Primer práctica de R para Big Data

Tutoría sincrónica 1: 12 de Agosto del 2023

Operaciones básicas con R

x<-c(1:1000)
y=x^2
# generamos estadisticas descriptivas para las variables
summary(x)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     1.0   250.8   500.5   500.5   750.2  1000.0
summary(y)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1   62876  250501  333834  562875 1000000

Gráficas básicas

plot(y,x)

Data frame

cuadros de datos (data.frame)

datos=data.frame(x,y)
head(datos)
##   x  y
## 1 1  1
## 2 2  4
## 3 3  9
## 4 4 16
## 5 5 25
## 6 6 36
plot(datos)

Generación de números aleatorios

#10 números aleatorio contínuos entre 1 y5
runif(10,1,5)
##  [1] 3.774632 4.587608 1.042575 1.537831 2.643813 4.486999 2.058304 4.050070
##  [9] 4.295908 3.260726
#10 números aleatorio enteros entre 1 y5
floor(runif(10,1,5))
##  [1] 2 3 2 3 2 2 1 3 1 2
#10 números aleatorio con un decimal entre 1 y5
round(runif(10,1,5),2)
##  [1] 3.57 2.79 3.43 2.47 4.78 1.59 2.78 4.08 1.58 4.07
pesos=rnorm(10000,100,2)
hist(pesos,breaks=500)

Carga de bases de datos de la EPH 2022 en r

levantar la base de datos de le Encuesta de Hogares a partir de la página web del INE, www.ine.gog.py

#install.packages("readxl")
library(readxl)
#Descargar y guardado de las bases EPH años 2022 y 2012
#eph2022=read.csv("https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2022/data/REG02_EPHC2022.csv", sep=";")
#write.csv(eph2022,"D:/OneDrive/FACEN_BIGDATA/eph22.csv")

eph2022=read.csv("D:/OneDrive/FACEN_BIGDATA/eph22.csv", sep=",")
#eph2012=read.csv("https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2012/data/cfa40r02_eph2012.csv", sep=";")

#write.csv(eph2012,"D:/OneDrive/FACEN_BIGDATA/eph12.csv")

eph2012=read.csv("D:/OneDrive/FACEN_BIGDATA/eph12.csv", sep=",")
names(eph2012)
##   [1] "X"           "X...UPM"     "NVIVI"       "NHOGA"       "DPTOREP"    
##   [6] "AREA"        "L02"         "P02"         "P03"         "P04"        
##  [11] "P04A"        "P04B"        "P05C"        "P05P"        "P05M"       
##  [16] "P06"         "P08D"        "P08M"        "P08A"        "P09"        
##  [21] "P10A"        "P10AB"       "P10Z"        "P11A"        "P11AB"      
##  [26] "P11Z"        "P12"         "P13A"        "P13B"        "P13C"       
##  [31] "P14A1"       "P14A2"       "P14B1"       "P14B2"       "P14C1"      
##  [36] "P14C2"       "P15"         "A01"         "A01A"        "A02"        
##  [41] "A03"         "A04"         "A05"         "A07"         "A08"        
##  [46] "A10"         "A11A"        "A11M"        "A11S"        "A12"        
##  [51] "A13REC"      "A14REC"      "A15"         "A16"         "A17A"       
##  [56] "A17M"        "A17S"        "A18"         "B01REC"      "B02REC"     
##  [61] "B03LU"       "B03MA"       "B03MI"       "B03JU"       "B03VI"      
##  [66] "B03SA"       "B03DO"       "B04"         "B05"         "B06"        
##  [71] "B07A"        "B07M"        "B07S"        "B08"         "B09A"       
##  [76] "B09M"        "B09S"        "B10"         "B11"         "B12"        
##  [81] "B13"         "B14"         "B15"         "B16"         "B17"        
##  [86] "B18G"        "B18U"        "B18D"        "B18T"        "B19"        
##  [91] "B20AG"       "B20AU"       "B20BG"       "B20BU"       "B21"        
##  [96] "B22G"        "B22U"        "B22D"        "B22T"        "B23"        
## [101] "B24"         "B25"         "B26"         "B27"         "B28"        
## [106] "B291"        "B292"        "B30"         "B31"         "B32"        
## [111] "B33"         "C01REC"      "C02REC"      "C03"         "C04"        
## [116] "C05"         "C06"         "C07"         "C08"         "C09"        
## [121] "C101"        "C102"        "C11G"        "C11U"        "C11D"       
## [126] "C11T"        "C12"         "C13AG"       "C13AU"       "C13BG"      
## [131] "C13BU"       "C14"         "C15"         "C16REC"      "C17REC"     
## [136] "C18"         "C19"         "D01"         "D02"         "D03"        
## [141] "D04"         "D05"         "E01A"        "E01B"        "E01C"       
## [146] "E01D"        "E01E"        "E01F"        "E01G"        "E01H"       
## [151] "E01I"        "E01J"        "E01K"        "E01L"        "ED01"       
## [156] "ED02"        "ED03"        "ED0504"      "ED06C"       "ED07"       
## [161] "ED08"        "ED09"        "ED10"        "ED11A"       "ED11B"      
## [166] "ED11C"       "ED11D"       "ED11E"       "ED11F"       "S01A"       
## [171] "S01B"        "S02"         "S03"         "S04"         "S05"        
## [176] "S06"         "S07"         "S08"         "S09"         "S10A"       
## [181] "S10B"        "S10C"        "S10D"        "S10E"        "S10F"       
## [186] "S10G"        "S10T"        "CATE_PEA"    "TAMA_PEA"    "OCUP_PEA"   
## [191] "RAMA_PEA"    "HORAB"       "HORABC"      "HORABCO"     "PEAD"       
## [196] "PEAA"        "TIPOHOGA"    "NJEF"        "NCON"        "NPAD"       
## [201] "NMAD"        "a..oest"     "ra06ya09"    "E01AIMDE"    "E01BIMDE"   
## [206] "E01CIMDE"    "E01DDE"      "E01EDE"      "E01FDE"      "E01GDE"     
## [211] "E01HDE"      "E01IDE"      "E01JDE"      "E01KDE"      "E01LDE"     
## [216] "E01KJDE"     "E02L1BDE"    "E02L2BDE"    "fexajustado" "ipcm"       
## [221] "pobrezai"    "pobnopoi"    "quintili"    "decili"      "quintiai"   
## [226] "decilai"     "filter_."

Exploramos algunas de las variables

Sexo (P06)

table(eph2022$P06)
## 
##    1    6 
## 8579 8800
eph2022$P06<-factor(eph2022$P06,labels=c("Hombres","Mujeres"))
table(eph2022$P06)
## 
## Hombres Mujeres 
##    8579    8800
eph2012$P06<-factor(eph2012$P06,labels=c("Hombres","Mujeres"))
table(eph2012$P06)
## 
## Hombres Mujeres 
##   10610   10541
barplot(table(eph2022$P06))

barplot(table(eph2012$P06))

pie(table(eph2022$P06))

#### Edad (P02)

table(eph2022$P02)
## 
##   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19 
## 291 245 285 320 299 345 327 315 300 285 331 326 323 313 274 282 313 318 302 287 
##  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39 
## 290 271 300 285 299 293 284 289 273 262 260 253 244 265 282 221 229 210 235 243 
##  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59 
## 260 196 239 199 189 177 180 159 177 174 187 170 178 173 171 160 180 180 170 144 
##  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79 
## 171 156 171 137 130 108 131 116 101 105 103  83  90  60  64  77  66  55  63  42 
##  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98 100 
##  47  30  35  25  33  31  17  23   7  10  11  12  10   4  11   5   1   3   1   1 
## 102 
##   1
hist(eph2022$P02,col = "pink",main = paste("Histogram of edad 2022"),labels = T)

hist(eph2012$P02,col = "pink",main = paste("Histogram of edad 2012"),labels = T)

### Agrupaciones

#resultados poblacionales
edadysexo2012=aggregate.data.frame(x = eph2012$fexajustado, by = list(eph2012$P06, eph2012$P02), FUN = "sum")
edadysexo2012$year=2012
colnames(edadysexo2012) <- c("Sexo", "Edad","Cantidad","Year")

edadysexo2012
##        Sexo Edad Cantidad Year
## 1   Hombres    0    73521 2012
## 2   Mujeres    0    67105 2012
## 3   Hombres    1    73680 2012
## 4   Mujeres    1    64123 2012
## 5   Hombres    2    79031 2012
## 6   Mujeres    2    54732 2012
## 7   Hombres    3    68716 2012
## 8   Mujeres    3    59355 2012
## 9   Hombres    4    56131 2012
## 10  Mujeres    4    72214 2012
## 11  Hombres    5    75015 2012
## 12  Mujeres    5    56983 2012
## 13  Hombres    6    63655 2012
## 14  Mujeres    6    63793 2012
## 15  Hombres    7    75251 2012
## 16  Mujeres    7    67105 2012
## 17  Hombres    8    80053 2012
## 18  Mujeres    8    69504 2012
## 19  Hombres    9    68708 2012
## 20  Mujeres    9    75170 2012
## 21  Hombres   10    71834 2012
## 22  Mujeres   10    61776 2012
## 23  Hombres   11    70408 2012
## 24  Mujeres   11    69640 2012
## 25  Hombres   12    77358 2012
## 26  Mujeres   12    61572 2012
## 27  Hombres   13    65262 2012
## 28  Mujeres   13    67804 2012
## 29  Hombres   14    77360 2012
## 30  Mujeres   14    69235 2012
## 31  Hombres   15    80493 2012
## 32  Mujeres   15    77420 2012
## 33  Hombres   16    90765 2012
## 34  Mujeres   16    71202 2012
## 35  Hombres   17    74570 2012
## 36  Mujeres   17    61613 2012
## 37  Hombres   18    77417 2012
## 38  Mujeres   18    66598 2012
## 39  Hombres   19    55539 2012
## 40  Mujeres   19    70408 2012
## 41  Hombres   20    61122 2012
## 42  Mujeres   20    70213 2012
## 43  Hombres   21    51598 2012
## 44  Mujeres   21    57207 2012
## 45  Hombres   22    60083 2012
## 46  Mujeres   22    71184 2012
## 47  Hombres   23    58435 2012
## 48  Mujeres   23    55026 2012
## 49  Hombres   24    51816 2012
## 50  Mujeres   24    53427 2012
## 51  Hombres   25    49425 2012
## 52  Mujeres   25    51423 2012
## 53  Hombres   26    46067 2012
## 54  Mujeres   26    53297 2012
## 55  Hombres   27    51836 2012
## 56  Mujeres   27    55141 2012
## 57  Hombres   28    49472 2012
## 58  Mujeres   28    56097 2012
## 59  Hombres   29    36512 2012
## 60  Mujeres   29    44066 2012
## 61  Hombres   30    48708 2012
## 62  Mujeres   30    56610 2012
## 63  Hombres   31    40714 2012
## 64  Mujeres   31    46739 2012
## 65  Hombres   32    61396 2012
## 66  Mujeres   32    55902 2012
## 67  Hombres   33    45236 2012
## 68  Mujeres   33    44948 2012
## 69  Hombres   34    30695 2012
## 70  Mujeres   34    37928 2012
## 71  Hombres   35    44795 2012
## 72  Mujeres   35    36967 2012
## 73  Hombres   36    37660 2012
## 74  Mujeres   36    34784 2012
## 75  Hombres   37    31670 2012
## 76  Mujeres   37    38486 2012
## 77  Hombres   38    39917 2012
## 78  Mujeres   38    33600 2012
## 79  Hombres   39    26263 2012
## 80  Mujeres   39    32413 2012
## 81  Hombres   40    42528 2012
## 82  Mujeres   40    44872 2012
## 83  Hombres   41    35453 2012
## 84  Mujeres   41    33664 2012
## 85  Hombres   42    37536 2012
## 86  Mujeres   42    42183 2012
## 87  Hombres   43    34460 2012
## 88  Mujeres   43    32661 2012
## 89  Hombres   44    35434 2012
## 90  Mujeres   44    26234 2012
## 91  Hombres   45    31047 2012
## 92  Mujeres   45    30819 2012
## 93  Hombres   46    30553 2012
## 94  Mujeres   46    30214 2012
## 95  Hombres   47    33934 2012
## 96  Mujeres   47    35258 2012
## 97  Hombres   48    35938 2012
## 98  Mujeres   48    24628 2012
## 99  Hombres   49    29518 2012
## 100 Mujeres   49    32060 2012
## 101 Hombres   50    29074 2012
## 102 Mujeres   50    31851 2012
## 103 Hombres   51    25120 2012
## 104 Mujeres   51    23494 2012
## 105 Hombres   52    29890 2012
## 106 Mujeres   52    31026 2012
## 107 Hombres   53    27210 2012
## 108 Mujeres   53    24871 2012
## 109 Hombres   54    27290 2012
## 110 Mujeres   54    34692 2012
## 111 Hombres   55    22182 2012
## 112 Mujeres   55    20305 2012
## 113 Hombres   56    28677 2012
## 114 Mujeres   56    27385 2012
## 115 Hombres   57    21743 2012
## 116 Mujeres   57    23746 2012
## 117 Hombres   58    24392 2012
## 118 Mujeres   58    21678 2012
## 119 Hombres   59    13053 2012
## 120 Mujeres   59    22131 2012
## 121 Hombres   60    21333 2012
## 122 Mujeres   60    20773 2012
## 123 Hombres   61    15173 2012
## 124 Mujeres   61    10492 2012
## 125 Hombres   62    17528 2012
## 126 Mujeres   62    17468 2012
## 127 Hombres   63    15246 2012
## 128 Mujeres   63    12867 2012
## 129 Hombres   64     9545 2012
## 130 Mujeres   64    13584 2012
## 131 Hombres   65    18968 2012
## 132 Mujeres   65    15293 2012
## 133 Hombres   66    12730 2012
## 134 Mujeres   66    12278 2012
## 135 Hombres   67    10086 2012
## 136 Mujeres   67    11523 2012
## 137 Hombres   68    10763 2012
## 138 Mujeres   68     8764 2012
## 139 Hombres   69     7239 2012
## 140 Mujeres   69     8128 2012
## 141 Hombres   70    11173 2012
## 142 Mujeres   70    10522 2012
## 143 Hombres   71     6969 2012
## 144 Mujeres   71     6686 2012
## 145 Hombres   72    11775 2012
## 146 Mujeres   72    10102 2012
## 147 Hombres   73     8607 2012
## 148 Mujeres   73     9814 2012
## 149 Hombres   74     4861 2012
## 150 Mujeres   74    11709 2012
## 151 Hombres   75     9871 2012
## 152 Mujeres   75     6413 2012
## 153 Hombres   76     5191 2012
## 154 Mujeres   76     5415 2012
## 155 Hombres   77     4503 2012
## 156 Mujeres   77     7150 2012
## 157 Hombres   78     5597 2012
## 158 Mujeres   78     3011 2012
## 159 Hombres   79     6267 2012
## 160 Mujeres   79     5644 2012
## 161 Hombres   80     4329 2012
## 162 Mujeres   80     6469 2012
## 163 Hombres   81     2964 2012
## 164 Mujeres   81     5298 2012
## 165 Hombres   82     4901 2012
## 166 Mujeres   82     7246 2012
## 167 Hombres   83     4123 2012
## 168 Mujeres   83     5270 2012
## 169 Hombres   84     5249 2012
## 170 Mujeres   84     3022 2012
## 171 Hombres   85     3093 2012
## 172 Mujeres   85     3657 2012
## 173 Hombres   86     2287 2012
## 174 Mujeres   86     3997 2012
## 175 Hombres   87     1657 2012
## 176 Mujeres   87     3653 2012
## 177 Hombres   88     1384 2012
## 178 Mujeres   88      609 2012
## 179 Hombres   89      786 2012
## 180 Mujeres   89     1216 2012
## 181 Hombres   90     2450 2012
## 182 Mujeres   90     2589 2012
## 183 Hombres   91      982 2012
## 184 Mujeres   91     1376 2012
## 185 Hombres   92     1723 2012
## 186 Mujeres   92      757 2012
## 187 Hombres   93      126 2012
## 188 Mujeres   93     1993 2012
## 189 Hombres   94      560 2012
## 190 Hombres   95      525 2012
## 191 Mujeres   95      531 2012
## 192 Hombres   96      885 2012
## 193 Mujeres   97     1028 2012
## 194 Mujeres   98      917 2012
## 195 Mujeres   99      383 2012
#resultados poblacionales
edadysexo2022=aggregate.data.frame(x = eph2022$FEX, by = list(eph2022$P06, eph2022$P02), FUN = "sum")
edadysexo2022$year=2022
colnames(edadysexo2022) <- c("Sexo", "Edad","Cantidad","Year")


edadysexo2022
##        Sexo Edad Cantidad Year
## 1   Hombres    0    68641 2022
## 2   Mujeres    0    68554 2022
## 3   Hombres    1    57309 2022
## 4   Mujeres    1    54222 2022
## 5   Hombres    2    68203 2022
## 6   Mujeres    2    71866 2022
## 7   Hombres    3    79717 2022
## 8   Mujeres    3    64557 2022
## 9   Hombres    4    70401 2022
## 10  Mujeres    4    67766 2022
## 11  Hombres    5    76827 2022
## 12  Mujeres    5    80033 2022
## 13  Hombres    6    85832 2022
## 14  Mujeres    6    66435 2022
## 15  Hombres    7    78186 2022
## 16  Mujeres    7    67818 2022
## 17  Hombres    8    75530 2022
## 18  Mujeres    8    59676 2022
## 19  Hombres    9    67865 2022
## 20  Mujeres    9    62468 2022
## 21  Hombres   10    78902 2022
## 22  Mujeres   10    68677 2022
## 23  Hombres   11    73780 2022
## 24  Mujeres   11    65461 2022
## 25  Hombres   12    72510 2022
## 26  Mujeres   12    68400 2022
## 27  Hombres   13    64400 2022
## 28  Mujeres   13    65516 2022
## 29  Hombres   14    64648 2022
## 30  Mujeres   14    49754 2022
## 31  Hombres   15    58970 2022
## 32  Mujeres   15    61821 2022
## 33  Hombres   16    71964 2022
## 34  Mujeres   16    63469 2022
## 35  Hombres   17    62805 2022
## 36  Mujeres   17    72096 2022
## 37  Hombres   18    65633 2022
## 38  Mujeres   18    60649 2022
## 39  Hombres   19    62980 2022
## 40  Mujeres   19    61184 2022
## 41  Hombres   20    65570 2022
## 42  Mujeres   20    66286 2022
## 43  Hombres   21    57442 2022
## 44  Mujeres   21    64425 2022
## 45  Hombres   22    69798 2022
## 46  Mujeres   22    65047 2022
## 47  Hombres   23    64325 2022
## 48  Mujeres   23    60081 2022
## 49  Hombres   24    76616 2022
## 50  Mujeres   24    70617 2022
## 51  Hombres   25    66754 2022
## 52  Mujeres   25    71320 2022
## 53  Hombres   26    61062 2022
## 54  Mujeres   26    72634 2022
## 55  Hombres   27    57594 2022
## 56  Mujeres   27    76776 2022
## 57  Hombres   28    66458 2022
## 58  Mujeres   28    62090 2022
## 59  Hombres   29    69223 2022
## 60  Mujeres   29    58447 2022
## 61  Hombres   30    56856 2022
## 62  Mujeres   30    61209 2022
## 63  Hombres   31    51406 2022
## 64  Mujeres   31    58421 2022
## 65  Hombres   32    56887 2022
## 66  Mujeres   32    47602 2022
## 67  Hombres   33    57053 2022
## 68  Mujeres   33    61813 2022
## 69  Hombres   34    69665 2022
## 70  Mujeres   34    67131 2022
## 71  Hombres   35    48549 2022
## 72  Mujeres   35    52789 2022
## 73  Hombres   36    50844 2022
## 74  Mujeres   36    53179 2022
## 75  Hombres   37    49450 2022
## 76  Mujeres   37    56244 2022
## 77  Hombres   38    50225 2022
## 78  Mujeres   38    48459 2022
## 79  Hombres   39    54505 2022
## 80  Mujeres   39    55594 2022
## 81  Hombres   40    62830 2022
## 82  Mujeres   40    55868 2022
## 83  Hombres   41    43051 2022
## 84  Mujeres   41    47425 2022
## 85  Hombres   42    48179 2022
## 86  Mujeres   42    55218 2022
## 87  Hombres   43    42530 2022
## 88  Mujeres   43    46215 2022
## 89  Hombres   44    40758 2022
## 90  Mujeres   44    42876 2022
## 91  Hombres   45    33710 2022
## 92  Mujeres   45    37289 2022
## 93  Hombres   46    37240 2022
## 94  Mujeres   46    40185 2022
## 95  Hombres   47    33374 2022
## 96  Mujeres   47    29951 2022
## 97  Hombres   48    38441 2022
## 98  Mujeres   48    37757 2022
## 99  Hombres   49    36040 2022
## 100 Mujeres   49    35385 2022
## 101 Hombres   50    32552 2022
## 102 Mujeres   50    33802 2022
## 103 Hombres   51    28699 2022
## 104 Mujeres   51    28225 2022
## 105 Hombres   52    33858 2022
## 106 Mujeres   52    29934 2022
## 107 Hombres   53    29283 2022
## 108 Mujeres   53    32158 2022
## 109 Hombres   54    32194 2022
## 110 Mujeres   54    28411 2022
## 111 Hombres   55    26465 2022
## 112 Mujeres   55    27598 2022
## 113 Hombres   56    29880 2022
## 114 Mujeres   56    33924 2022
## 115 Hombres   57    30775 2022
## 116 Mujeres   57    32848 2022
## 117 Hombres   58    26577 2022
## 118 Mujeres   58    31105 2022
## 119 Hombres   59    24214 2022
## 120 Mujeres   59    25421 2022
## 121 Hombres   60    26333 2022
## 122 Mujeres   60    34100 2022
## 123 Hombres   61    26971 2022
## 124 Mujeres   61    30796 2022
## 125 Hombres   62    25112 2022
## 126 Mujeres   62    31615 2022
## 127 Hombres   63    25681 2022
## 128 Mujeres   63    20645 2022
## 129 Hombres   64    24121 2022
## 130 Mujeres   64    19610 2022
## 131 Hombres   65    22097 2022
## 132 Mujeres   65    18621 2022
## 133 Hombres   66    17584 2022
## 134 Mujeres   66    26911 2022
## 135 Hombres   67    23688 2022
## 136 Mujeres   67    17129 2022
## 137 Hombres   68    18260 2022
## 138 Mujeres   68    13744 2022
## 139 Hombres   69    19158 2022
## 140 Mujeres   69    16766 2022
## 141 Hombres   70    13447 2022
## 142 Mujeres   70    20929 2022
## 143 Hombres   71    15989 2022
## 144 Mujeres   71    12016 2022
## 145 Hombres   72    14884 2022
## 146 Mujeres   72    16377 2022
## 147 Hombres   73    12619 2022
## 148 Mujeres   73     9085 2022
## 149 Hombres   74    11244 2022
## 150 Mujeres   74     9497 2022
## 151 Hombres   75    11222 2022
## 152 Mujeres   75    12359 2022
## 153 Hombres   76    10309 2022
## 154 Mujeres   76     9860 2022
## 155 Hombres   77     9026 2022
## 156 Mujeres   77     9150 2022
## 157 Hombres   78     8143 2022
## 158 Mujeres   78    10196 2022
## 159 Hombres   79     8792 2022
## 160 Mujeres   79     6313 2022
## 161 Hombres   80     8867 2022
## 162 Mujeres   80     6298 2022
## 163 Hombres   81     5434 2022
## 164 Mujeres   81     2972 2022
## 165 Hombres   82     5655 2022
## 166 Mujeres   82     5640 2022
## 167 Hombres   83     4538 2022
## 168 Mujeres   83     3663 2022
## 169 Hombres   84     3477 2022
## 170 Mujeres   84     6284 2022
## 171 Hombres   85     4825 2022
## 172 Mujeres   85     5962 2022
## 173 Hombres   86     2174 2022
## 174 Mujeres   86     3443 2022
## 175 Hombres   87     3095 2022
## 176 Mujeres   87     3438 2022
## 177 Hombres   88     1444 2022
## 178 Mujeres   88      537 2022
## 179 Hombres   89      493 2022
## 180 Mujeres   89     2406 2022
## 181 Hombres   90     1184 2022
## 182 Mujeres   90     1835 2022
## 183 Hombres   91      848 2022
## 184 Mujeres   91     2960 2022
## 185 Hombres   92      968 2022
## 186 Mujeres   92     1681 2022
## 187 Hombres   93      342 2022
## 188 Mujeres   93      801 2022
## 189 Hombres   94     1138 2022
## 190 Mujeres   94     1754 2022
## 191 Hombres   95      561 2022
## 192 Mujeres   95      630 2022
## 193 Mujeres   96      393 2022
## 194 Mujeres   97      569 2022
## 195 Mujeres   98      134 2022
## 196 Mujeres  100      211 2022
## 197 Mujeres  102      273 2022
eph12y22=rbind(edadysexo2012,edadysexo2022)
eph12y22
##        Sexo Edad Cantidad Year
## 1   Hombres    0    73521 2012
## 2   Mujeres    0    67105 2012
## 3   Hombres    1    73680 2012
## 4   Mujeres    1    64123 2012
## 5   Hombres    2    79031 2012
## 6   Mujeres    2    54732 2012
## 7   Hombres    3    68716 2012
## 8   Mujeres    3    59355 2012
## 9   Hombres    4    56131 2012
## 10  Mujeres    4    72214 2012
## 11  Hombres    5    75015 2012
## 12  Mujeres    5    56983 2012
## 13  Hombres    6    63655 2012
## 14  Mujeres    6    63793 2012
## 15  Hombres    7    75251 2012
## 16  Mujeres    7    67105 2012
## 17  Hombres    8    80053 2012
## 18  Mujeres    8    69504 2012
## 19  Hombres    9    68708 2012
## 20  Mujeres    9    75170 2012
## 21  Hombres   10    71834 2012
## 22  Mujeres   10    61776 2012
## 23  Hombres   11    70408 2012
## 24  Mujeres   11    69640 2012
## 25  Hombres   12    77358 2012
## 26  Mujeres   12    61572 2012
## 27  Hombres   13    65262 2012
## 28  Mujeres   13    67804 2012
## 29  Hombres   14    77360 2012
## 30  Mujeres   14    69235 2012
## 31  Hombres   15    80493 2012
## 32  Mujeres   15    77420 2012
## 33  Hombres   16    90765 2012
## 34  Mujeres   16    71202 2012
## 35  Hombres   17    74570 2012
## 36  Mujeres   17    61613 2012
## 37  Hombres   18    77417 2012
## 38  Mujeres   18    66598 2012
## 39  Hombres   19    55539 2012
## 40  Mujeres   19    70408 2012
## 41  Hombres   20    61122 2012
## 42  Mujeres   20    70213 2012
## 43  Hombres   21    51598 2012
## 44  Mujeres   21    57207 2012
## 45  Hombres   22    60083 2012
## 46  Mujeres   22    71184 2012
## 47  Hombres   23    58435 2012
## 48  Mujeres   23    55026 2012
## 49  Hombres   24    51816 2012
## 50  Mujeres   24    53427 2012
## 51  Hombres   25    49425 2012
## 52  Mujeres   25    51423 2012
## 53  Hombres   26    46067 2012
## 54  Mujeres   26    53297 2012
## 55  Hombres   27    51836 2012
## 56  Mujeres   27    55141 2012
## 57  Hombres   28    49472 2012
## 58  Mujeres   28    56097 2012
## 59  Hombres   29    36512 2012
## 60  Mujeres   29    44066 2012
## 61  Hombres   30    48708 2012
## 62  Mujeres   30    56610 2012
## 63  Hombres   31    40714 2012
## 64  Mujeres   31    46739 2012
## 65  Hombres   32    61396 2012
## 66  Mujeres   32    55902 2012
## 67  Hombres   33    45236 2012
## 68  Mujeres   33    44948 2012
## 69  Hombres   34    30695 2012
## 70  Mujeres   34    37928 2012
## 71  Hombres   35    44795 2012
## 72  Mujeres   35    36967 2012
## 73  Hombres   36    37660 2012
## 74  Mujeres   36    34784 2012
## 75  Hombres   37    31670 2012
## 76  Mujeres   37    38486 2012
## 77  Hombres   38    39917 2012
## 78  Mujeres   38    33600 2012
## 79  Hombres   39    26263 2012
## 80  Mujeres   39    32413 2012
## 81  Hombres   40    42528 2012
## 82  Mujeres   40    44872 2012
## 83  Hombres   41    35453 2012
## 84  Mujeres   41    33664 2012
## 85  Hombres   42    37536 2012
## 86  Mujeres   42    42183 2012
## 87  Hombres   43    34460 2012
## 88  Mujeres   43    32661 2012
## 89  Hombres   44    35434 2012
## 90  Mujeres   44    26234 2012
## 91  Hombres   45    31047 2012
## 92  Mujeres   45    30819 2012
## 93  Hombres   46    30553 2012
## 94  Mujeres   46    30214 2012
## 95  Hombres   47    33934 2012
## 96  Mujeres   47    35258 2012
## 97  Hombres   48    35938 2012
## 98  Mujeres   48    24628 2012
## 99  Hombres   49    29518 2012
## 100 Mujeres   49    32060 2012
## 101 Hombres   50    29074 2012
## 102 Mujeres   50    31851 2012
## 103 Hombres   51    25120 2012
## 104 Mujeres   51    23494 2012
## 105 Hombres   52    29890 2012
## 106 Mujeres   52    31026 2012
## 107 Hombres   53    27210 2012
## 108 Mujeres   53    24871 2012
## 109 Hombres   54    27290 2012
## 110 Mujeres   54    34692 2012
## 111 Hombres   55    22182 2012
## 112 Mujeres   55    20305 2012
## 113 Hombres   56    28677 2012
## 114 Mujeres   56    27385 2012
## 115 Hombres   57    21743 2012
## 116 Mujeres   57    23746 2012
## 117 Hombres   58    24392 2012
## 118 Mujeres   58    21678 2012
## 119 Hombres   59    13053 2012
## 120 Mujeres   59    22131 2012
## 121 Hombres   60    21333 2012
## 122 Mujeres   60    20773 2012
## 123 Hombres   61    15173 2012
## 124 Mujeres   61    10492 2012
## 125 Hombres   62    17528 2012
## 126 Mujeres   62    17468 2012
## 127 Hombres   63    15246 2012
## 128 Mujeres   63    12867 2012
## 129 Hombres   64     9545 2012
## 130 Mujeres   64    13584 2012
## 131 Hombres   65    18968 2012
## 132 Mujeres   65    15293 2012
## 133 Hombres   66    12730 2012
## 134 Mujeres   66    12278 2012
## 135 Hombres   67    10086 2012
## 136 Mujeres   67    11523 2012
## 137 Hombres   68    10763 2012
## 138 Mujeres   68     8764 2012
## 139 Hombres   69     7239 2012
## 140 Mujeres   69     8128 2012
## 141 Hombres   70    11173 2012
## 142 Mujeres   70    10522 2012
## 143 Hombres   71     6969 2012
## 144 Mujeres   71     6686 2012
## 145 Hombres   72    11775 2012
## 146 Mujeres   72    10102 2012
## 147 Hombres   73     8607 2012
## 148 Mujeres   73     9814 2012
## 149 Hombres   74     4861 2012
## 150 Mujeres   74    11709 2012
## 151 Hombres   75     9871 2012
## 152 Mujeres   75     6413 2012
## 153 Hombres   76     5191 2012
## 154 Mujeres   76     5415 2012
## 155 Hombres   77     4503 2012
## 156 Mujeres   77     7150 2012
## 157 Hombres   78     5597 2012
## 158 Mujeres   78     3011 2012
## 159 Hombres   79     6267 2012
## 160 Mujeres   79     5644 2012
## 161 Hombres   80     4329 2012
## 162 Mujeres   80     6469 2012
## 163 Hombres   81     2964 2012
## 164 Mujeres   81     5298 2012
## 165 Hombres   82     4901 2012
## 166 Mujeres   82     7246 2012
## 167 Hombres   83     4123 2012
## 168 Mujeres   83     5270 2012
## 169 Hombres   84     5249 2012
## 170 Mujeres   84     3022 2012
## 171 Hombres   85     3093 2012
## 172 Mujeres   85     3657 2012
## 173 Hombres   86     2287 2012
## 174 Mujeres   86     3997 2012
## 175 Hombres   87     1657 2012
## 176 Mujeres   87     3653 2012
## 177 Hombres   88     1384 2012
## 178 Mujeres   88      609 2012
## 179 Hombres   89      786 2012
## 180 Mujeres   89     1216 2012
## 181 Hombres   90     2450 2012
## 182 Mujeres   90     2589 2012
## 183 Hombres   91      982 2012
## 184 Mujeres   91     1376 2012
## 185 Hombres   92     1723 2012
## 186 Mujeres   92      757 2012
## 187 Hombres   93      126 2012
## 188 Mujeres   93     1993 2012
## 189 Hombres   94      560 2012
## 190 Hombres   95      525 2012
## 191 Mujeres   95      531 2012
## 192 Hombres   96      885 2012
## 193 Mujeres   97     1028 2012
## 194 Mujeres   98      917 2012
## 195 Mujeres   99      383 2012
## 196 Hombres    0    68641 2022
## 197 Mujeres    0    68554 2022
## 198 Hombres    1    57309 2022
## 199 Mujeres    1    54222 2022
## 200 Hombres    2    68203 2022
## 201 Mujeres    2    71866 2022
## 202 Hombres    3    79717 2022
## 203 Mujeres    3    64557 2022
## 204 Hombres    4    70401 2022
## 205 Mujeres    4    67766 2022
## 206 Hombres    5    76827 2022
## 207 Mujeres    5    80033 2022
## 208 Hombres    6    85832 2022
## 209 Mujeres    6    66435 2022
## 210 Hombres    7    78186 2022
## 211 Mujeres    7    67818 2022
## 212 Hombres    8    75530 2022
## 213 Mujeres    8    59676 2022
## 214 Hombres    9    67865 2022
## 215 Mujeres    9    62468 2022
## 216 Hombres   10    78902 2022
## 217 Mujeres   10    68677 2022
## 218 Hombres   11    73780 2022
## 219 Mujeres   11    65461 2022
## 220 Hombres   12    72510 2022
## 221 Mujeres   12    68400 2022
## 222 Hombres   13    64400 2022
## 223 Mujeres   13    65516 2022
## 224 Hombres   14    64648 2022
## 225 Mujeres   14    49754 2022
## 226 Hombres   15    58970 2022
## 227 Mujeres   15    61821 2022
## 228 Hombres   16    71964 2022
## 229 Mujeres   16    63469 2022
## 230 Hombres   17    62805 2022
## 231 Mujeres   17    72096 2022
## 232 Hombres   18    65633 2022
## 233 Mujeres   18    60649 2022
## 234 Hombres   19    62980 2022
## 235 Mujeres   19    61184 2022
## 236 Hombres   20    65570 2022
## 237 Mujeres   20    66286 2022
## 238 Hombres   21    57442 2022
## 239 Mujeres   21    64425 2022
## 240 Hombres   22    69798 2022
## 241 Mujeres   22    65047 2022
## 242 Hombres   23    64325 2022
## 243 Mujeres   23    60081 2022
## 244 Hombres   24    76616 2022
## 245 Mujeres   24    70617 2022
## 246 Hombres   25    66754 2022
## 247 Mujeres   25    71320 2022
## 248 Hombres   26    61062 2022
## 249 Mujeres   26    72634 2022
## 250 Hombres   27    57594 2022
## 251 Mujeres   27    76776 2022
## 252 Hombres   28    66458 2022
## 253 Mujeres   28    62090 2022
## 254 Hombres   29    69223 2022
## 255 Mujeres   29    58447 2022
## 256 Hombres   30    56856 2022
## 257 Mujeres   30    61209 2022
## 258 Hombres   31    51406 2022
## 259 Mujeres   31    58421 2022
## 260 Hombres   32    56887 2022
## 261 Mujeres   32    47602 2022
## 262 Hombres   33    57053 2022
## 263 Mujeres   33    61813 2022
## 264 Hombres   34    69665 2022
## 265 Mujeres   34    67131 2022
## 266 Hombres   35    48549 2022
## 267 Mujeres   35    52789 2022
## 268 Hombres   36    50844 2022
## 269 Mujeres   36    53179 2022
## 270 Hombres   37    49450 2022
## 271 Mujeres   37    56244 2022
## 272 Hombres   38    50225 2022
## 273 Mujeres   38    48459 2022
## 274 Hombres   39    54505 2022
## 275 Mujeres   39    55594 2022
## 276 Hombres   40    62830 2022
## 277 Mujeres   40    55868 2022
## 278 Hombres   41    43051 2022
## 279 Mujeres   41    47425 2022
## 280 Hombres   42    48179 2022
## 281 Mujeres   42    55218 2022
## 282 Hombres   43    42530 2022
## 283 Mujeres   43    46215 2022
## 284 Hombres   44    40758 2022
## 285 Mujeres   44    42876 2022
## 286 Hombres   45    33710 2022
## 287 Mujeres   45    37289 2022
## 288 Hombres   46    37240 2022
## 289 Mujeres   46    40185 2022
## 290 Hombres   47    33374 2022
## 291 Mujeres   47    29951 2022
## 292 Hombres   48    38441 2022
## 293 Mujeres   48    37757 2022
## 294 Hombres   49    36040 2022
## 295 Mujeres   49    35385 2022
## 296 Hombres   50    32552 2022
## 297 Mujeres   50    33802 2022
## 298 Hombres   51    28699 2022
## 299 Mujeres   51    28225 2022
## 300 Hombres   52    33858 2022
## 301 Mujeres   52    29934 2022
## 302 Hombres   53    29283 2022
## 303 Mujeres   53    32158 2022
## 304 Hombres   54    32194 2022
## 305 Mujeres   54    28411 2022
## 306 Hombres   55    26465 2022
## 307 Mujeres   55    27598 2022
## 308 Hombres   56    29880 2022
## 309 Mujeres   56    33924 2022
## 310 Hombres   57    30775 2022
## 311 Mujeres   57    32848 2022
## 312 Hombres   58    26577 2022
## 313 Mujeres   58    31105 2022
## 314 Hombres   59    24214 2022
## 315 Mujeres   59    25421 2022
## 316 Hombres   60    26333 2022
## 317 Mujeres   60    34100 2022
## 318 Hombres   61    26971 2022
## 319 Mujeres   61    30796 2022
## 320 Hombres   62    25112 2022
## 321 Mujeres   62    31615 2022
## 322 Hombres   63    25681 2022
## 323 Mujeres   63    20645 2022
## 324 Hombres   64    24121 2022
## 325 Mujeres   64    19610 2022
## 326 Hombres   65    22097 2022
## 327 Mujeres   65    18621 2022
## 328 Hombres   66    17584 2022
## 329 Mujeres   66    26911 2022
## 330 Hombres   67    23688 2022
## 331 Mujeres   67    17129 2022
## 332 Hombres   68    18260 2022
## 333 Mujeres   68    13744 2022
## 334 Hombres   69    19158 2022
## 335 Mujeres   69    16766 2022
## 336 Hombres   70    13447 2022
## 337 Mujeres   70    20929 2022
## 338 Hombres   71    15989 2022
## 339 Mujeres   71    12016 2022
## 340 Hombres   72    14884 2022
## 341 Mujeres   72    16377 2022
## 342 Hombres   73    12619 2022
## 343 Mujeres   73     9085 2022
## 344 Hombres   74    11244 2022
## 345 Mujeres   74     9497 2022
## 346 Hombres   75    11222 2022
## 347 Mujeres   75    12359 2022
## 348 Hombres   76    10309 2022
## 349 Mujeres   76     9860 2022
## 350 Hombres   77     9026 2022
## 351 Mujeres   77     9150 2022
## 352 Hombres   78     8143 2022
## 353 Mujeres   78    10196 2022
## 354 Hombres   79     8792 2022
## 355 Mujeres   79     6313 2022
## 356 Hombres   80     8867 2022
## 357 Mujeres   80     6298 2022
## 358 Hombres   81     5434 2022
## 359 Mujeres   81     2972 2022
## 360 Hombres   82     5655 2022
## 361 Mujeres   82     5640 2022
## 362 Hombres   83     4538 2022
## 363 Mujeres   83     3663 2022
## 364 Hombres   84     3477 2022
## 365 Mujeres   84     6284 2022
## 366 Hombres   85     4825 2022
## 367 Mujeres   85     5962 2022
## 368 Hombres   86     2174 2022
## 369 Mujeres   86     3443 2022
## 370 Hombres   87     3095 2022
## 371 Mujeres   87     3438 2022
## 372 Hombres   88     1444 2022
## 373 Mujeres   88      537 2022
## 374 Hombres   89      493 2022
## 375 Mujeres   89     2406 2022
## 376 Hombres   90     1184 2022
## 377 Mujeres   90     1835 2022
## 378 Hombres   91      848 2022
## 379 Mujeres   91     2960 2022
## 380 Hombres   92      968 2022
## 381 Mujeres   92     1681 2022
## 382 Hombres   93      342 2022
## 383 Mujeres   93      801 2022
## 384 Hombres   94     1138 2022
## 385 Mujeres   94     1754 2022
## 386 Hombres   95      561 2022
## 387 Mujeres   95      630 2022
## 388 Mujeres   96      393 2022
## 389 Mujeres   97      569 2022
## 390 Mujeres   98      134 2022
## 391 Mujeres  100      211 2022
## 392 Mujeres  102      273 2022
library(ggplot2)


ggplot(eph12y22, aes(x = Edad, y = Cantidad, fill = Sexo)) +
  geom_bar(stat = "identity") +
  scale_fill_hue(labels = c("HOMBRES", "Mujres")) +
   facet_grid(. ~ Year)

tablaedades=aggregate.data.frame(x = eph12y22$Cantidad, by = list(eph12y22$Sexo, eph12y22$Year), FUN = "sum")
colnames(tablaedades) <- c("Sexo", "Year","Cantidad")
tablaedades
##      Sexo Year Cantidad
## 1 Hombres 2012  3224668
## 2 Mujeres 2012  3164229
## 3 Hombres 2022  3705758
## 4 Mujeres 2022  3659784

Tutoría sincrónica 2: 19 de Agosto del 2023

Seleccionamos solo algunas de las variables de las bases para los años 2013 al 2022, para armar series de indicadores

Año 2012

** Cargando directamente desde la pagina web del INE

# descargar y guardar las bases en formato csv


#eph2013=read.csv("https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2022/data/REG02_EPHC2022.csv.csv", sep=";")

#eph2014=read.csv("https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2014/data/094b4r02_eph2014.csv", sep=";")

#eph2015=read.csv("https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2015/data/d21c9r02_eph2015.csv", sep=";")

#eph2016=read.csv(, sep=";")

#eph2017=read.csv(, sep=";")

#eph2018=read.csv(, sep=";")

#eph2019=read.csv(, sep=";")

#eph2020=read.csv(, sep=";")

#eph2021=read.csv(, sep=";")


#write.csv(eph2012,"D:/OneDrive/FACEN_BIGDATA/eph12.csv")

#eph2012=read.csv("D:/OneDrive/FACEN_BIGDATA/eph12.csv", sep=",")

** Cargando desde un archivo local o desde un repositorio GIT**

 archivos=list.files("C:/Users/dmeza/OneDrive/Documentos/GitHub/EPH_PY/ephpy")
archivos
##  [1] "codigosR"        "LICENSE"         "R02_EPH2006.sav" "R02_EPH2007.sav"
##  [5] "R02_EPH2008.SAV" "R02_EPH2009.SAV" "R02_EPH2010.SAV" "R02_EPH2011.sav"
##  [9] "R02_EPH2012.SAV" "R02_EPH2013.SAV" "R02_EPH2014.SAV" "R02_EPH2015.SAV"
## [13] "R02_EPH2016.SAV" "R02_EPH2017.SAV" "R02_EPH2018.sav" "R02_EPH2019.sav"
## [17] "R02_EPH2020.sav" "R02_EPH2021.sav" "R02_EPH2022.SAV" "README.md"      
## [21] "reporteEPH"
library(haven)
R02_EPH2013 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2013.SAV")
names(R02_EPH2013)
##   [1] "UPM"         "NVIVI"       "NHOGA"       "DPTOREP"     "AREA"       
##   [6] "L02"         "P02"         "P03"         "P04"         "P04A"       
##  [11] "P04B"        "P05C"        "P05P"        "P05M"        "P06"        
##  [16] "P08D"        "P08M"        "P08A"        "P09"         "P10A"       
##  [21] "P10AB"       "P10Z"        "P11A"        "P11AB"       "P11Z"       
##  [26] "P12"         "P13A"        "P13B"        "P13C"        "P14A1"      
##  [31] "P14A2"       "P14B1"       "P14B2"       "P14C1"       "P14C2"      
##  [36] "A01"         "A01A"        "A02"         "A03"         "A04"        
##  [41] "A05"         "A07"         "A08"         "A10"         "A11A"       
##  [46] "A11M"        "A11S"        "A12"         "A13REC"      "A14REC"     
##  [51] "A15"         "A16"         "A17A"        "A17M"        "A17S"       
##  [56] "A18"         "B01REC"      "B02REC"      "B03LU"       "B03MA"      
##  [61] "B03MI"       "B03JU"       "B03VI"       "B03SA"       "B03DO"      
##  [66] "B04"         "B05"         "B06"         "B07A"        "B07M"       
##  [71] "B07S"        "B08"         "B09A"        "B09M"        "B09S"       
##  [76] "B10"         "B11"         "B12"         "B13"         "B14"        
##  [81] "B15"         "B16G"        "B16U"        "B16D"        "B16T"       
##  [86] "B17"         "B18AG"       "B18AU"       "B18BG"       "B18BU"      
##  [91] "B19"         "B20G"        "B20U"        "B20D"        "B20T"       
##  [96] "B21"         "B22"         "B23"         "B24"         "B25"        
## [101] "B26"         "B271"        "B272"        "B28"         "B29"        
## [106] "B30"         "B31"         "C01REC"      "C02REC"      "C03"        
## [111] "C04"         "C05"         "C06"         "C07"         "C08"        
## [116] "C09"         "C101"        "C102"        "C11G"        "C11U"       
## [121] "C11D"        "C11T"        "C12"         "C13AG"       "C13AU"      
## [126] "C13BG"       "C13BU"       "C14"         "C15"         "C16REC"     
## [131] "C17REC"      "C18"         "C19"         "D01"         "D02"        
## [136] "D03"         "D04"         "D05"         "E01A"        "E01B"       
## [141] "E01C"        "E01D"        "E01E"        "E01F"        "E01G"       
## [146] "E01H"        "E01I"        "E01J"        "E01K"        "E01L"       
## [151] "ED01"        "ED02"        "ED03"        "ED0504"      "ED06C"      
## [156] "ED07"        "ED08"        "ED09"        "ED10"        "ED11A"      
## [161] "ED11B"       "ED11C"       "ED11D"       "ED11E"       "ED11F"      
## [166] "S01A"        "S01B"        "S02"         "S03"         "S04"        
## [171] "S05"         "S06"         "S07"         "S08"         "S09"        
## [176] "S10A"        "S10B"        "S10C"        "S10D"        "S10E"       
## [181] "S10F"        "S10G"        "S10T"        "CATE_PEA"    "TAMA_PEA"   
## [186] "OCUP_PEA"    "RAMA_PEA"    "HORAB"       "HORABC"      "HORABCO"    
## [191] "PEAD"        "PEAA"        "TIPOHOGA"    "NJEF"        "NCON"       
## [196] "NPAD"        "NMAD"        "añoest"      "ra06ya09"    "E01AIMDE"   
## [201] "E01BIMDE"    "E01CIMDE"    "E01DDE"      "E01EDE"      "E01FDE"     
## [206] "E01GDE"      "E01HDE"      "E01IDE"      "E01JDE"      "E01KDE"     
## [211] "E01LDE"      "E01KJDE"     "E02L1BDE"    "E02L2BDE"    "fexajustado"
## [216] "ipcm"        "pobrezai"    "pobnopoi"    "quintili"    "decili"     
## [221] "quintiai"    "decilai"
library(haven)
R02_EPH2014 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2014.SAV")
names(R02_EPH2014)
##   [1] "UPM"         "NVIVI"       "NHOGA"       "DPTOREP"     "AREA"       
##   [6] "L02"         "P02"         "P03"         "P04"         "P04A"       
##  [11] "P04B"        "P05C"        "P05P"        "P05M"        "P06"        
##  [16] "P08D"        "P08M"        "P08A"        "P09"         "P10A"       
##  [21] "P10AB"       "P10Z"        "P11A"        "P11AB"       "P11Z"       
##  [26] "P12"         "P13A"        "P13B"        "P13C"        "P14A1"      
##  [31] "P14A2"       "P14B1"       "P14B2"       "P14C1"       "P14C2"      
##  [36] "A01"         "A01A"        "A02"         "A03"         "A04"        
##  [41] "A04A"        "A05"         "A07"         "A08"         "A10"        
##  [46] "A11A"        "A11M"        "A11S"        "A12"         "A13REC"     
##  [51] "A14REC"      "A15"         "A16"         "A17A"        "A17M"       
##  [56] "A17S"        "A18"         "B01REC"      "B02REC"      "B03LU"      
##  [61] "B03MA"       "B03MI"       "B03JU"       "B03VI"       "B03SA"      
##  [66] "B03DO"       "B04"         "B05"         "B06"         "B07A"       
##  [71] "B07M"        "B07S"        "B08"         "B09A"        "B09M"       
##  [76] "B09S"        "B10"         "B11"         "B12"         "B13"        
##  [81] "B14"         "B15"         "B16G"        "B16U"        "B16D"       
##  [86] "B16T"        "B17"         "B18AG"       "B18AU"       "B18BG"      
##  [91] "B18BU"       "B19"         "B20G"        "B20U"        "B20D"       
##  [96] "B20T"        "B21"         "B22"         "B23"         "B24"        
## [101] "B25"         "B26"         "B271"        "B272"        "B28"        
## [106] "B29"         "B30"         "B31"         "C01REC"      "C02REC"     
## [111] "C03"         "C04"         "C05"         "C06"         "C07"        
## [116] "C08"         "C09"         "C101"        "C102"        "C11G"       
## [121] "C11U"        "C11D"        "C11T"        "C12"         "C13AG"      
## [126] "C13AU"       "C13BG"       "C13BU"       "C14"         "C14A"       
## [131] "C14B"        "C14C"        "C15"         "C16REC"      "C17REC"     
## [136] "C18"         "C19"         "D01"         "D02"         "D03"        
## [141] "D04"         "D05"         "E01A"        "E01B"        "E01C"       
## [146] "E01D"        "E01E"        "E01F"        "E01G"        "E01H"       
## [151] "E01I"        "E01J"        "E01K"        "E01L"        "E01M"       
## [156] "ED01"        "ED02"        "ED03"        "ED0504"      "ED06C"      
## [161] "ED07"        "ED08"        "ED09"        "ED10"        "ED11A"      
## [166] "ED11B"       "ED11C"       "ED11D"       "ED11E"       "ED11F"      
## [171] "ED12"        "ED13"        "ED14"        "ED15"        "S01A"       
## [176] "S01B"        "S02"         "S03"         "S04"         "S05"        
## [181] "S06"         "S07"         "S08"         "S09"         "S10A"       
## [186] "S10B"        "S10C"        "S10D"        "S10E"        "S10F"       
## [191] "S10G"        "S10T"        "CATE_PEA"    "TAMA_PEA"    "OCUP_PEA"   
## [196] "RAMA_PEA"    "HORAB"       "HORABC"      "HORABCO"     "PEAA"       
## [201] "PEAD"        "TIPOHOGA"    "NJEF"        "NCON"        "NPAD"       
## [206] "NMAD"        "añoest"      "ra06ya09"    "e01aimde"    "e01bimde"   
## [211] "e01cimde"    "e01dde"      "e01ede"      "e01fde"      "e01gde"     
## [216] "e01hde"      "e01ide"      "e01jde"      "e01kde"      "e01lde"     
## [221] "e01mde"      "e01kjde"     "E02L1BDE"    "E02L2BDE"    "fexajustado"
## [226] "ipcm"        "pobrezai"    "pobnopoi"    "quintili"    "decili"     
## [231] "quintiai"    "decilai"
library(haven)
R02_EPH2015 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2015.SAV")
names(R02_EPH2015)
##   [1] "UPM"         "NVIVI"       "NHOGA"       "DPTO"        "AREA"       
##   [6] "L02"         "P02"         "P03"         "P04"         "P04A"       
##  [11] "P04B"        "P05C"        "P05P"        "P05M"        "P06"        
##  [16] "P08D"        "P08M"        "P08A"        "P09"         "A01"        
##  [21] "A01A"        "A02"         "A03"         "A04"         "A04A"       
##  [26] "A05"         "A07"         "A08"         "A10"         "A11A"       
##  [31] "A11M"        "A11S"        "A12"         "A13REC"      "A14REC"     
##  [36] "A15"         "A16"         "A17A"        "A17M"        "A17S"       
##  [41] "A18"         "B01REC"      "B02REC"      "B03LU"       "B03MA"      
##  [46] "B03MI"       "B03JU"       "B03VI"       "B03SA"       "B03DO"      
##  [51] "B04"         "B05"         "B06"         "B07A"        "B07M"       
##  [56] "B07S"        "B08"         "B09A"        "B09M"        "B09S"       
##  [61] "B10"         "B11"         "B12"         "B13"         "B14"        
##  [66] "B15"         "B16G"        "B16U"        "B16D"        "B16T"       
##  [71] "B17"         "B18AG"       "B18AU"       "B18BG"       "B18BU"      
##  [76] "B19"         "B20G"        "B20U"        "B20D"        "B20T"       
##  [81] "B21"         "B22"         "B23"         "B24"         "B25"        
##  [86] "B26"         "B271"        "B272"        "B28"         "B29"        
##  [91] "B30"         "B31"         "C01REC"      "C02REC"      "C03"        
##  [96] "C04"         "C05"         "C06"         "C07"         "C08"        
## [101] "C09"         "C101"        "C102"        "C11G"        "C11U"       
## [106] "C11D"        "C11T"        "C12"         "C13AG"       "C13AU"      
## [111] "C13BG"       "C13BU"       "C14"         "C14A"        "C14B"       
## [116] "C14C"        "C15"         "C16REC"      "C17REC"      "C18"        
## [121] "C18A"        "C18B"        "C19"         "D01"         "D02"        
## [126] "D03"         "D04"         "D05"         "E01A"        "E01B"       
## [131] "E01C"        "E01D"        "E01E"        "E01F"        "E01G"       
## [136] "E01H"        "E01I"        "E01J"        "E01K"        "E01L"       
## [141] "E01M"        "ED01"        "ED02"        "ED03"        "ED0504"     
## [146] "ED06C"       "ED08"        "ED09"        "ED10"        "ED11A"      
## [151] "ED11B"       "ED11C"       "ED11D"       "ED11E"       "ED11F"      
## [156] "ED12"        "ED13"        "ED14"        "ED14A"       "ED15"       
## [161] "S01A"        "S01B"        "S02"         "S03"         "S04"        
## [166] "S05"         "S06"         "S07"         "S08"         "S09"        
## [171] "CATE_PEA"    "TAMA_PEA"    "OCUP_PEA"    "RAMA_PEA"    "HORAB"      
## [176] "HORABC"      "HORABCO"     "PEAD"        "PEAA"        "TIPOHOGA"   
## [181] "NJEF"        "NCON"        "NPAD"        "NMAD"        "TIC01"      
## [186] "TIC02"       "TIC03"       "TIC0401"     "TIC0402"     "TIC0403"    
## [191] "TIC0404"     "TIC0405"     "TIC0406"     "TIC0407"     "TIC0408"    
## [196] "TIC0409"     "TIC0501"     "TIC0502"     "TIC0503"     "TIC0504"    
## [201] "TIC0505"     "TIC0506"     "TIC0507"     "TIC0508"     "TIC0509"    
## [206] "TIC0510"     "TIC0511"     "TIC0512"     "TIC0513"     "TIC06"      
## [211] "añoest"      "ra06ya09"    "e01aimde"    "e01bimde"    "e01cimde"   
## [216] "e01dde"      "e01ede"      "e01fde"      "e01gde"      "e01hde"     
## [221] "e01ide"      "e01jde"      "e01kde"      "e01lde"      "e01mde"     
## [226] "e01kjde"     "E02L1BDE"    "E02L2BDE"    "Fexajustado" "ipcm"       
## [231] "pobrezai"    "pobnopoi"    "quintili"    "decili"      "quintiai"   
## [236] "decilai"
names(R02_EPH2014)
##   [1] "UPM"         "NVIVI"       "NHOGA"       "DPTOREP"     "AREA"       
##   [6] "L02"         "P02"         "P03"         "P04"         "P04A"       
##  [11] "P04B"        "P05C"        "P05P"        "P05M"        "P06"        
##  [16] "P08D"        "P08M"        "P08A"        "P09"         "P10A"       
##  [21] "P10AB"       "P10Z"        "P11A"        "P11AB"       "P11Z"       
##  [26] "P12"         "P13A"        "P13B"        "P13C"        "P14A1"      
##  [31] "P14A2"       "P14B1"       "P14B2"       "P14C1"       "P14C2"      
##  [36] "A01"         "A01A"        "A02"         "A03"         "A04"        
##  [41] "A04A"        "A05"         "A07"         "A08"         "A10"        
##  [46] "A11A"        "A11M"        "A11S"        "A12"         "A13REC"     
##  [51] "A14REC"      "A15"         "A16"         "A17A"        "A17M"       
##  [56] "A17S"        "A18"         "B01REC"      "B02REC"      "B03LU"      
##  [61] "B03MA"       "B03MI"       "B03JU"       "B03VI"       "B03SA"      
##  [66] "B03DO"       "B04"         "B05"         "B06"         "B07A"       
##  [71] "B07M"        "B07S"        "B08"         "B09A"        "B09M"       
##  [76] "B09S"        "B10"         "B11"         "B12"         "B13"        
##  [81] "B14"         "B15"         "B16G"        "B16U"        "B16D"       
##  [86] "B16T"        "B17"         "B18AG"       "B18AU"       "B18BG"      
##  [91] "B18BU"       "B19"         "B20G"        "B20U"        "B20D"       
##  [96] "B20T"        "B21"         "B22"         "B23"         "B24"        
## [101] "B25"         "B26"         "B271"        "B272"        "B28"        
## [106] "B29"         "B30"         "B31"         "C01REC"      "C02REC"     
## [111] "C03"         "C04"         "C05"         "C06"         "C07"        
## [116] "C08"         "C09"         "C101"        "C102"        "C11G"       
## [121] "C11U"        "C11D"        "C11T"        "C12"         "C13AG"      
## [126] "C13AU"       "C13BG"       "C13BU"       "C14"         "C14A"       
## [131] "C14B"        "C14C"        "C15"         "C16REC"      "C17REC"     
## [136] "C18"         "C19"         "D01"         "D02"         "D03"        
## [141] "D04"         "D05"         "E01A"        "E01B"        "E01C"       
## [146] "E01D"        "E01E"        "E01F"        "E01G"        "E01H"       
## [151] "E01I"        "E01J"        "E01K"        "E01L"        "E01M"       
## [156] "ED01"        "ED02"        "ED03"        "ED0504"      "ED06C"      
## [161] "ED07"        "ED08"        "ED09"        "ED10"        "ED11A"      
## [166] "ED11B"       "ED11C"       "ED11D"       "ED11E"       "ED11F"      
## [171] "ED12"        "ED13"        "ED14"        "ED15"        "S01A"       
## [176] "S01B"        "S02"         "S03"         "S04"         "S05"        
## [181] "S06"         "S07"         "S08"         "S09"         "S10A"       
## [186] "S10B"        "S10C"        "S10D"        "S10E"        "S10F"       
## [191] "S10G"        "S10T"        "CATE_PEA"    "TAMA_PEA"    "OCUP_PEA"   
## [196] "RAMA_PEA"    "HORAB"       "HORABC"      "HORABCO"     "PEAA"       
## [201] "PEAD"        "TIPOHOGA"    "NJEF"        "NCON"        "NPAD"       
## [206] "NMAD"        "añoest"      "ra06ya09"    "e01aimde"    "e01bimde"   
## [211] "e01cimde"    "e01dde"      "e01ede"      "e01fde"      "e01gde"     
## [216] "e01hde"      "e01ide"      "e01jde"      "e01kde"      "e01lde"     
## [221] "e01mde"      "e01kjde"     "E02L1BDE"    "E02L2BDE"    "fexajustado"
## [226] "ipcm"        "pobrezai"    "pobnopoi"    "quintili"    "decili"     
## [231] "quintiai"    "decilai"
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(haven)
R02_EPH2013 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2013.SAV",col_select = c("P02","P06","PEAA","PEAD","fexajustado"))
R02_EPH2013 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2013.SAV",col_select = c("P02","P06","PEAA","PEAD","fexajustado"))
R02_EPH2014 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2014.SAV",col_select = c("P02","P06","PEAA","PEAD","fexajustado"))
R02_EPH2015 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2015.SAV",col_select = c("P02","P06","PEAA","PEAD","Fexajustado"))
R02_EPH2016 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2016.SAV",col_select = c("P02","P06","PEAA","PEAD","FEX"))
R02_EPH2017 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2017.SAV",col_select = c("P02","P06","PEAA","PEAD","FEX"))
R02_EPH2018 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2018.sav",col_select = c("P02","P06","PEAA","PEAD","FEX"))
R02_EPH2019 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2019.sav",col_select = c("P02","P06","PEAA","PEAD","FEX"))
R02_EPH2020 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2020.sav",col_select = c("P02","P06","PEAA","PEAD","FEX"))
R02_EPH2021 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2021.sav",col_select = c("P02","P06","PEAA","PEAD","FEX"))
R02_EPH2022 <- read_sav("~/GitHub/EPH_PY/ephpy/R02_EPH2022.sav",col_select = c("P02","P06","PEAA","PEAD","FEX"))

Agregar el año identificador de cada base

library(dplyr)
R02_EPH2013 <- R02_EPH2013 %>%
  rename(FEX = fexajustado)

R02_EPH2014 <- R02_EPH2014 %>%
  rename(FEX = fexajustado)

R02_EPH2015 <- R02_EPH2015 %>%
  rename(FEX = Fexajustado)
R02_EPH2013$year <- 2013
R02_EPH2014$year <- 2014
R02_EPH2015$year <- 2015
R02_EPH2016$year <- 2016
R02_EPH2017$year <- 2017
R02_EPH2018$year <- 2018
R02_EPH2019$year <- 2019
R02_EPH2020$year <- 2020
R02_EPH2021$year <- 2021
R02_EPH2022$year <- 2022
names(R02_EPH2013)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2014)
## [1] "P02"  "P06"  "PEAA" "PEAD" "FEX"  "year"
names(R02_EPH2015)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2016)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2017)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2018)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2019)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2020)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2021)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
names(R02_EPH2022)
## [1] "P02"  "P06"  "PEAD" "PEAA" "FEX"  "year"
#names(R02_EPH2022)
str(R02_EPH2022)
## tibble [17,379 × 6] (S3: tbl_df/tbl/data.frame)
##  $ P02 : dbl+lbl [1:17379] 42, 14, 12, 20, 25, 50, 50, 80, 58, 25, 29,  5, 50, ...
##    ..@ label        : chr "Edad"
##    ..@ format.spss  : chr "F3.0"
##    ..@ display_width: int 5
##    ..@ labels       : Named num 999
##    .. ..- attr(*, "names")= chr "NR"
##  $ P06 : dbl+lbl [1:17379] 6, 1, 1, 6, 1, 1, 6, 1, 6, 6, 1, 1, 6, 1, 6, 1, 6, 1...
##    ..@ label        : chr "Sexo"
##    ..@ format.spss  : chr "F1.0"
##    ..@ display_width: int 5
##    ..@ labels       : Named num [1:2] 1 6
##    .. ..- attr(*, "names")= chr [1:2] "Hombres" "Mujeres"
##  $ PEAD: dbl+lbl [1:17379]  1,  3,  3,  6,  1,  1,  1,  3,  2,  1,  1, NA,  1, ...
##    ..@ label        : chr "Acividad Económica Desagregada (Horas Habituales B+C)"
##    ..@ format.spss  : chr "F1.0"
##    ..@ display_width: int 6
##    ..@ labels       : Named num [1:6] 1 2 3 4 6 9
##    .. ..- attr(*, "names")= chr [1:6] "Otros ocupados" "Desocupados de 2ª ó más veces" "Inactivos" "Subocup. Visible" ...
##  $ PEAA: dbl+lbl [1:17379]  1,  3,  3,  2,  1,  1,  1,  3,  2,  1,  1, NA,  1, ...
##    ..@ label        : chr "Actividad Económica Agrupada"
##    ..@ format.spss  : chr "F1.0"
##    ..@ display_width: int 6
##    ..@ labels       : Named num [1:4] 1 2 3 9
##    .. ..- attr(*, "names")= chr [1:4] "Ocupados" "Desocupados" "Inactivos" "NR"
##  $ FEX : num [1:17379] 370 370 370 370 370 155 155 199 294 294 ...
##   ..- attr(*, "label")= chr "Factor de Expansión"
##   ..- attr(*, "format.spss")= chr "F5.0"
##   ..- attr(*, "display_width")= int 7
##  $ year: num [1:17379] 2022 2022 2022 2022 2022 ...

juntar todas las bases en una unica

baseeph=rbind(R02_EPH2013,R02_EPH2014,R02_EPH2015,R02_EPH2016,R02_EPH2017,R02_EPH2018,R02_EPH2019,R02_EPH2020,R02_EPH2021,R02_EPH2022)
table(baseeph$year)
## 
##  2013  2014  2015  2016  2017  2018  2019  2020  2021  2022 
## 21207 20272 30898 37814 35215 18563 18233 17582 16569 17379
str(baseeph)
## tibble [233,732 × 6] (S3: tbl_df/tbl/data.frame)
##  $ P02 : dbl+lbl [1:233732] 78, 33,  8,  2,  0, 61, 59, 55, 26, 22, 54, 40,  2,...
##    ..@ label        : chr "Edad"
##    ..@ format.spss  : chr "F3.0"
##    ..@ display_width: int 5
##    ..@ labels       : Named num 999
##    .. ..- attr(*, "names")= chr "NR"
##  $ P06 : dbl+lbl [1:233732] 6, 6, 1, 6, 6, 6, 1, 6, 1, 6, 1, 6, 1, 1, 1, 6, 1, ...
##    ..@ label        : chr "Sexo"
##    ..@ format.spss  : chr "F1.0"
##    ..@ display_width: int 5
##    ..@ labels       : Named num [1:2] 1 6
##    .. ..- attr(*, "names")= chr [1:2] "Hombres" "Mujeres"
##  $ PEAD: dbl+lbl [1:233732]  3,  1, NA, NA, NA,  3,  3,  3,  1,  1,  1,  1, NA,...
##    ..@ label      : chr "Acividad Económica Desagregada"
##    ..@ format.spss: chr "F1.0"
##    ..@ labels     : Named num [1:7] 1 2 3 4 5 6 9
##    .. ..- attr(*, "names")= chr [1:7] "Ocupados (Excl. Subocupación)" "Desocupados de 2ª o más veces" "Inactivos" "Subocupación visible" ...
##  $ PEAA: dbl+lbl [1:233732]  3,  1, NA, NA, NA,  3,  3,  3,  1,  1,  1,  1, NA,...
##    ..@ label        : chr "Acividad Económica Agrupada"
##    ..@ format.spss  : chr "F1.0"
##    ..@ display_width: int 6
##    ..@ labels       : Named num [1:4] 1 2 3 9
##    .. ..- attr(*, "names")= chr [1:4] "Ocupados" "Desocupados" "Inactivos" "NR"
##  $ FEX : num [1:233732] 64 140 140 140 140 140 100 100 100 100 ...
##   ..- attr(*, "label")= chr "Factor de expansión ajustado a la Proy Censo 2012"
##   ..- attr(*, "format.spss")= chr "F9.2"
##  $ year: num [1:233732] 2013 2013 2013 2013 2013 ...

**exploramos algunas variables

library(tidyverse)
table(baseeph$PEAA)
## 
##      1      2      3      9 
## 113429   6387  71803      3
baseeph$P06<-factor(baseeph$P06, labels=c("Hombres", "Mujeres"))
baseeph$PEAA<-factor(baseeph$PEAA, labels=c("Ocupado","Desocupado","Inactivo","NR"))
#install.packages("vcd")

library(vcd)
## Loading required package: grid
xtabs(FEX~P06+year, data=baseeph) %>% addmargins()
##          year
## P06           2013     2014     2015     2016     2017     2018     2019
##   Hombres  3272534  3320448  3368307  3416198  3464451  3512556  3560800
##   Mujeres  3212843  3261523  3310424  3359588  3409045  3458673  3508527
##   Sum      6485377  6581971  6678731  6775786  6873496  6971229  7069327
##          year
## P06           2020     2021     2022      Sum
##   Hombres  3608906  3657340  3705758 34887298
##   Mujeres  3558610  3609103  3659784 34348120
##   Sum      7167516  7266443  7365542 69235418
library(dplyr)
library(tidyr)

# Calcular las sumas de fex para cada año
year_totals <- baseeph %>% group_by(year) %>%  summarise(Total = sum(FEX))

# Calcular las sumas de fex para cada combinación de year y p06
freq_table <- baseeph %>%  group_by(year, P06) %>%  summarise(Cantidad = sum(FEX)) %>%
  left_join(year_totals, by = "year") %>%  mutate(Porcentaje = (Cantidad / Total) * 100)
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
# Convertir a tabla de frecuencias con porcentajes
pivot_freq_table <- freq_table %>%  pivot_wider(names_from = P06, values_from = c(Cantidad, Porcentaje))

print(pivot_freq_table)
## # A tibble: 10 × 6
## # Groups:   year [10]
##     year   Total Cantidad_Hombres Cantidad_Mujeres Porcentaje_Hombres
##    <dbl>   <dbl>            <dbl>            <dbl>              <dbl>
##  1  2013 6485377          3272534          3212843               50.5
##  2  2014 6581971          3320448          3261523               50.4
##  3  2015 6678731          3368307          3310424               50.4
##  4  2016 6775786          3416198          3359588               50.4
##  5  2017 6873496          3464451          3409045               50.4
##  6  2018 6971229          3512556          3458673               50.4
##  7  2019 7069327          3560800          3508527               50.4
##  8  2020 7167516          3608906          3558610               50.4
##  9  2021 7266443          3657340          3609103               50.3
## 10  2022 7365542          3705758          3659784               50.3
## # ℹ 1 more variable: Porcentaje_Mujeres <dbl>
library(ggplot2)
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
# Crear el gráfico interactivo de líneas usando plotly
plot <- ggplot(freq_table, aes(x = year, y = Cantidad, group = P06, color = as.factor(P06))) +
  geom_line() +
  geom_point() +
  labs(title = "Evolución de la cantidad de P06 por Año", x = "Año", y = "Cantidad") +
  scale_color_discrete(name = "P06") +
  scale_x_continuous(breaks = freq_table$year)

# Convertir el gráfico de ggplot a uno interactivo usando plotly
interactive_plot <- ggplotly(plot)

interactive_plot