4
## - Fold05.Rep1: mtry= 4
## + Fold06.Rep1: mtry=26
## - Fold06.Rep1: mtry=26
## + Fold06.Rep1: mtry=22
## - Fold06.Rep1: mtry=22
## + Fold06.Rep1: mtry= 5
## - Fold06.Rep1: mtry= 5
## + Fold06.Rep1: mtry=12
## - Fold06.Rep1: mtry=12
## + Fold06.Rep1: mtry=15
## - Fold06.Rep1: mtry=15
## + Fold06.Rep1: mtry= 9
## - Fold06.Rep1: mtry= 9
## + Fold06.Rep1: mtry= 6
## - Fold06.Rep1: mtry= 6
## + Fold06.Rep1: mtry=16
## - Fold06.Rep1: mtry=16
## + Fold06.Rep1: mtry= 4
## - Fold06.Rep1: mtry= 4
## + Fold07.Rep1: mtry=26
## - Fold07.Rep1: mtry=26
## + Fold07.Rep1: mtry=22
## - Fold07.Rep1: mtry=22
## + Fold07.Rep1: mtry= 5
## - Fold07.Rep1: mtry= 5
## + Fold07.Rep1: mtry=12
## - Fold07.Rep1: mtry=12
## + Fold07.Rep1: mtry=15
## - Fold07.Rep1: mtry=15
## + Fold07.Rep1: mtry= 9
## - Fold07.Rep1: mtry= 9
## + Fold07.Rep1: mtry= 6
## - Fold07.Rep1: mtry= 6
## + Fold07.Rep1: mtry=16
## - Fold07.Rep1: mtry=16
## + Fold07.Rep1: mtry= 4
## - Fold07.Rep1: mtry= 4
## + Fold08.Rep1: mtry=26
## - Fold08.Rep1: mtry=26
## + Fold08.Rep1: mtry=22
## - Fold08.Rep1: mtry=22
## + Fold08.Rep1: mtry= 5
## - Fold08.Rep1: mtry= 5
## + Fold08.Rep1: mtry=12
## - Fold08.Rep1: mtry=12
## + Fold08.Rep1: mtry=15
## - Fold08.Rep1: mtry=15
## + Fold08.Rep1: mtry= 9
## - Fold08.Rep1: mtry= 9
## + Fold08.Rep1: mtry= 6
## - Fold08.Rep1: mtry= 6
## + Fold08.Rep1: mtry=16
## - Fold08.Rep1: mtry=16
## + Fold08.Rep1: mtry= 4
## - Fold08.Rep1: mtry= 4
## + Fold09.Rep1: mtry=26
## - Fold09.Rep1: mtry=26
## + Fold09.Rep1: mtry=22
## - Fold09.Rep1: mtry=22
## + Fold09.Rep1: mtry= 5
## - Fold09.Rep1: mtry= 5
## + Fold09.Rep1: mtry=12
## - Fold09.Rep1: mtry=12
## + Fold09.Rep1: mtry=15
## - Fold09.Rep1: mtry=15
## + Fold09.Rep1: mtry= 9
## - Fold09.Rep1: mtry= 9
## + Fold09.Rep1: mtry= 6
## - Fold09.Rep1: mtry= 6
## + Fold09.Rep1: mtry=16
## - Fold09.Rep1: mtry=16
## + Fold09.Rep1: mtry= 4
## - Fold09.Rep1: mtry= 4
## + Fold10.Rep1: mtry=26
## - Fold10.Rep1: mtry=26
## + Fold10.Rep1: mtry=22
## - Fold10.Rep1: mtry=22
## + Fold10.Rep1: mtry= 5
## - Fold10.Rep1: mtry= 5
## + Fold10.Rep1: mtry=12
## - Fold10.Rep1: mtry=12
## + Fold10.Rep1: mtry=15
## - Fold10.Rep1: mtry=15
## + Fold10.Rep1: mtry= 9
## - Fold10.Rep1: mtry= 9
## + Fold10.Rep1: mtry= 6
## - Fold10.Rep1: mtry= 6
## + Fold10.Rep1: mtry=16
## - Fold10.Rep1: mtry=16
## + Fold10.Rep1: mtry= 4
## - Fold10.Rep1: mtry= 4
## + Fold01.Rep2: mtry=26
## - Fold01.Rep2: mtry=26
## + Fold01.Rep2: mtry=22
## - Fold01.Rep2: mtry=22
## + Fold01.Rep2: mtry= 5
## - Fold01.Rep2: mtry= 5
## + Fold01.Rep2: mtry=12
## - Fold01.Rep2: mtry=12
## + Fold01.Rep2: mtry=15
## - Fold01.Rep2: mtry=15
## + Fold01.Rep2: mtry= 9
## - Fold01.Rep2: mtry= 9
## + Fold01.Rep2: mtry= 6
## - Fold01.Rep2: mtry= 6
## + Fold01.Rep2: mtry=16
## - Fold01.Rep2: mtry=16
## + Fold01.Rep2: mtry= 4
## - Fold01.Rep2: mtry= 4
## + Fold02.Rep2: mtry=26
## - Fold02.Rep2: mtry=26
## + Fold02.Rep2: mtry=22
## - Fold02.Rep2: mtry=22
## + Fold02.Rep2: mtry= 5
## - Fold02.Rep2: mtry= 5
## + Fold02.Rep2: mtry=12
## - Fold02.Rep2: mtry=12
## + Fold02.Rep2: mtry=15
## - Fold02.Rep2: mtry=15
## + Fold02.Rep2: mtry= 9
## - Fold02.Rep2: mtry= 9
## + Fold02.Rep2: mtry= 6
## - Fold02.Rep2: mtry= 6
## + Fold02.Rep2: mtry=16
## - Fold02.Rep2: mtry=16
## + Fold02.Rep2: mtry= 4
## - Fold02.Rep2: mtry= 4
## + Fold03.Rep2: mtry=26
## - Fold03.Rep2: mtry=26
## + Fold03.Rep2: mtry=22
## - Fold03.Rep2: mtry=22
## + Fold03.Rep2: mtry= 5
## - Fold03.Rep2: mtry= 5
## + Fold03.Rep2: mtry=12
## - Fold03.Rep2: mtry=12
## + Fold03.Rep2: mtry=15
## - Fold03.Rep2: mtry=15
## + Fold03.Rep2: mtry= 9
## - Fold03.Rep2: mtry= 9
## + Fold03.Rep2: mtry= 6
## - Fold03.Rep2: mtry= 6
## + Fold03.Rep2: mtry=16
## - Fold03.Rep2: mtry=16
## + Fold03.Rep2: mtry= 4
## - Fold03.Rep2: mtry= 4
## + Fold04.Rep2: mtry=26
## - Fold04.Rep2: mtry=26
## + Fold04.Rep2: mtry=22
## - Fold04.Rep2: mtry=22
## + Fold04.Rep2: mtry= 5
## - Fold04.Rep2: mtry= 5
## + Fold04.Rep2: mtry=12
## - Fold04.Rep2: mtry=12
## + Fold04.Rep2: mtry=15
## - Fold04.Rep2: mtry=15
## + Fold04.Rep2: mtry= 9
## - Fold04.Rep2: mtry= 9
## + Fold04.Rep2: mtry= 6
## - Fold04.Rep2: mtry= 6
## + Fold04.Rep2: mtry=16
## - Fold04.Rep2: mtry=16
## + Fold04.Rep2: mtry= 4
## - Fold04.Rep2: mtry= 4
## + Fold05.Rep2: mtry=26
## - Fold05.Rep2: mtry=26
## + Fold05.Rep2: mtry=22
## - Fold05.Rep2: mtry=22
## + Fold05.Rep2: mtry= 5
## - Fold05.Rep2: mtry= 5
## + Fold05.Rep2: mtry=12
## - Fold05.Rep2: mtry=12
## + Fold05.Rep2: mtry=15
## - Fold05.Rep2: mtry=15
## + Fold05.Rep2: mtry= 9
## - Fold05.Rep2: mtry= 9
## + Fold05.Rep2: mtry= 6
## - Fold05.Rep2: mtry= 6
## + Fold05.Rep2: mtry=16
## - Fold05.Rep2: mtry=16
## + Fold05.Rep2: mtry= 4
## - Fold05.Rep2: mtry= 4
## + Fold06.Rep2: mtry=26
## - Fold06.Rep2: mtry=26
## + Fold06.Rep2: mtry=22
## - Fold06.Rep2: mtry=22
## + Fold06.Rep2: mtry= 5
## - Fold06.Rep2: mtry= 5
## + Fold06.Rep2: mtry=12
## - Fold06.Rep2: mtry=12
## + Fold06.Rep2: mtry=15
## - Fold06.Rep2: mtry=15
## + Fold06.Rep2: mtry= 9
## - Fold06.Rep2: mtry= 9
## + Fold06.Rep2: mtry= 6
## - Fold06.Rep2: mtry= 6
## + Fold06.Rep2: mtry=16
## - Fold06.Rep2: mtry=16
## + Fold06.Rep2: mtry= 4
## - Fold06.Rep2: mtry= 4
## + Fold07.Rep2: mtry=26
## - Fold07.Rep2: mtry=26
## + Fold07.Rep2: mtry=22
## - Fold07.Rep2: mtry=22
## + Fold07.Rep2: mtry= 5
## - Fold07.Rep2: mtry= 5
## + Fold07.Rep2: mtry=12
## - Fold07.Rep2: mtry=12
## + Fold07.Rep2: mtry=15
## - Fold07.Rep2: mtry=15
## + Fold07.Rep2: mtry= 9
## - Fold07.Rep2: mtry= 9
## + Fold07.Rep2: mtry= 6
## - Fold07.Rep2: mtry= 6
## + Fold07.Rep2: mtry=16
## - Fold07.Rep2: mtry=16
## + Fold07.Rep2: mtry= 4
## - Fold07.Rep2: mtry= 4
## + Fold08.Rep2: mtry=26
## - Fold08.Rep2: mtry=26
## + Fold08.Rep2: mtry=22
## - Fold08.Rep2: mtry=22
## + Fold08.Rep2: mtry= 5
## - Fold08.Rep2: mtry= 5
## + Fold08.Rep2: mtry=12
## - Fold08.Rep2: mtry=12
## + Fold08.Rep2: mtry=15
## - Fold08.Rep2: mtry=15
## + Fold08.Rep2: mtry= 9
## - Fold08.Rep2: mtry= 9
## + Fold08.Rep2: mtry= 6
## - Fold08.Rep2: mtry= 6
## + Fold08.Rep2: mtry=16
## - Fold08.Rep2: mtry=16
## + Fold08.Rep2: mtry= 4
## - Fold08.Rep2: mtry= 4
## + Fold09.Rep2: mtry=26
## - Fold09.Rep2: mtry=26
## + Fold09.Rep2: mtry=22
## - Fold09.Rep2: mtry=22
## + Fold09.Rep2: mtry= 5
## - Fold09.Rep2: mtry= 5
## + Fold09.Rep2: mtry=12
## - Fold09.Rep2: mtry=12
## + Fold09.Rep2: mtry=15
## - Fold09.Rep2: mtry=15
## + Fold09.Rep2: mtry= 9
## - Fold09.Rep2: mtry= 9
## + Fold09.Rep2: mtry= 6
## - Fold09.Rep2: mtry= 6
## + Fold09.Rep2: mtry=16
## - Fold09.Rep2: mtry=16
## + Fold09.Rep2: mtry= 4
## - Fold09.Rep2: mtry= 4
## + Fold10.Rep2: mtry=26
## - Fold10.Rep2: mtry=26
## + Fold10.Rep2: mtry=22
## - Fold10.Rep2: mtry=22
## + Fold10.Rep2: mtry= 5
## - Fold10.Rep2: mtry= 5
## + Fold10.Rep2: mtry=12
## - Fold10.Rep2: mtry=12
## + Fold10.Rep2: mtry=15
## - Fold10.Rep2: mtry=15
## + Fold10.Rep2: mtry= 9
## - Fold10.Rep2: mtry= 9
## + Fold10.Rep2: mtry= 6
## - Fold10.Rep2: mtry= 6
## + Fold10.Rep2: mtry=16
## - Fold10.Rep2: mtry=16
## + Fold10.Rep2: mtry= 4
## - Fold10.Rep2: mtry= 4
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 9 on full training set
model_rf_best$bestTune
confusion_matrix1<-caret::confusionMatrix(data = predict(model_rf_best,
data_valid),
data_valid$y,
positive = "FAIL")
Accuracy<-confusion_matrix[["overall"]]["Accuracy"] #Penghitungan Accuracy
Precision<-confusion_matrix[["byClass"]]["Pos Pred Value"] #Penghitungan Presisi
Recall<-confusion_matrix[["byClass"]]["Sensitivity"] #Penghitungan Recall/Sensitivity
F1_Score3<-(2*Precision*Recall)/(Precision+Recall) #Penghitungan F1 Score
data_metric_rf_best<-data.frame(Metric=c("Akurasi","Presisi","Recall","F1_Score"),Nilai=c(Accuracy,Precision,Recall,F1_Score3))
data_metric_rf_best
plot(varImp(model_rf),main="Variable Importance with Random Forest")
varImp(model_rf_best)
## rf variable importance
##
## only 20 most important variables shown (out of 26)
##
## Overall
## G2 100.000
## G1 47.059
## absences 8.695
## age 6.603
## failures2 3.384
## Fjobother 3.316
## famsizeLE3 2.757
## famrel4 2.390
## schoolsupyes 2.372
## activitiesyes 1.938
## Fedu3 1.917
## failures3 1.878
## Fedu2 1.850
## famrel5 1.761
## Fedu1 1.661
## goout5 1.623
## Fjobservices 1.621
## failures1 1.575
## goout3 1.448
## goout2 1.423
variabel<-c("G2","G1","absences","age","Fjob","famsize","famrel","failures","fedu","goout","activities","schoolsup")
importance<-c(100,34.56,3.9,3.83,2.96,1.51,1.45,1.39,1.21,1.08,1.05,1.04)
dataimportance<-data.frame(variabel,importance)
ggplot(dataimportance)+
geom_col(aes(x=importance,y=fct_reorder(variabel,importance),fill=importance))+labs(title = "Variable Important Plot",y="Variabel")+scale_color_manual(values = "blue")
cm <- confusion_matrix1
confusion_matrix1$table
## Reference
## Prediction FAIL PASS
## FAIL 13 3
## PASS 0 23
plt <- as.data.frame(cm$table)
plt$Prediction <- factor(plt$Prediction, levels=rev(levels(plt$Prediction)))
ggplot(plt, aes(Reference,Prediction, fill= Freq)) +
geom_tile() + geom_text(aes(label=Freq)) +
scale_fill_gradient(low="white", high="#009194") +
labs(title="Confussion Matrix Best Model Random Forest",x = "Reference",y = "Prediction") +
scale_x_discrete(labels=c("FAIL","PASS")) +
scale_y_discrete(labels=c("PASS","FAIL"))+
theme(plot.title = element_text(face="bold", size=18))
KARAKTERISTIK VARIABEL VARIABEL BERPENGARUH KATEGORIK TERHADAP G3 (KLASIFIKASI)
counts1 <- table(df$y, df$Fjob)
barplot(counts1, main="G3 berdasarkan Pekerjaan Ayah",
xlab="Pekerjaan Ayah", col=c("#003333","#FF99FF"),
legend = rownames(counts1))
counts2 <- table(df$y, df$famsize)
barplot(counts2, main="G3 berdasarkan Jumlah Anggota Rumah Tangga",
xlab="Jumlah Anggota Rumah Tangga", col=c("#17594A","#B31312"),
legend = rownames(counts2))
counts3 <- table(df$y, df$famrel)
barplot(counts3, main="G3 berdasarkan Hubungan dalam Keluarga",
xlab="Hubungan dalam keluarga", col=c("#17594A","#B31312"),
legend = rownames(counts3))
counts4 <- table(df$y, df$Fedu)
barplot(counts4, main="G3 berdasarkan Pendidikan Ayah",
xlab="Pendidikan Ayah", col=c("#003333","#FF99FF"),
legend = rownames(counts4))
counts5 <- table(df$y, df$goout)
barplot(counts5, main="G3 berdasarkan Intensitas Bermain Dengan Teman",
xlab="Intensitas Bermain Dengan Teman", col=c("#FF2171","#F86F03"),
legend = rownames(counts5))
counts6 <- table(df$y, df$activities)
barplot(counts6, main="G3 berdasarkan Keikutsertaan Ekstrakulikuler",
xlab="Keikutsertaan Ekstrakulikuler", col=c("#FF2171","#F86F03"),
legend = rownames(counts6))
counts7 <- table(df$y, df$schoolsup)
barplot(counts7, main="G3 berdasarkan Keikutsertaan Kegiatan Pembelajaran Tambahan",
xlab="Keikutsertaan Kegiatan Pembelajaran Tambahan", col=c("#FF2171","#F86F03"),
legend = rownames(counts7))
KARAKTERISTIK VARIABEL VARIABEL BEREPNGARUH NUMERIK TERHADAP G3 (KLASIFIKASI)
ggplot(data=df, aes(x=age, group=y, fill=y)) +
geom_density(adjust=1.5, alpha=.4) +
theme_ipsum()+labs(title = "Hubungan Umur Siswa dengan Capaian Belajar Matematika (G3)")
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
## not found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
## not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
## not found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
## not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
ggplot(data=df, aes(x=absences, group=y, fill=y)) +
geom_density(adjust=1.5, alpha=.4) +
theme_ipsum()+labs(title = "Hubungan Ketidakhadiran dengan Capaian Belajar Matematika (G3)")
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
ggplot(data=df, aes(x=failures, group=y, fill=y)) +
geom_density(adjust=1.5, alpha=.4) +
theme_ipsum()+labs(title = "Hubungan Tinggal Kelas dengan Capaian Belajar Matematika (G3)")
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
ggplot(data=df, aes(x=G1, group=y, fill=y)) +
geom_density(adjust=1.5, alpha=.4) +
theme_ipsum()+labs(title = "Hubungan G1 dengan Capaian Belajar Matematika (G3)")+
scale_fill_manual(values=c("#898121","#525FE1"))
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
ggplot(data=df, aes(x=G2, group=y, fill=y)) +
geom_density(adjust=1.5, alpha=.4) +
theme_ipsum()+labs(title = "Hubungan G2 dengan Capaian Belajar Matematika (G3)")+
scale_fill_manual(values=c("#898121","#525FE1"))
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database