SizeFlowers_log <- lmer(log1p(Bluete) ~ PLANTSIZE2_log + (1|Ort/Nr_in_R), data = gen)
plot(SizeFlowers_log)
qqnorm(residuals(SizeFlowers_log))
qqline(residuals(SizeFlowers_log))
summary(SizeFlowers_log)
Linear mixed model fit by REML ['lmerMod']
Formula: log1p(Bluete) ~ PLANTSIZE2_log + (1 | Ort/Nr_in_R)
Data: gen
REML criterion at convergence: 747.1
Scaled residuals:
Min 1Q Median 3Q Max
-4.8216 -0.5727 0.0775 0.6663 3.2945
Random effects:
Groups Name Variance Std.Dev.
Nr_in_R:Ort (Intercept) 0.004911 0.07008
Ort (Intercept) 0.019215 0.13862
Residual 0.085944 0.29316
Number of obs: 1474, groups: Nr_in_R:Ort, 213; Ort, 74
Fixed effects:
Estimate Std. Error t value
(Intercept) 1.805763 0.036826 49.03
PLANTSIZE2_log 0.032792 0.001153 28.45
Correlation of Fixed Effects:
(Intr)
PLANTSIZE2_ -0.851
Anova(SizeFlowers_log, test.statistic = "F")
Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)
Response: log1p(Bluete)
F Df Df.res Pr(>F)
PLANTSIZE2_log 803.26 1 1395.3 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
r.squaredGLMM(SizeFlowers_log)
Warning: numerical expression has 1474 elements: only the first used
R2m R2c
[1,] 0.370629 0.5085783
plot(predictorEffects(SizeFlowers_log), ylab = "number of flowers (log)", xlab= "plant size", main = "")
–> residuals look fine
vita_env_PS2_ZI_disp2 <- glmmTMB(log1p(variable) ~ variable_typ +
s_FZW +
s_RZW +
s_NZW +
s_D_Moos +
s_cover_grasses +
s_H_Kraut_mtrs +
variable_typ:s_FZW +
variable_typ:s_RZW +
variable_typ:s_NZW +
variable_typ:s_D_Moos +
variable_typ:s_cover_grasses +
variable_typ:s_H_Kraut_mtrs +
s_FZW:s_H_Kraut_mtrs+
s_NZW:s_H_Kraut_mtrs +
s_FZW:s_cover_grasses+
s_NZW:s_cover_grasses+
s_FZW:s_NZW +
(1|plot),
ziformula = ~variable_typ + s_NZW,
dispformula = ~variable_typ,
family=gaussian(link = "identity"),
data = vitas_PS2_log)
res_vita_env_PS2_ZI_disp2 <- simulateResiduals(vita_env_PS2_ZI_disp2, plot = T)
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$variable_typ)
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$s_FZW) # unimodal
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$s_NZW) # unimodal ?
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$s_RZW) # okay
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$s_H_Kraut_mtrs) # weird
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$s_D_Moos) # okay
plot(res_vita_env_PS2_ZI_disp2, form = vitas_PS2_log$s_cover_grasses) # weird
summary(vita_env_PS2_ZI_disp2)
Family: gaussian ( identity )
Formula: log1p(variable) ~ variable_typ + s_FZW + s_RZW + s_NZW + s_D_Moos + s_cover_grasses + s_H_Kraut_mtrs + variable_typ:s_FZW + variable_typ:s_RZW +
variable_typ:s_NZW + variable_typ:s_D_Moos + variable_typ:s_cover_grasses + variable_typ:s_H_Kraut_mtrs + s_FZW:s_H_Kraut_mtrs + s_NZW:s_H_Kraut_mtrs +
s_FZW:s_cover_grasses + s_NZW:s_cover_grasses + s_FZW:s_NZW + (1 | plot)
Zero inflation: ~variable_typ + s_NZW
Dispersion: ~variable_typ
Data: vitas_PS2_log
AIC BIC logLik deviance df.resid
1800.9 2017.1 -857.4 1714.9 1086
Random effects:
Conditional model:
Groups Name Variance Std.Dev.
plot (Intercept) 0.01037 0.1018
Residual NA NA
Number of obs: 1129, groups: plot, 95
Conditional model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.968e+00 6.624e-02 29.712 < 2e-16 ***
variable_typjuvenile -6.464e-02 1.030e-01 -0.628 0.53026
variable_typno. of flowers 7.968e-01 6.681e-02 11.928 < 2e-16 ***
variable_typplant size (log) 1.368e+00 6.576e-02 20.797 < 2e-16 ***
s_FZW -2.061e-01 6.730e-02 -3.062 0.00220 **
s_RZW 3.108e-01 6.069e-02 5.121 3.04e-07 ***
s_NZW -3.559e-01 8.166e-02 -4.358 1.31e-05 ***
s_D_Moos 7.192e-02 6.239e-02 1.153 0.24901
s_cover_grasses 6.572e-02 7.420e-02 0.886 0.37581
s_H_Kraut_mtrs -1.536e-01 7.069e-02 -2.174 0.02974 *
variable_typjuvenile:s_FZW 8.420e-02 1.072e-01 0.785 0.43232
variable_typno. of flowers:s_FZW 2.183e-01 6.899e-02 3.164 0.00156 **
variable_typplant size (log):s_FZW 2.223e-01 6.778e-02 3.280 0.00104 **
variable_typjuvenile:s_RZW -3.494e-02 9.445e-02 -0.370 0.71147
variable_typno. of flowers:s_RZW -3.060e-01 6.249e-02 -4.897 9.73e-07 ***
variable_typplant size (log):s_RZW -3.231e-01 6.128e-02 -5.272 1.35e-07 ***
variable_typjuvenile:s_NZW 3.917e-02 1.274e-01 0.307 0.75860
variable_typno. of flowers:s_NZW 3.981e-01 8.338e-02 4.775 1.80e-06 ***
variable_typplant size (log):s_NZW 4.027e-01 8.206e-02 4.907 9.26e-07 ***
variable_typjuvenile:s_D_Moos 4.121e-02 9.766e-02 0.422 0.67308
variable_typno. of flowers:s_D_Moos -8.342e-02 6.382e-02 -1.307 0.19116
variable_typplant size (log):s_D_Moos -9.322e-02 6.275e-02 -1.486 0.13738
variable_typjuvenile:s_cover_grasses 9.661e-02 1.170e-01 0.826 0.40908
variable_typno. of flowers:s_cover_grasses -6.883e-02 7.609e-02 -0.905 0.36568
variable_typplant size (log):s_cover_grasses -7.152e-02 7.484e-02 -0.956 0.33927
variable_typjuvenile:s_H_Kraut_mtrs -7.165e-02 1.076e-01 -0.666 0.50543
variable_typno. of flowers:s_H_Kraut_mtrs 1.627e-01 7.267e-02 2.239 0.02512 *
variable_typplant size (log):s_H_Kraut_mtrs 1.977e-01 7.136e-02 2.771 0.00559 **
s_FZW:s_H_Kraut_mtrs -3.483e-02 1.514e-02 -2.300 0.02147 *
s_NZW:s_H_Kraut_mtrs 1.096e-02 1.278e-02 0.858 0.39085
s_FZW:s_cover_grasses 2.139e-03 1.353e-02 0.158 0.87441
s_NZW:s_cover_grasses -4.729e-05 1.349e-02 -0.004 0.99720
s_FZW:s_NZW 2.391e-03 1.369e-02 0.175 0.86135
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Zero-inflation model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9941 0.2583 -7.720 1.16e-14 ***
variable_typjuvenile 0.5854 0.2822 2.075 0.038 *
variable_typno. of flowers -20.9555 6153.0063 -0.003 0.997
variable_typplant size (log) -20.9555 6149.3200 -0.003 0.997
s_NZW 1.0867 0.2107 5.159 2.49e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Dispersion model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.21029 0.09794 -2.147 0.0318 *
variable_typjuvenile 0.26330 0.14004 1.880 0.0601 .
variable_typno. of flowers -2.98255 0.14547 -20.503 <2e-16 ***
variable_typplant size (log) -3.85880 0.15094 -25.566 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
test(emmeans(vita_env_PS2_ZI_disp2, pairwise ~ variable_typ|s_FZW, var = "s_FZW"))
$emmeans
s_FZW = -0.0585:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0636 1086 32.010 <.0001
juvenile 1.97 0.0811 1086 24.288 <.0001
no. of flowers 2.76 0.0197 1086 140.232 <.0001
plant size (log) 3.33 0.0163 1086 204.697 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_FZW = -0.0585:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0685 0.0992 1086 0.691 0.9005
adult - no. of flowers -0.7227 0.0640 1086 -11.294 <.0001
adult - plant size (log) -1.2894 0.0630 1086 -20.462 <.0001
juvenile - no. of flowers -0.7912 0.0813 1086 -9.730 <.0001
juvenile - plant size (log) -1.3580 0.0806 1086 -16.857 <.0001
no. of flowers - plant size (log) -0.5667 0.0173 1086 -32.841 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 4 estimates
test(emmeans(vita_env_PS2_ZI_disp2, pairwise ~ variable_typ|s_RZW, var = "s_RZW"))
$emmeans
s_RZW = 0.0429:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0636 1086 32.010 <.0001
juvenile 1.97 0.0811 1086 24.288 <.0001
no. of flowers 2.76 0.0197 1086 140.232 <.0001
plant size (log) 3.33 0.0163 1086 204.697 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_RZW = 0.0429:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0685 0.0992 1086 0.691 0.9005
adult - no. of flowers -0.7227 0.0640 1086 -11.294 <.0001
adult - plant size (log) -1.2894 0.0630 1086 -20.462 <.0001
juvenile - no. of flowers -0.7912 0.0813 1086 -9.730 <.0001
juvenile - plant size (log) -1.3580 0.0806 1086 -16.857 <.0001
no. of flowers - plant size (log) -0.5667 0.0173 1086 -32.841 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 4 estimates
test(emmeans(vita_env_PS2_ZI_disp2, pairwise ~ variable_typ|s_NZW, var = "s_NZW"))
$emmeans
s_NZW = -0.0883:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0636 1086 32.010 <.0001
juvenile 1.97 0.0811 1086 24.288 <.0001
no. of flowers 2.76 0.0197 1086 140.232 <.0001
plant size (log) 3.33 0.0163 1086 204.697 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_NZW = -0.0883:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0685 0.0992 1086 0.691 0.9005
adult - no. of flowers -0.7227 0.0640 1086 -11.294 <.0001
adult - plant size (log) -1.2894 0.0630 1086 -20.462 <.0001
juvenile - no. of flowers -0.7912 0.0813 1086 -9.730 <.0001
juvenile - plant size (log) -1.3580 0.0806 1086 -16.857 <.0001
no. of flowers - plant size (log) -0.5667 0.0173 1086 -32.841 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 4 estimates
test(emmeans(vita_env_PS2_ZI_disp2, pairwise ~ variable_typ|s_H_Kraut_mtrs, var = "s_H_Kraut_mtrs"))
$emmeans
s_H_Kraut_mtrs = -0.0679:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0636 1086 32.010 <.0001
juvenile 1.97 0.0811 1086 24.288 <.0001
no. of flowers 2.76 0.0197 1086 140.232 <.0001
plant size (log) 3.33 0.0163 1086 204.697 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_H_Kraut_mtrs = -0.0679:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0685 0.0992 1086 0.691 0.9005
adult - no. of flowers -0.7227 0.0640 1086 -11.294 <.0001
adult - plant size (log) -1.2894 0.0630 1086 -20.462 <.0001
juvenile - no. of flowers -0.7912 0.0813 1086 -9.730 <.0001
juvenile - plant size (log) -1.3580 0.0806 1086 -16.857 <.0001
no. of flowers - plant size (log) -0.5667 0.0173 1086 -32.841 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 4 estimates
test(emmeans(vita_env_PS2_ZI_disp2, pairwise ~ variable_typ|s_D_Moos, var = "s_D_Moos"))
$emmeans
s_D_Moos = 0.0239:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0636 1086 32.010 <.0001
juvenile 1.97 0.0811 1086 24.288 <.0001
no. of flowers 2.76 0.0197 1086 140.232 <.0001
plant size (log) 3.33 0.0163 1086 204.697 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_D_Moos = 0.0239:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0685 0.0992 1086 0.691 0.9005
adult - no. of flowers -0.7227 0.0640 1086 -11.294 <.0001
adult - plant size (log) -1.2894 0.0630 1086 -20.462 <.0001
juvenile - no. of flowers -0.7912 0.0813 1086 -9.730 <.0001
juvenile - plant size (log) -1.3580 0.0806 1086 -16.857 <.0001
no. of flowers - plant size (log) -0.5667 0.0173 1086 -32.841 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 4 estimates
test(emmeans(vita_env_PS2_ZI_disp2, pairwise ~ variable_typ|s_cover_grasses, var = "s_cover_grasses"))
$emmeans
s_cover_grasses = 0.00139:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0636 1086 32.010 <.0001
juvenile 1.97 0.0811 1086 24.288 <.0001
no. of flowers 2.76 0.0197 1086 140.232 <.0001
plant size (log) 3.33 0.0163 1086 204.697 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_cover_grasses = 0.00139:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0685 0.0992 1086 0.691 0.9005
adult - no. of flowers -0.7227 0.0640 1086 -11.294 <.0001
adult - plant size (log) -1.2894 0.0630 1086 -20.462 <.0001
juvenile - no. of flowers -0.7912 0.0813 1086 -9.730 <.0001
juvenile - plant size (log) -1.3580 0.0806 1086 -16.857 <.0001
no. of flowers - plant size (log) -0.5667 0.0173 1086 -32.841 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 4 estimates
test(emtrends(vita_env_PS2_ZI_disp2, ~variable_typ|s_NZW, var = "s_NZW"))
s_NZW = -0.0883:
variable_typ s_NZW.trend SE df t.ratio p.value
adult -0.3568 0.0816 1086 -4.369 <.0001
juvenile -0.3176 0.1029 1086 -3.086 0.0021
no. of flowers 0.0414 0.0219 1086 1.886 0.0595
plant size (log) 0.0459 0.0162 1086 2.834 0.0047
test(emtrends(vita_env_PS2_ZI_disp2, ~variable_typ|s_FZW, var = "s_FZW"))
s_FZW = -0.0585:
variable_typ s_FZW.trend SE df t.ratio p.value
adult -0.2039 0.0673 1086 -3.032 0.0025
juvenile -0.1197 0.0849 1086 -1.410 0.1590
no. of flowers 0.0143 0.0191 1086 0.749 0.4539
plant size (log) 0.0184 0.0142 1086 1.297 0.1950
test(emtrends(vita_env_PS2_ZI_disp2, ~variable_typ|s_RZW, var = "s_RZW"))
s_RZW = 0.0429:
variable_typ s_RZW.trend SE df t.ratio p.value
adult 0.31079 0.0607 1086 5.121 <.0001
juvenile 0.27585 0.0730 1086 3.778 0.0002
no. of flowers 0.00478 0.0180 1086 0.266 0.7902
plant size (log) -0.01233 0.0132 1086 -0.935 0.3502
test(emtrends(vita_env_PS2_ZI_disp2, ~variable_typ|s_D_Moos, var = "s_D_Moos"))
s_D_Moos = 0.0239:
variable_typ s_D_Moos.trend SE df t.ratio p.value
adult 0.0719 0.0624 1086 1.153 0.2493
juvenile 0.1131 0.0759 1086 1.491 0.1363
no. of flowers -0.0115 0.0172 1086 -0.669 0.5038
plant size (log) -0.0213 0.0127 1086 -1.678 0.0937
test(emtrends(vita_env_PS2_ZI_disp2, ~variable_typ|s_H_Kraut_mtrs, var = "s_H_Kraut_mtrs"))
s_H_Kraut_mtrs = -0.0679:
variable_typ s_H_Kraut_mtrs.trend SE df t.ratio p.value
adult -0.1526 0.0707 1086 -2.159 0.0310
juvenile -0.2242 0.0820 1086 -2.735 0.0063
no. of flowers 0.0102 0.0201 1086 0.505 0.6137
plant size (log) 0.0451 0.0147 1086 3.070 0.0022
test(emtrends(vita_env_PS2_ZI_disp2, ~variable_typ|s_cover_grasses, var = "s_cover_grasses"))
s_cover_grasses = 0.00139:
variable_typ s_cover_grasses.trend SE df t.ratio p.value
adult 0.06560 0.0742 1086 0.884 0.3770
juvenile 0.16221 0.0912 1086 1.779 0.0755
no. of flowers -0.00323 0.0194 1086 -0.167 0.8676
plant size (log) -0.00593 0.0137 1086 -0.432 0.6657
advantage compared to previous model with 4 traits: - easier to convey; log1p-trasnformation of PLANTSIZE (“double log-trafo”) not necessary;
zero inflation formula included, accounting for zero clusters depending on trait and in high nitrogen conditions
account for differences in residual variation depending on the trait via dispersion formula
–> residuals look fine (not shown here)
summary(vita_env_NCS_ZI_disp3)
Family: gaussian ( identity )
Formula: log1p(variable) ~ variable_typ + s_FZW + s_RZW + s_NZW + s_D_Moos + s_cover_grasses + s_H_Kraut_mtrs + variable_typ:s_FZW + variable_typ:s_RZW +
variable_typ:s_NZW + variable_typ:s_D_Moos + variable_typ:s_cover_grasses + variable_typ:s_H_Kraut_mtrs + s_FZW:s_H_Kraut_mtrs + s_NZW:s_H_Kraut_mtrs +
s_FZW:s_cover_grasses + s_NZW:s_cover_grasses + s_FZW:s_NZW + (1 | plot)
Zero inflation: ~variable_typ + s_FZW + s_NZW
Dispersion: ~variable_typ
Data: vitas_noP
AIC BIC logLik deviance df.resid
1957.2 2125.9 -943.6 1887.2 881
Random effects:
Conditional model:
Groups Name Variance Std.Dev.
plot (Intercept) 0.01838 0.1356
Residual NA NA
Number of obs: 916, groups: plot, 95
Conditional model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.00181 0.06590 30.375 < 2e-16 ***
variable_typjuvenile -0.02420 0.10005 -0.242 0.8089
variable_typno. of flowers 0.74788 0.06518 11.474 < 2e-16 ***
s_FZW -0.13145 0.06784 -1.938 0.0527 .
s_RZW 0.31126 0.06053 5.142 2.72e-07 ***
s_NZW -0.33659 0.08157 -4.126 3.68e-05 ***
s_D_Moos 0.05081 0.06148 0.826 0.4086
s_cover_grasses 0.05997 0.07418 0.808 0.4188
s_H_Kraut_mtrs -0.11735 0.07205 -1.629 0.1034
variable_typjuvenile:s_FZW 0.15806 0.10453 1.512 0.1305
variable_typno. of flowers:s_FZW 0.13594 0.06840 1.987 0.0469 *
variable_typjuvenile:s_RZW -0.05931 0.09366 -0.633 0.5265
variable_typno. of flowers:s_RZW -0.30614 0.06186 -4.949 7.45e-07 ***
variable_typjuvenile:s_NZW 0.04095 0.12369 0.331 0.7406
variable_typno. of flowers:s_NZW 0.38925 0.08221 4.735 2.20e-06 ***
variable_typjuvenile:s_D_Moos 0.06736 0.09509 0.708 0.4787
variable_typno. of flowers:s_D_Moos -0.06236 0.06229 -1.001 0.3168
variable_typjuvenile:s_cover_grasses 0.10563 0.11541 0.915 0.3601
variable_typno. of flowers:s_cover_grasses -0.07219 0.07546 -0.957 0.3387
variable_typjuvenile:s_H_Kraut_mtrs -0.06069 0.10875 -0.558 0.5768
variable_typno. of flowers:s_H_Kraut_mtrs 0.13484 0.07297 1.848 0.0646 .
s_FZW:s_H_Kraut_mtrs -0.05020 0.02522 -1.990 0.0466 *
s_NZW:s_H_Kraut_mtrs 0.03216 0.02144 1.500 0.1337
s_FZW:s_cover_grasses -0.00739 0.02249 -0.329 0.7424
s_NZW:s_cover_grasses 0.00974 0.02245 0.434 0.6643
s_FZW:s_NZW 0.01166 0.02249 0.519 0.6041
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Zero-inflation model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9277 0.2251 -8.564 < 2e-16 ***
variable_typjuvenile 0.6414 0.2607 2.461 0.0139 *
variable_typno. of flowers -20.0516 3868.9780 -0.005 0.9959
s_FZW 0.8805 0.1583 5.561 2.68e-08 ***
s_NZW 1.1764 0.1700 6.921 4.48e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Dispersion model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2754 0.1011 -2.723 0.00647 **
variable_typjuvenile 0.2504 0.1442 1.736 0.08257 .
variable_typno. of flowers -2.9924 0.1583 -18.900 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
test(emmeans(vita_env_NCS_ZI_disp3, pairwise ~ variable_typ|s_FZW, var = "s_FZW"))
$emmeans
s_FZW = -0.0372:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0640 881 31.853 <.0001
juvenile 2.01 0.0781 881 25.711 <.0001
no. of flowers 2.75 0.0240 881 114.533 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_FZW = -0.0372:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0305 0.0970 881 0.314 0.9470
adult - no. of flowers -0.7073 0.0631 881 -11.203 <.0001
juvenile - no. of flowers -0.7378 0.0776 881 -9.506 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 3 estimates
test(emmeans(vita_env_NCS_ZI_disp3, pairwise ~ variable_typ|s_RZW, var = "s_RZW"))
$emmeans
s_RZW = 0.0264:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0640 881 31.853 <.0001
juvenile 2.01 0.0781 881 25.711 <.0001
no. of flowers 2.75 0.0240 881 114.533 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_RZW = 0.0264:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0305 0.0970 881 0.314 0.9470
adult - no. of flowers -0.7073 0.0631 881 -11.203 <.0001
juvenile - no. of flowers -0.7378 0.0776 881 -9.506 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 3 estimates
test(emmeans(vita_env_NCS_ZI_disp3, pairwise ~ variable_typ|s_NZW, var = "s_NZW"))
$emmeans
s_NZW = -0.0545:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0640 881 31.853 <.0001
juvenile 2.01 0.0781 881 25.711 <.0001
no. of flowers 2.75 0.0240 881 114.533 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_NZW = -0.0545:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0305 0.0970 881 0.314 0.9470
adult - no. of flowers -0.7073 0.0631 881 -11.203 <.0001
juvenile - no. of flowers -0.7378 0.0776 881 -9.506 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 3 estimates
test(emmeans(vita_env_NCS_ZI_disp3, pairwise ~ variable_typ|s_H_Kraut_mtrs, var = "s_H_Kraut_mtrs"))
$emmeans
s_H_Kraut_mtrs = -0.0395:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0640 881 31.853 <.0001
juvenile 2.01 0.0781 881 25.711 <.0001
no. of flowers 2.75 0.0240 881 114.533 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_H_Kraut_mtrs = -0.0395:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0305 0.0970 881 0.314 0.9470
adult - no. of flowers -0.7073 0.0631 881 -11.203 <.0001
juvenile - no. of flowers -0.7378 0.0776 881 -9.506 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 3 estimates
test(emmeans(vita_env_NCS_ZI_disp3, pairwise ~ variable_typ|s_D_Moos, var = "s_D_Moos"))
$emmeans
s_D_Moos = 0.0132:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0640 881 31.853 <.0001
juvenile 2.01 0.0781 881 25.711 <.0001
no. of flowers 2.75 0.0240 881 114.533 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_D_Moos = 0.0132:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0305 0.0970 881 0.314 0.9470
adult - no. of flowers -0.7073 0.0631 881 -11.203 <.0001
juvenile - no. of flowers -0.7378 0.0776 881 -9.506 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 3 estimates
test(emmeans(vita_env_NCS_ZI_disp3, pairwise ~ variable_typ|s_cover_grasses, var = "s_cover_grasses"))
$emmeans
s_cover_grasses = 0.00121:
variable_typ emmean SE df t.ratio p.value
adult 2.04 0.0640 881 31.853 <.0001
juvenile 2.01 0.0781 881 25.711 <.0001
no. of flowers 2.75 0.0240 881 114.533 <.0001
Results are given on the log1p (not the response) scale.
$contrasts
s_cover_grasses = 0.00121:
contrast estimate SE df t.ratio p.value
adult - juvenile 0.0305 0.0970 881 0.314 0.9470
adult - no. of flowers -0.7073 0.0631 881 -11.203 <.0001
juvenile - no. of flowers -0.7378 0.0776 881 -9.506 <.0001
Note: contrasts are still on the log1p scale
P value adjustment: tukey method for comparing a family of 3 estimates
test(emtrends(vita_env_NCS_ZI_disp3, ~variable_typ|s_NZW, var = "s_NZW"))
s_NZW = -0.0545:
variable_typ s_NZW.trend SE df t.ratio p.value
adult -0.338 0.0815 881 -4.150 <.0001
juvenile -0.297 0.0992 881 -2.998 0.0028
no. of flowers 0.051 0.0245 881 2.078 0.0380
test(emtrends(vita_env_NCS_ZI_disp3, ~variable_typ|s_FZW, var = "s_FZW"))
s_FZW = -0.0372:
variable_typ s_FZW.trend SE df t.ratio p.value
adult -0.13011 0.0677 881 -1.921 0.0550
juvenile 0.02795 0.0850 881 0.329 0.7424
no. of flowers 0.00582 0.0219 881 0.266 0.7901
test(emtrends(vita_env_NCS_ZI_disp3, ~variable_typ|s_RZW, var = "s_RZW"))
s_RZW = 0.0264:
variable_typ s_RZW.trend SE df t.ratio p.value
adult 0.31126 0.0605 881 5.142 <.0001
juvenile 0.25195 0.0731 881 3.448 0.0006
no. of flowers 0.00512 0.0198 881 0.259 0.7956
test(emtrends(vita_env_NCS_ZI_disp3, ~variable_typ|s_D_Moos, var = "s_D_Moos"))
s_D_Moos = 0.0132:
variable_typ s_D_Moos.trend SE df t.ratio p.value
adult 0.0508 0.0615 881 0.826 0.4088
juvenile 0.1182 0.0743 881 1.590 0.1121
no. of flowers -0.0115 0.0189 881 -0.609 0.5424
test(emtrends(vita_env_NCS_ZI_disp3, ~variable_typ|s_H_Kraut_mtrs, var = "s_H_Kraut_mtrs"))
s_H_Kraut_mtrs = -0.0395:
variable_typ s_H_Kraut_mtrs.trend SE df t.ratio p.value
adult -0.1172 0.0719 881 -1.631 0.1033
juvenile -0.1779 0.0842 881 -2.113 0.0349
no. of flowers 0.0176 0.0221 881 0.796 0.4263
test(emtrends(vita_env_NCS_ZI_disp3, ~variable_typ|s_cover_grasses, var = "s_cover_grasses"))
s_cover_grasses = 0.00121:
variable_typ s_cover_grasses.trend SE df t.ratio p.value
adult 0.0597 0.0742 881 0.805 0.4210
juvenile 0.1653 0.0900 881 1.837 0.0666
no. of flowers -0.0125 0.0206 881 -0.607 0.5440
grid.arrange(arrangeGrob(
moist2 + labs(y = "performance D. majalis", x = "EIV moisture", title = ""),
nitrogen2 + labs(y = "performance D. majalis", x = "EIV nitrogen", title = ""),
reaction2 + labs(y = "performance D. majalis", x = "EIV reaction", title = ""),
mylegend,
moss2 + labs(y = "performance D. majalis", x = "coverage moss layer", title = ""),
grass2 + labs(y = "performance D. majalis", x = "coverage grasses (Poaceae)", title = ""),
height2 + labs(y ="performance D. majalis", x= "vegetation height (m)", title = ""),
ncol =4))