Init

library(kirkegaard)
## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: magrittr
## 
## 
## Attaching package: 'magrittr'
## 
## 
## The following object is masked from 'package:purrr':
## 
##     set_names
## 
## 
## The following object is masked from 'package:tidyr':
## 
##     extract
## 
## 
## Loading required package: weights
## 
## Loading required package: Hmisc
## 
## 
## Attaching package: 'Hmisc'
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## 
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## 
## 
## Loading required package: assertthat
## 
## 
## Attaching package: 'assertthat'
## 
## 
## The following object is masked from 'package:tibble':
## 
##     has_name
## 
## 
## Loading required package: psych
## 
## 
## Attaching package: 'psych'
## 
## 
## The following object is masked from 'package:Hmisc':
## 
##     describe
## 
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## 
## 
## Attaching package: 'kirkegaard'
## 
## 
## The following object is masked from 'package:psych':
## 
##     rescale
## 
## 
## The following object is masked from 'package:assertthat':
## 
##     are_equal
## 
## 
## The following object is masked from 'package:purrr':
## 
##     is_logical
## 
## 
## The following object is masked from 'package:base':
## 
##     +
load_packages(
    
)

theme_set(theme_bw())

options(
    digits = 3,
    scipen = 5
)

Analysis

#settings
n_loci = 10000
x_prop = 0.034
n_loci_x = round(n_loci*x_prop)
n_loci_nonx = n_loci - n_loci_x
n_cases_per_sex = 2000
sex = rep(c("female", "male"), each = 2000)
sex_F = (sex == "female")

#simulate data
simulate_data = function() {
  #loci effects
  loci_freqs = runif(n = n_loci, min = .01, max = .99)
  
  #build matrix
  alleles = matrix(NA, nrow = n_cases_per_sex * 2, ncol = n_loci)
  
  #loop across variants to add
  for (i in 1:n_loci) {
    #is X?
    if (i <= n_loci_x) {
      #make male and female values separately
      alleles[sex_F, i] = rbinom(n_cases_per_sex, size = 2, prob = loci_freqs[i]) / 2
      alleles[!sex_F, i] = rbinom(n_cases_per_sex, size = 1, prob = loci_freqs[i])
    } else {
      alleles[, i] = rbinom(n_cases_per_sex, size = 2, prob = loci_freqs[i])
    }
  }
  
  alleles
}

#make data
set.seed(1)
d1 = simulate_data()

#get scores, assuming equal effects of all loci
d1_scores = rowSums(d1)
d1_x_scores = rowSums(d1[, 1:n_loci_x])

#summary stats
(d1_x_scores_desc = describe2(d1_x_scores, group = sex))
## New names:
## • `` -> `...1`
(d1_scores_desc = describe2(d1_scores, group = sex))
## New names:
## • `` -> `...1`
#effect sizes in SD ratios
d1_x_scores_desc$sd[2] / d1_x_scores_desc$sd[1]
## [1] 1.46
d1_scores_desc$sd[2] / d1_scores_desc$sd[1]
## [1] 1.01
#test for variance equivalence
var.test(d1_x_scores[sex_F], d1_x_scores[!sex_F])
## 
##  F test to compare two variances
## 
## data:  d1_x_scores[sex_F] and d1_x_scores[!sex_F]
## F = 0.5, num df = 1999, denom df = 1999, p-value <2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.431 0.514
## sample estimates:
## ratio of variances 
##              0.471
var.test(d1_scores[sex_F], d1_scores[!sex_F])
## 
##  F test to compare two variances
## 
## data:  d1_scores[sex_F] and d1_scores[!sex_F]
## F = 1, num df = 1999, denom df = 1999, p-value = 0.7
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.90 1.07
## sample estimates:
## ratio of variances 
##              0.983
#figs
tibble(
  PGS_X = d1_x_scores,
  sex = sex
) %>% 
  GG_denhist("PGS_X", "sex") +
  scale_x_continuous("Polygenic score of variants on X chromosome")
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

GG_save("figs/X_PGS_dist.png")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
tibble(
  PGS = d1_scores,
  sex = sex
) %>% 
  GG_denhist("PGS", "sex") +
  scale_x_continuous("Polygenic score of all variants")
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

GG_save("figs/PGS_dist.png")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#repeat experiment 100 times
set.seed(1)
sim_results = map_df(1:100, function(sim) {
  # browser()
  message(sim)
  #make data
  d1 = simulate_data()
  
  #get scores, assuming equal effects of all loci
  d1_scores = rowSums(d1)
  d1_x_scores = rowSums(d1[, 1:n_loci_x])
  
  tibble(
    sim = sim,
    sd_ratio_x = sd(d1_x_scores[!sex_F]) / sd(d1_x_scores[sex_F]),
    sd_ratio = sd(d1_scores[!sex_F]) / sd(d1_scores[sex_F]),
    var_ratio_test_x = var.test(d1_x_scores[sex_F], d1_x_scores[!sex_F])$p.value,
    var_ratio_test = var.test(d1_scores[sex_F], d1_scores[!sex_F])$p.value
  )
  
})
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
## 11
## 12
## 13
## 14
## 15
## 16
## 17
## 18
## 19
## 20
## 21
## 22
## 23
## 24
## 25
## 26
## 27
## 28
## 29
## 30
## 31
## 32
## 33
## 34
## 35
## 36
## 37
## 38
## 39
## 40
## 41
## 42
## 43
## 44
## 45
## 46
## 47
## 48
## 49
## 50
## 51
## 52
## 53
## 54
## 55
## 56
## 57
## 58
## 59
## 60
## 61
## 62
## 63
## 64
## 65
## 66
## 67
## 68
## 69
## 70
## 71
## 72
## 73
## 74
## 75
## 76
## 77
## 78
## 79
## 80
## 81
## 82
## 83
## 84
## 85
## 86
## 87
## 88
## 89
## 90
## 91
## 92
## 93
## 94
## 95
## 96
## 97
## 98
## 99
## 100
#overall results
describe2(sim_results[-1]) %>% df_round(3)

Meta

#versions
write_sessioninfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Linux Mint 21.1
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_DK.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_DK.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Europe/Berlin
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] kirkegaard_2023-08-04 psych_2.3.6           assertthat_0.2.1     
##  [4] weights_1.0.4         Hmisc_5.1-0           magrittr_2.0.3       
##  [7] lubridate_1.9.2       forcats_1.0.0         stringr_1.5.0        
## [10] dplyr_1.1.2           purrr_1.0.1           readr_2.1.4          
## [13] tidyr_1.3.0           tibble_3.2.1          ggplot2_3.4.2        
## [16] tidyverse_2.0.0      
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.0  farver_2.1.1      fastmap_1.1.1     digest_0.6.33    
##  [5] rpart_4.1.19      timechange_0.2.0  lifecycle_1.0.3   cluster_2.1.4    
##  [9] survival_3.5-5    gdata_2.19.0      compiler_4.3.1    rlang_1.1.1      
## [13] sass_0.4.6        tools_4.3.1       utf8_1.2.3        yaml_2.3.7       
## [17] data.table_1.14.8 knitr_1.43        labeling_0.4.2    htmlwidgets_1.6.2
## [21] mnormt_2.1.1      plyr_1.8.8        withr_2.5.0       foreign_0.8-82   
## [25] nnet_7.3-19       grid_4.3.1        fansi_1.0.4       jomo_2.7-6       
## [29] colorspace_2.1-0  mice_3.16.0       scales_1.2.1      gtools_3.9.4     
## [33] iterators_1.0.14  MASS_7.3-60       cli_3.6.1         rmarkdown_2.23   
## [37] ragg_1.2.5        generics_0.1.3    rstudioapi_0.15.0 tzdb_0.4.0       
## [41] minqa_1.2.5       cachem_1.0.8      splines_4.3.1     parallel_4.3.1   
## [45] base64enc_0.1-3   vctrs_0.6.3       boot_1.3-28       glmnet_4.1-7     
## [49] Matrix_1.6-0      jsonlite_1.8.7    hms_1.1.3         mitml_0.4-5      
## [53] Formula_1.2-5     htmlTable_2.4.1   systemfonts_1.0.4 foreach_1.5.2    
## [57] jquerylib_0.1.4   glue_1.6.2        nloptr_2.0.3      pan_1.8          
## [61] codetools_0.2-19  stringi_1.7.12    gtable_0.3.3      shape_1.4.6      
## [65] lme4_1.1-34       munsell_0.5.0     pillar_1.9.0      htmltools_0.5.5  
## [69] R6_2.5.1          textshaping_0.3.6 evaluate_0.21     lattice_0.21-8   
## [73] highr_0.10        backports_1.4.1   broom_1.0.5       bslib_0.5.0      
## [77] Rcpp_1.0.11       gridExtra_2.3     nlme_3.1-162      checkmate_2.2.0  
## [81] xfun_0.39         pkgconfig_2.0.3
#write data to file for reuse
# d %>% write_rds("data/data_for_reuse.rds")

#OSF
if (F) {
  library(osfr)
  
  #login
  osf_auth(readr::read_lines("~/.config/osf_token"))
  
  #the project we will use
  osf_proj = osf_retrieve_node("https://osf.io/XXX/")
  
  #upload all files in project
  #overwrite existing (versioning)
  osf_upload(
    osf_proj,
    path = c("data", "figures", "papers", "notebook.Rmd", "notebook.html", "sessions_info.txt"), 
    conflicts = "overwrite"
    )
}