Overview

This documentation is for the output of the coursera case study.

Part A: Regression and Statistics Theory

Using the regression compute a 95% confidence interval for B1 (mars) and interpret the interval. Using the computed confidence interval, assess whether B1 differs from 0 in our (hypothetical) target population.

#Given that 94 degrees of freedom was used to calculate the st.dev of the residuals: n - k - 1 = 94.
#k = 5, as we have 5 predictors

n <- 94 + 5 + 1
n
## [1] 100
#Assumption: Confidence interval calculation is two-sided.
mars.coef <- -0.02668
mars.std <- 0.01250
mars95 <- mars.coef + c(-1, 1)* qt(0.975, n-1) * mars.std
mars95
## [1] -0.051482712 -0.001877288

Based on the 95% confidence interval calculation, we can reject the null hypothesis that B1 (mars) equates to 0. 0 is not in the confidence interval.

Conduct a t-test for B5 (beck). Test whether the population slope B5 is equal to zero. Interpret the results.

beck.coef <- 0.03227
beck.std <- 0.04024
beck.tval <- beck.coef/beck.std
beck.tval
## [1] 0.8019384
one.tail.p <-pt(beck.tval, df=n-1, lower.tail = FALSE) #degrees of freedom is n-1
final.p <- 2* one.tail.p
final.p
## [1] 0.4245094

The t value of beck is 0.8019384. Feeding the t value into the two-tailed pt function returns 0.4245094, which is greater than the p-value of 0.05. Thus, we fail to reject the null hypothesis of the slope of B5 (beck) being zero.

Compute the R2, the adjusted R2, and conduct an F-test. Interpret all the results.

# Get Sum of Squares Residual
# formula to get st.dev is sqrt(SSRes/n - k -1)
# df = n - k - 1, where n is the number of cases, k is number of predictors
# therefore, one can extract SSRes from the st.dev given.
df <- 94
k <- 5
n <- df + k + 1

residualstd <- 2.388
ssres <- (residualstd*residualstd)*df
ssres
## [1] 536.0391
# Get Sum of Squares Total
# df = n - 1
# Totalstd comes from the observed data, rather than predicted.
totalstd <- 2.85818
sstotal <- (totalstd^2)*(n-1)
sstotal
## [1] 808.7501
# Total Sum of Squares = Regression Sum of Squares + Residual Sum of Squares
ssreg <- sstotal - ssres
ssreg
## [1] 272.711
# Calculate R^2
rsquared <- 1 - (ssres/sstotal)
rsquared
## [1] 0.3372005
# Calculate Adjusted R^2
adj.rsquared <- 1 - ((n-1)*(1-rsquared))/(n-k-1)
adj.rsquared
## [1] 0.3019452
# Get Mean Squares Residual
msr <- ssres/(n-k-1)
msr
## [1] 5.702544
# Get Means Square
ms <- ssreg/k
ms
## [1] 54.54219
# Get F-score
f <- ms/msr
f
## [1] 9.564537
#Then test. Our dfs are k, n-k-1.
fcrit <- qf(p = 0.05, df1 = k, df2 = n-k-1, lower.tail = FALSE)
fcrit
## [1] 2.31127

The model has low R2 and adjusted R2, being 0.33702 and 0.3019 respectively. This suggests that the model has a poor fit. However, that does not mean that the model has no significance. When putting the model through an F-Test, the F-statistic generated, 9.564537, is larger than the f critical value generated, 2.31127. Thus, the model is considered statistically significant overall.

Part B: Case Study

This is to analyze student performance dataset and create a model to predict the G1, G2 and G3 Exams based from the student.csv data.

Load and subset the data per exam

library(dplyr)
data = read.csv("students.csv")

# Create a subset without G2 and G3 columns
data_G1 <- data %>% select(-G2,-G3)
data_G2 <- data %>% select(-G3)
data_G3 <- data

We create three models based from the subset data exams: for predicting G1, G2, and G3 using all available predictor variables (features) in your dataset. ### Fitting the linear regression model

# Subset the Data by grade
model_G1 <- lm(G1 ~ ., data = data_G1)
model_G2 <- lm(G2 ~ ., data = data_G2)
model_G3 <- lm(G3 ~ ., data = data_G3)
coef(model_G1)
##      (Intercept)         schoolUP             sexM              age 
##      11.38502920      -0.00996498       0.89429008      -0.07008159 
##         addressU       famsizeLE3         PstatusT             Medu 
##       0.15071035       0.42917548       0.15429712       0.11794260 
##             Fedu       Mjobhealth        Mjobother     Mjobservices 
##       0.14377426       0.92613740      -0.78228744       0.46653237 
##      Mjobteacher       Fjobhealth        Fjobother     Fjobservices 
##      -0.92279023      -0.55337663      -1.13484910      -0.99400828 
##      Fjobteacher       reasonhome      reasonother reasonreputation 
##       1.18701726       0.16560221      -0.18120667       0.44400360 
##   guardianmother    guardianother       traveltime        studytime 
##       0.05021869       0.86638041      -0.02511939       0.60472503 
##         failures     schoolsupyes        famsupyes          paidyes 
##      -1.31418300      -2.15539421      -0.97868131      -0.10238909 
##    activitiesyes       nurseryyes        higheryes      internetyes 
##      -0.05272838       0.02958747       1.14060983       0.25541245 
##      romanticyes           famrel         freetime            goout 
##      -0.21122278       0.02573315       0.25481668      -0.41359434 
##             Dalc             Walc           health         absences 
##      -0.06314586      -0.02533937      -0.16753102       0.01227701
coef(model_G2)
##      (Intercept)         schoolUP             sexM              age 
##      2.936500114     -0.244176792      0.100421075     -0.129664036 
##         addressU       famsizeLE3         PstatusT             Medu 
##      0.292215215      0.198791152     -0.379753492      0.205127012 
##             Fedu       Mjobhealth        Mjobother     Mjobservices 
##     -0.135890076      0.122588265      0.453888306      0.098136014 
##      Mjobteacher       Fjobhealth        Fjobother     Fjobservices 
##     -0.200323261      0.658560261      0.754744997      1.001529524 
##      Fjobteacher       reasonhome      reasonother reasonreputation 
##      0.127506609      0.108666225      0.700372135     -0.008875641 
##   guardianmother    guardianother       traveltime        studytime 
##     -0.189753862     -0.227024173     -0.323196765     -0.017143005 
##         failures     schoolsupyes        famsupyes          paidyes 
##     -0.110638156      0.609456046      0.048819882      0.394367723 
##    activitiesyes       nurseryyes        higheryes      internetyes 
##      0.078339035      0.013159148     -0.125856310      0.375343162 
##      romanticyes           famrel         freetime            goout 
##     -0.614443728     -0.160722827     -0.028403560     -0.153523475 
##             Dalc             Walc           health         absences 
##     -0.017941528      0.119829448     -0.056378250     -0.003346462 
##               G1 
##      0.961239032
coef(model_G3)
##      (Intercept)         schoolUP             sexM              age 
##     -0.634746365     -0.480741671      0.174395802     -0.173301961 
##         addressU       famsizeLE3         PstatusT             Medu 
##      0.104454940      0.036512193     -0.127673064      0.129685100 
##             Fedu       Mjobhealth        Mjobother     Mjobservices 
##     -0.133939779     -0.146425750      0.074088203      0.046956250 
##      Mjobteacher       Fjobhealth        Fjobother     Fjobservices 
##     -0.026276281      0.330948299     -0.083581687     -0.322141538 
##      Fjobteacher       reasonhome      reasonother reasonreputation 
##     -0.112363796     -0.209183465      0.307553703      0.129106359 
##   guardianmother    guardianother       traveltime        studytime 
##      0.195740744      0.006565203      0.096994400     -0.104753553 
##         failures     schoolsupyes        famsupyes          paidyes 
##     -0.160539154      0.456448111      0.176870112      0.075764279 
##    activitiesyes       nurseryyes        higheryes      internetyes 
##     -0.346046820     -0.222715666      0.225920873     -0.144462482 
##      romanticyes           famrel         freetime            goout 
##     -0.272008228      0.356875762      0.047001549      0.012006617 
##             Dalc             Walc           health         absences 
##     -0.185019471      0.176772037      0.062995003      0.045879080 
##               G1               G2 
##      0.188846822      0.957329932

Using Summary, the data is analyzed to see the accuracy of each model.

Interpret the Model

summary(model_G1)
## 
## Call:
## lm(formula = G1 ~ ., data = data_G1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5043 -1.9410 -0.0326  1.7997  7.1376 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      11.385029   3.283214   3.468  0.00059 ***
## schoolUP         -0.009965   0.549925  -0.018  0.98555    
## sexM              0.894290   0.347385   2.574  0.01045 *  
## age              -0.070082   0.150905  -0.464  0.64264    
## addressU          0.150710   0.405805   0.371  0.71057    
## famsizeLE3        0.429175   0.339195   1.265  0.20660    
## PstatusT          0.154297   0.502913   0.307  0.75917    
## Medu              0.117943   0.224515   0.525  0.59969    
## Fedu              0.143774   0.192870   0.745  0.45650    
## Mjobhealth        0.926137   0.776837   1.192  0.23398    
## Mjobother        -0.782287   0.495455  -1.579  0.11524    
## Mjobservices      0.466532   0.554282   0.842  0.40053    
## Mjobteacher      -0.922790   0.721274  -1.279  0.20160    
## Fjobhealth       -0.553377   0.998994  -0.554  0.57997    
## Fjobother        -1.134849   0.710736  -1.597  0.11122    
## Fjobservices     -0.994008   0.734310  -1.354  0.17671    
## Fjobteacher       1.187017   0.900744   1.318  0.18841    
## reasonhome        0.165602   0.384744   0.430  0.66715    
## reasonother      -0.181207   0.567991  -0.319  0.74989    
## reasonreputation  0.444004   0.400557   1.108  0.26841    
## guardianmother    0.050219   0.379042   0.132  0.89467    
## guardianother     0.866380   0.694357   1.248  0.21295    
## traveltime       -0.025119   0.235489  -0.107  0.91511    
## studytime         0.604725   0.199842   3.026  0.00266 ** 
## failures         -1.314183   0.231280  -5.682 2.77e-08 ***
## schoolsupyes     -2.155394   0.463335  -4.652 4.65e-06 ***
## famsupyes        -0.978681   0.332560  -2.943  0.00347 ** 
## paidyes          -0.102389   0.331906  -0.308  0.75789    
## activitiesyes    -0.052728   0.309114  -0.171  0.86465    
## nurseryyes        0.029587   0.381623   0.078  0.93825    
## higheryes         1.140610   0.748777   1.523  0.12857    
## internetyes       0.255412   0.430423   0.593  0.55329    
## romanticyes      -0.211223   0.326001  -0.648  0.51746    
## famrel            0.025733   0.170852   0.151  0.88036    
## freetime          0.254817   0.164896   1.545  0.12316    
## goout            -0.413594   0.155971  -2.652  0.00837 ** 
## Dalc             -0.063146   0.229869  -0.275  0.78370    
## Walc             -0.025339   0.172300  -0.147  0.88316    
## health           -0.167531   0.111859  -1.498  0.13510    
## absences          0.012277   0.020124   0.610  0.54220    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.854 on 355 degrees of freedom
## Multiple R-squared:  0.3339, Adjusted R-squared:  0.2607 
## F-statistic: 4.562 on 39 and 355 DF,  p-value: 3.633e-15
summary(model_G2)
## 
## Call:
## lm(formula = G2 ~ ., data = data_G2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.8930 -0.7844  0.0055  0.9891  4.9905 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.936500   2.210613   1.328   0.1849    
## schoolUP         -0.244177   0.364153  -0.671   0.5030    
## sexM              0.100421   0.232171   0.433   0.6656    
## age              -0.129664   0.099957  -1.297   0.1954    
## addressU          0.292215   0.268771   1.087   0.2777    
## famsizeLE3        0.198791   0.225116   0.883   0.3778    
## PstatusT         -0.379753   0.333066  -1.140   0.2550    
## Medu              0.205127   0.148729   1.379   0.1687    
## Fedu             -0.135890   0.127816  -1.063   0.2884    
## Mjobhealth        0.122588   0.515439   0.238   0.8121    
## Mjobother         0.453888   0.329234   1.379   0.1689    
## Mjobservices      0.098136   0.367404   0.267   0.7895    
## Mjobteacher      -0.200323   0.478718  -0.418   0.6759    
## Fjobhealth        0.658560   0.661806   0.995   0.3204    
## Fjobother         0.754745   0.472327   1.598   0.1110    
## Fjobservices      1.001530   0.487503   2.054   0.0407 *  
## Fjobteacher       0.127507   0.597917   0.213   0.8313    
## reasonhome        0.108666   0.254838   0.426   0.6701    
## reasonother       0.700372   0.376170   1.862   0.0635 .  
## reasonreputation -0.008876   0.265702  -0.033   0.9734    
## guardianmother   -0.189754   0.251003  -0.756   0.4502    
## guardianother    -0.227024   0.460800  -0.493   0.6225    
## traveltime       -0.323197   0.155940  -2.073   0.0389 *  
## studytime        -0.017143   0.134029  -0.128   0.8983    
## failures         -0.110638   0.159963  -0.692   0.4896    
## schoolsupyes      0.609456   0.316027   1.928   0.0546 .  
## famsupyes         0.048820   0.222887   0.219   0.8267    
## paidyes           0.394368   0.219813   1.794   0.0736 .  
## activitiesyes     0.078339   0.204700   0.383   0.7022    
## nurseryyes        0.013159   0.252707   0.052   0.9585    
## higheryes        -0.125856   0.497448  -0.253   0.8004    
## internetyes       0.375343   0.285162   1.316   0.1889    
## romanticyes      -0.614444   0.216001  -2.845   0.0047 ** 
## famrel           -0.160723   0.113139  -1.421   0.1563    
## freetime         -0.028404   0.109559  -0.259   0.7956    
## goout            -0.153523   0.104300  -1.472   0.1419    
## Dalc             -0.017942   0.152232  -0.118   0.9062    
## Walc              0.119829   0.114098   1.050   0.2943    
## health           -0.056378   0.074305  -0.759   0.4485    
## absences         -0.003346   0.013333  -0.251   0.8020    
## G1                0.961239   0.035145  27.351   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.89 on 354 degrees of freedom
## Multiple R-squared:  0.7732, Adjusted R-squared:  0.7476 
## F-statistic: 30.17 on 40 and 354 DF,  p-value: < 2.2e-16
summary(model_G3)
## 
## Call:
## lm(formula = G3 ~ ., data = data_G3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.9339 -0.5532  0.2680  0.9689  4.6461 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.634746   2.229058  -0.285 0.775995    
## schoolUP         -0.480742   0.366512  -1.312 0.190485    
## sexM              0.174396   0.233588   0.747 0.455805    
## age              -0.173302   0.100780  -1.720 0.086380 .  
## addressU          0.104455   0.270791   0.386 0.699922    
## famsizeLE3        0.036512   0.226680   0.161 0.872128    
## PstatusT         -0.127673   0.335626  -0.380 0.703875    
## Medu              0.129685   0.149999   0.865 0.387859    
## Fedu             -0.133940   0.128768  -1.040 0.298974    
## Mjobhealth       -0.146426   0.518491  -0.282 0.777796    
## Mjobother         0.074088   0.332044   0.223 0.823565    
## Mjobservices      0.046956   0.369587   0.127 0.898973    
## Mjobteacher      -0.026276   0.481632  -0.055 0.956522    
## Fjobhealth        0.330948   0.666601   0.496 0.619871    
## Fjobother        -0.083582   0.476796  -0.175 0.860945    
## Fjobservices     -0.322142   0.493265  -0.653 0.514130    
## Fjobteacher      -0.112364   0.601448  -0.187 0.851907    
## reasonhome       -0.209183   0.256392  -0.816 0.415123    
## reasonother       0.307554   0.380214   0.809 0.419120    
## reasonreputation  0.129106   0.267254   0.483 0.629335    
## guardianmother    0.195741   0.252672   0.775 0.439046    
## guardianother     0.006565   0.463650   0.014 0.988710    
## traveltime        0.096994   0.157800   0.615 0.539170    
## studytime        -0.104754   0.134814  -0.777 0.437667    
## failures         -0.160539   0.161006  -0.997 0.319399    
## schoolsupyes      0.456448   0.319538   1.428 0.154043    
## famsupyes         0.176870   0.224204   0.789 0.430710    
## paidyes           0.075764   0.222100   0.341 0.733211    
## activitiesyes    -0.346047   0.205938  -1.680 0.093774 .  
## nurseryyes       -0.222716   0.254184  -0.876 0.381518    
## higheryes         0.225921   0.500398   0.451 0.651919    
## internetyes      -0.144462   0.287528  -0.502 0.615679    
## romanticyes      -0.272008   0.219732  -1.238 0.216572    
## famrel            0.356876   0.114124   3.127 0.001912 ** 
## freetime          0.047002   0.110209   0.426 0.670021    
## goout             0.012007   0.105230   0.114 0.909224    
## Dalc             -0.185019   0.153124  -1.208 0.227741    
## Walc              0.176772   0.114943   1.538 0.124966    
## health            0.062995   0.074800   0.842 0.400259    
## absences          0.045879   0.013412   3.421 0.000698 ***
## G1                0.188847   0.062373   3.028 0.002645 ** 
## G2                0.957330   0.053460  17.907  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.901 on 353 degrees of freedom
## Multiple R-squared:  0.8458, Adjusted R-squared:  0.8279 
## F-statistic: 47.21 on 41 and 353 DF,  p-value: < 2.2e-16

Plotting of Residual Plot

Model 1:

# Identify outliers using Leverage Point
par(mfrow =c(2,2),mar=c(2,2,2,2))
plot(model_G1)

plot(hatvalues(model_G1))
abline(h=40/395, col="red")
rstudent(model_G1)
##            1            2            3            4            5            6 
## -2.436643166 -1.949997221  0.412688392  1.000639819 -1.450247394  0.512657153 
##            7            8            9           10           11           12 
## -0.068637825 -1.397944285  1.081462413  0.622967596 -0.508018729 -0.741361020 
##           13           14           15           16           17           18 
##  0.557206278 -0.444793344  0.379049743  0.835618083  0.134814550 -0.144892145 
##           19           20           21           22           23           24 
## -0.384146960 -1.760838838 -0.337508726 -0.405050897  0.656514940  0.735258125 
##           25           26           27           28           29           30 
## -0.118672573 -0.719332945  0.672628797  0.914412875  0.219781211 -0.829869381 
##           31           32           33           34           35           36 
## -1.642793039  1.230828937  1.722383572 -1.835542223  0.626057390 -0.712359518 
##           37           38           39           40           41           42 
##  0.903807019  0.363994136  0.584932414  1.868761175 -0.766752006  0.113775548 
##           43           44           45           46           47           48 
##  1.637364923 -1.058964037  0.533205928 -0.012043968  0.402111050  1.121198666 
##           49           50           51           52           53           54 
##  1.701521301 -1.172123954  0.256311893 -0.268952042 -0.170796363 -0.041784531 
##           55           56           57           58           59           60 
## -0.125557834 -0.702668809  0.509156965  0.825056919 -0.485531223  1.518491485 
##           61           62           63           64           65           66 
## -1.281857216  1.200951711 -0.781946556  0.490244217 -0.360049969  1.767101954 
##           67           68           69           70           71           72 
##  0.259658355 -1.000113382 -0.576454018  1.321915003  0.253336577 -1.184835624 
##           73           74           75           76           77           78 
##  1.466724642  0.254927017  1.024033712 -0.617284212 -0.905899161 -0.334855903 
##           79           80           81           82           83           84 
##  1.468663011 -2.344822398  0.729775071  0.154664645 -1.715786700  0.547959743 
##           85           86           87           88           89           90 
## -0.320470844 -1.018304379 -0.948094625  0.531575381 -0.621736528 -1.290246935 
##           91           92           93           94           95           96 
## -1.214390611  1.372287485 -0.394575844  0.194385193 -1.201766961 -0.475758183 
##           97           98           99          100          101          102 
##  0.494015062 -0.011528920 -0.049722863 -0.727175171 -0.716842272  0.344672538 
##          103          104          105          106          107          108 
## -0.605630071 -0.685739061  1.332923804 -0.290280706 -0.706886531  1.204860351 
##          109          110          111          112          113          114 
## -0.530208451  0.558166127  1.262832644 -0.660385707  0.771433700  1.915486542 
##          115          116          117          118          119          120 
## -1.880005569  0.762606134 -1.182403854  0.380841601  0.257888618  0.678186720 
##          121          122          123          124          125          126 
##  1.547093729  1.011427739  0.914258311  0.739938304 -0.810790573  1.043750377 
##          127          128          129          130          131          132 
## -1.162947536  0.435110404 -0.612487487  1.879294467  0.298885890 -0.486771931 
##          133          134          135          136          137          138 
##  0.381603378 -0.014109980 -1.646780726 -0.688869012 -0.512564299 -1.249466181 
##          139          140          141          142          143          144 
##  1.155896079  1.090571609 -1.242471470 -0.295083290 -0.640296950  0.621125494 
##          145          146          147          148          149          150 
## -0.100773090 -0.721616991 -0.927011979 -0.212575789 -1.707801707  0.089353454 
##          151          152          153          154          155          156 
##  0.496865626  0.832279994 -0.321145180 -0.867012675  0.434912977  0.233682905 
##          157          158          159          160          161          162 
##  1.811861089  1.926112693  1.978059308  0.500431736 -0.338611821 -0.234433265 
##          163          164          165          166          167          168 
## -0.789025803 -0.366762566  0.028552724  0.706178411  0.193763213  0.553789373 
##          169          170          171          172          173          174 
## -0.891678464  0.187690420 -0.442751016  0.776863260  0.627288560  0.411361542 
##          175          176          177          178          179          180 
## -0.052819125 -0.591797693  0.448763047 -2.054733162  0.099399058 -0.293297606 
##          181          182          183          184          185          186 
## -0.810864157 -0.291833235  1.544113740 -1.005837866  0.396962835  0.230981196 
##          187          188          189          190          191          192 
##  0.048163886  1.430949244 -1.426258604 -1.304051994 -0.607369594 -1.241867079 
##          193          194          195          196          197          198 
## -2.004328737 -1.474589463  0.573138764  0.487222472  0.808209837 -0.335901076 
##          199          200          201          202          203          204 
##  2.305793869 -1.948330961  1.724325951 -0.005167968 -0.123501237 -1.138819918 
##          205          206          207          208          209          210 
## -0.553402567 -0.127616749  0.127113326 -0.129054217 -0.240161144 -1.499019206 
##          211          212          213          214          215          216 
## -1.589933017  0.063280694  1.730684420 -1.492800844 -1.293105072  0.794495466 
##          217          218          219          220          221          222 
## -0.935911867 -1.886679064 -1.026928584 -1.122400547 -1.259988174 -1.027490594 
##          223          224          225          226          227          228 
##  1.112252974  0.689738461  0.658725484 -0.168744307  1.985818721 -0.339646541 
##          229          230          231          232          233          234 
##  0.228525344  0.501840209 -0.111120094 -0.231901491 -0.151723950  0.440782544 
##          235          236          237          238          239          240 
## -0.916662153 -0.980923473  0.734498955  0.766313234  0.609836808 -1.030998877 
##          241          242          243          244          245          246 
## -0.483052556 -0.294355283 -1.904110554 -0.032319551 -1.279963640  2.600277462 
##          247          248          249          250          251          252 
##  0.163196352 -0.086135449 -2.415961792  0.911709209 -1.050307049 -1.547351190 
##          253          254          255          256          257          258 
## -0.764942330 -1.029288217 -1.074373151 -1.138672945  0.862401087 -1.656355866 
##          259          260          261          262          263          264 
##  1.499725423 -1.713319041  2.053189609 -1.156856873  0.255049933 -0.395393251 
##          265          266          267          268          269          270 
## -0.750210149  2.373831415 -0.994130954  0.496187787 -0.661785043 -0.623212933 
##          271          272          273          274          275          276 
##  0.696893557  1.428493517  0.388921875  0.752967583 -0.724316325  1.289750838 
##          277          278          279          280          281          282 
## -0.145069377 -0.741741061 -0.008314447 -0.654263401 -1.674333329  0.294357427 
##          283          284          285          286          287          288 
##  0.016260890 -0.051138907  0.386990390  0.175377863  2.181382369 -0.422891261 
##          289          290          291          292          293          294 
##  0.626347154  0.199354444  0.486305948  0.681565807 -0.148911870  2.018361950 
##          295          296          297          298          299          300 
##  0.081693476  0.705519053 -0.963318111 -0.327142617  0.860894595  0.780445064 
##          301          302          303          304          305          306 
##  0.170772148 -1.217879412  1.451969756  1.332945809  1.713612488  0.541461411 
##          307          308          309          310          311          312 
##  1.594065237 -0.754938027  1.678373022  1.219438254 -0.641794091  1.159897743 
##          313          314          315          316          317          318 
##  0.462591848  0.448514974  1.709788348  0.612452194 -1.092560368 -0.260061804 
##          319          320          321          322          323          324 
##  0.204999961  0.589402875  0.651795549  0.488367437 -0.461296145  0.185589091 
##          325          326          327          328          329          330 
##  0.891235098 -1.319386949  1.284507936  0.326714864 -0.187338484  0.510973704 
##          331          332          333          334          335          336 
## -0.900074235  0.338816786 -1.788563037 -1.474249421 -0.694077683  1.354286856 
##          337          338          339          340          341          342 
##  0.511849286 -1.170835913  0.863688454 -0.288902006 -0.142275682  0.004568187 
##          343          344          345          346          347          348 
##  0.962369252 -0.669754467 -0.106745516  0.449508689  1.249749114 -0.062020759 
##          349          350          351          352          353          354 
##  0.137911967  1.230246344 -0.085472723  0.160241811 -0.639851550 -0.206273845 
##          355          356          357          358          359          360 
##  0.451732584 -0.060455996  0.939925084  0.103125701 -0.584462250  1.987313575 
##          361          362          363          364          365          366 
##  0.953042163  1.418356869 -0.129222400  1.448455703  0.577469606 -0.143419256 
##          367          368          369          370          371          372 
##  0.225258774 -0.605587910  0.588570633  0.944109853 -1.344212057  1.811701342 
##          373          374          375          376          377          378 
##  0.182899848 -1.493575936  2.324819060 -1.209295949  1.777395590 -1.360053308 
##          379          380          381          382          383          384 
##  1.595955668 -0.456739303  0.490616124 -1.165876378 -0.471793736 -1.087859034 
##          385          386          387          388          389          390 
## -1.408852636 -0.454568947 -1.696832656 -1.653304940 -1.097909049 -1.023259367 
##          391          392          393          394          395 
## -0.304769600  0.665937671  0.983669972 -0.789876679 -1.314143595
outliers_G1 <- which(abs(rstudent(model_G1)) > 2)

Model 2:

# Identify outliers using Leverage Point
par(mfrow =c(2,2),mar=c(2,2,2,2))
plot(model_G2)

plot(hatvalues(model_G2))
abline(h=40/395, col="red")
rstudent(model_G2)
##             1             2             3             4             5 
##  1.1153568139  0.2534716004 -0.3380187708 -0.7918572305  1.8208188412 
##             6             7             8             9            10 
## -0.2309899950 -0.0529447421 -0.5281764268  0.4305991259  0.2396055078 
##            11            12            13            14            15 
## -1.2518799838  1.4154208495 -0.6222471457  0.0849851432  1.1423928992 
##            16            17            18            19            20 
##  0.1338608763  0.1607776293  1.2633745643 -0.3523609272  0.3420960104 
##            21            22            23            24            25 
##  0.5148534659  1.1260653982 -0.1430714865  0.1018377809 -0.6858863835 
##            26            27            28            29            30 
##  1.0802901590 -0.4629585249 -0.5972019635 -0.4032227284  1.8024578025 
##            31            32            33            34            35 
##  0.5708113799 -0.5095170181  0.5775252325  0.7489660772  0.8576202824 
##            36            37            38            39            40 
## -0.9367002531  0.5388639696  1.2644733212 -0.1909529230 -0.7148303558 
##            41            42            43            44            45 
##  1.8643721968  0.3958381485 -0.1013483321 -0.6937857865  0.1248150673 
##            46            47            48            49            50 
## -0.7856347248 -0.1661856730 -0.0839189916  0.0550344948 -0.3762437945 
##            51            52            53            54            55 
##  0.5919925731  0.3654542134 -0.2736242701  0.3462167758  0.6110469588 
##            56            57            58            59            60 
##  0.1029698287 -0.1365852060  0.9206757869  0.2667706197  0.6735258935 
##            61            62            63            64            65 
##  0.8180991107 -0.5115442123  0.4383481228 -1.1105566109 -0.5103296885 
##            66            67            68            69            70 
## -0.1668125411 -0.6841360189 -0.5849187335  0.0382926890 -0.1461868575 
##            71            72            73            74            75 
##  0.7811798946 -0.3948772996 -1.0299919745  0.0002385391 -0.2976479405 
##            76            77            78            79            80 
## -0.3018866736 -0.0605721843  0.1348285210 -0.4110900984 -0.0243326158 
##            81            82            83            84            85 
##  0.2374086299 -1.1548039981 -0.7415705349 -0.1872556525  0.1248416991 
##            86            87            88            89            90 
##  1.3816418784 -0.2487074874  0.1916521073 -0.5263100806 -1.2145167627 
##            91            92            93            94            95 
## -0.1291656121  0.4316880463 -1.4630121095 -0.6429102510  1.2842939332 
##            96            97            98            99           100 
##  1.3292226832  2.1643431006  0.9999807675  1.6432699424  1.0461302213 
##           101           102           103           104           105 
## -1.1173718424  0.9646182170  1.7552081477 -0.8605034442  1.0084747600 
##           106           107           108           109           110 
##  0.1585377533 -0.1305800741  1.2820379827  1.7857265330  0.7232167502 
##           111           112           113           114           115 
##  1.0604346782  1.3727875531  1.4379911457  0.5168079591  0.4205181566 
##           116           117           118           119           120 
##  0.7235572111  1.5217364197  0.4536266177 -0.4372979347 -0.7294672421 
##           121           122           123           124           125 
## -0.4607407214 -1.2423287247  0.2153730291 -1.6691524228 -0.2508655809 
##           126           127           128           129           130 
## -0.1456271861  1.1265935837  1.4201215374 -1.3277591603  0.5821039519 
##           131           132           133           134           135 
## -5.8667862326 -3.6953945977  1.8092508861 -0.9737060325 -3.2422963825 
##           136           137           138           139           140 
## -5.4924053884 -4.4567644089 -2.0541844333 -0.2838802070  0.8239560364 
##           141           142           143           144           145 
##  0.4780187713 -0.2283060735  0.8646761040  0.5531210795 -2.5827350725 
##           146           147           148           149           150 
##  1.0443535064  0.1783594126  0.6100751037  0.1235196484  0.9695089959 
##           151           152           153           154           155 
## -0.3905962187  1.1256340173  0.2402925343 -1.7647486483  0.4193006667 
##           156           157           158           159           160 
## -1.7822417109 -2.0253411156  0.7719757817 -0.1713345435  1.0572450995 
##           161           162           163           164           165 
##  0.0053400737  2.2879604684 -3.6119316220  0.0265652192  2.9757160156 
##           166           167           168           169           170 
## -0.3546792173 -0.1854528222  0.4292685589  0.4556726746  0.3082016961 
##           171           172           173           174           175 
## -0.4553189003  1.2526306697 -1.0618868012  0.3432249334  0.5460631742 
##           176           177           178           179           180 
## -0.5167343680  0.0975050452 -0.8391334612 -1.2824286214  0.2092043686 
##           181           182           183           184           185 
## -0.8984471172  0.6571931690  0.9987503426  0.2225941073 -0.1975514435 
##           186           187           188           189           190 
##  0.0069211165  0.2252688905 -0.0461592538 -0.4543575512  0.8605207512 
##           191           192           193           194           195 
##  0.7146716158  0.2528362597  0.2787082172  0.4036745204  0.7469139113 
##           196           197           198           199           200 
##  1.0035218961 -0.4389966198 -0.0136129069  0.8565467360  0.1709922625 
##           201           202           203           204           205 
## -0.0657106473  0.6758647068 -0.0004396913 -0.4131254616  0.5069340585 
##           206           207           208           209           210 
## -0.2485794926 -0.5033432798  0.1101281387  0.1571571815  0.6192471851 
##           211           212           213           214           215 
## -0.1295034262  0.1792859805 -0.1369899468  0.4879942182  0.7808260995 
##           216           217           218           219           220 
##  0.3856409072 -0.0025690532 -0.3805070509  0.0463046498  1.0627680320 
##           221           222           223           224           225 
##  0.4898071250  0.4514579776 -0.3002943265  0.3040960119  0.1935225138 
##           226           227           228           229           230 
##  0.0816700379 -0.4093659318 -0.8164656770 -1.0105637301 -0.9142515942 
##           231           232           233           234           235 
##  0.1370499607 -0.0958431482 -0.4149886324 -0.9581307594 -1.4152439367 
##           236           237           238           239           240 
## -0.5410635471 -0.8848418018 -0.2189066256 -0.6008748100 -0.2701238474 
##           241           242           243           244           245 
##  0.4012406050  0.4816495921 -3.1516285721 -0.5766626002 -3.4895614011 
##           246           247           248           249           250 
##  0.4569509277  0.1892101783  1.4790571731  1.2886535289  0.5577853365 
##           251           252           253           254           255 
##  1.4526802259  1.8213480678  1.1908988807  0.5998014166  2.1033132860 
##           256           257           258           259           260 
##  1.4713911435 -1.2631541129  0.1240866879 -0.3655074040 -0.7942116161 
##           261           262           263           264           265 
##  0.5223970409 -0.0355686669 -0.1371590678 -0.4341624771  0.8111087948 
##           266           267           268           269           270 
## -0.0238193612 -0.2013627649 -0.4482219079 -0.3081501397 -2.7058965130 
##           271           272           273           274           275 
## -0.0113828271 -0.3214977442  0.2299848782  0.5143027360  0.7946977946 
##           276           277           278           279           280 
##  0.2163784394 -0.3339189683 -0.0870044853 -0.3818766089  0.4097972014 
##           281           282           283           284           285 
## -0.1957591218 -1.3043689217  0.6666429576  0.6862373419 -0.1916325279 
##           286           287           288           289           290 
## -1.3140745537  0.3075894355 -0.0269027832 -0.6704492692 -0.7757907308 
##           291           292           293           294           295 
## -0.4677994324 -0.2927442540  1.2585308563  0.3047791639 -0.2435719072 
##           296           297           298           299           300 
## -1.1826879749 -0.5462916343 -0.8632849306 -0.7655670894 -0.2111583223 
##           301           302           303           304           305 
## -0.7348346280 -0.1880360398 -1.7095976752 -0.0051418895  0.1323145415 
##           306           307           308           309           310 
## -0.2618603805  1.2372415282  1.4465015887 -0.9032468621 -1.0663184200 
##           311           312           313           314           315 
##  0.8514598708 -0.6411498144 -0.8670389664 -1.2104084881 -0.0671812183 
##           316           317           318           319           320 
## -0.1732878823  0.1002044523  0.7643024898 -0.0508029416  0.2845690852 
##           321           322           323           324           325 
## -0.0157052914 -0.5370019825 -0.2690144513  0.8745885918  0.2471584432 
##           326           327           328           329           330 
##  1.5823376658  0.4601674287  0.3859768513 -0.4745904110  1.0856695155 
##           331           332           333           334           335 
## -0.5422420194  2.1460871746 -3.6752459528  0.2531174257  0.5232099675 
##           336           337           338           339           340 
##  0.0632078457  0.3154181399  0.2667127101 -0.3699854368  0.0179413630 
##           341           342           343           344           345 
##  0.8760877895  0.0030331164  0.0018017370 -0.1042273208 -0.1084286981 
##           346           347           348           349           350 
## -0.1202138812  0.2621978172  0.6388303554  1.2700736262  1.2733613448 
##           351           352           353           354           355 
##  0.0841563120  0.0499058604 -0.2147834163  0.6199852505 -0.7160778768 
##           356           357           358           359           360 
##  0.1585955482  0.2767816216  0.2261143592 -0.1089542340 -0.7440423297 
##           361           362           363           364           365 
##  1.3488898772 -0.2618274381 -0.0337206218 -0.0847951579 -0.3732903199 
##           366           367           368           369           370 
##  0.5386621846 -0.0898106983 -0.3120895344 -0.1089956019 -0.7616503794 
##           371           372           373           374           375 
##  0.4751780018 -1.0863720422 -0.2716866051 -0.5201861323 -0.0287354101 
##           376           377           378           379           380 
##  0.5706619922  0.2438145233  0.3919417410  0.0069652341 -0.1281278778 
##           381           382           383           384           385 
## -0.5121978298 -0.5140648615 -0.1399675374 -0.6360457989 -0.6599469060 
##           386           387           388           389           390 
## -0.3240540958  0.7289112022 -0.5876993125  0.7893446418 -0.5795958538 
##           391           392           393           394           395 
## -0.0310909515  0.8551881120 -0.2948023613  0.7853829555  0.6708795878
outliers_G2 <- which(abs(rstudent(model_G2)) > 2)

Model 3:

# Identify outliers using Leverage Point
par(mfrow =c(2,2),mar=c(2,2,2,2))
plot(model_G3)

plot(hatvalues(model_G3))
abline(h=40/395, col="red")
rstudent(model_G3)
##             1             2             3             4             5 
##  0.4907872219  1.0846548868  1.2140275869  1.0296848161  0.5650774225 
##             6             7             8             9            10 
## -0.8073797203 -0.3304841166  0.9230598887  0.2616118284 -0.1429085055 
##            11            12            13            14            15 
##  0.5772718154  0.0818105613 -0.0811731862  0.1865307977  0.1593243249 
##            16            17            18            19            20 
## -0.0240167106  0.3784711646 -0.1235185502  0.1564914139  0.7571188370 
##            21            22            23            24            25 
##  0.5183242026 -0.5326088138  0.1889261169 -1.0063345510 -0.5377938825 
##            26            27            28            29            30 
##  0.3775285100 -0.7469529421 -0.6936148634 -0.1787189786 -0.3019214439 
##            31            32            33            34            35 
##  0.6425937359  0.2417315487 -0.2494454353  1.4155523442  0.1786229984 
##            36            37            38            39            40 
## -0.0996780785  0.9863181862 -0.3212663887 -0.7489161261 -0.5022261483 
##            41            42            43            44            45 
##  0.9902005562 -0.5134727608 -0.4144085353  1.7573288389 -0.5570052873 
##            46            47            48            49            50 
## -1.2860267949 -0.3588540761  0.5257878660 -1.0425285251  0.2577749212 
##            51            52            53            54            55 
## -0.0270977811 -0.1915356358 -1.5843648470  0.7982882922 -0.2515973754 
##            56            57            58            59            60 
##  0.7673589262  0.0767527455 -0.2545994776 -0.2780281839 -0.2866671162 
##            61            62            63            64            65 
##  0.5766071426  1.5505010524  0.1657411766  0.0039519851  0.3100054038 
##            66            67            68            69            70 
## -0.3172168357  0.1715142418 -0.5711358357 -0.5181243606 -0.8294772560 
##            71            72            73            74            75 
## -0.1304034526  0.3838500126 -0.4130145723  0.7797606542 -1.8640318127 
##            76            77            78            79            80 
##  0.6719632663 -0.3659309480  0.1133411391  1.8297586467  0.7968630450 
##            81            82            83            84            85 
##  0.3332396708  0.0364341701 -0.1100918996 -0.3713890257  0.4329816951 
##            86            87            88            89            90 
##  0.1251860552 -0.3281219661 -0.3896962228 -0.0018636881 -0.1980072764 
##            91            92            93            94            95 
##  1.1341661487  0.0781694718  0.2958553052  0.3304555379  0.4565595291 
##            96            97            98            99           100 
##  1.0740563472 -0.0233876108  0.8656313980 -0.0408991362 -0.5237281543 
##           101           102           103           104           105 
## -1.2832039793  0.0668210670  0.3999403855 -0.4931396629 -0.3099419929 
##           106           107           108           109           110 
## -0.4400516802 -0.0379312383 -0.0489760246  1.0937235043  0.2627569537 
##           111           112           113           114           115 
## -0.7288739552  0.9213491531  0.7004749751 -0.6698645439  0.3222930734 
##           116           117           118           119           120 
##  0.2890904551  0.7175150939 -0.3025027536  0.3370586439 -0.1850302856 
##           121           122           123           124           125 
##  0.0703966311  0.2002566983  0.1393315957  0.5306836894  1.0068663256 
##           126           127           128           129           130 
## -0.6745208789  1.2649169308  1.9540466772 -1.2538635013 -0.5104727733 
##           131           132           133           134           135 
##  0.3670154601  0.1499507684 -0.2970449100 -0.2403590451 -0.1859431104 
##           136           137           138           139           140 
##  0.1870336413 -0.3447264652  0.9846942262 -0.2025171603 -0.6307972374 
##           141           142           143           144           145 
## -4.2889587458  0.9462683016  0.6436106071 -0.3654341397  0.4472477615 
##           146           147           148           149           150 
##  0.4519629694 -2.4895617878  0.0720530959 -2.4378055856  0.4446309305 
##           151           152           153           154           155 
## -1.4695534654  0.5268110640  0.6952581440  1.2482614678  0.6747701009 
##           156           157           158           159           160 
##  0.1775744235  0.4529839769  1.1258285935 -0.6826539241  0.4771503929 
##           161           162           163           164           165 
## -2.0617686932 -0.9727129588  0.2374182435  0.4027125580  0.3419721197 
##           166           167           168           169           170 
##  0.3441925728  0.2078972269  1.1312581692 -3.4922237645 -0.0971781607 
##           171           172           173           174           175 
## -2.0043494088  0.6203997044 -0.6989205872 -2.5039098092 -0.9249446311 
##           176           177           178           179           180 
##  0.2877239883 -1.2653129908  0.9230492616  0.6010909464  0.8848513407 
##           181           182           183           184           185 
##  0.3390631276 -0.0662102342  0.0099879995 -1.5217951798 -0.3178790115 
##           186           187           188           189           190 
## -0.5153012220 -0.0556153643 -0.0265279617  1.5336835859  1.1194895657 
##           191           192           193           194           195 
##  0.8899175938  1.3666986346  0.3465180254  0.8616586785  0.0815298978 
##           196           197           198           199           200 
##  0.8593562714  0.0019672625  0.9546574203 -0.7682767001  0.7505472999 
##           201           202           203           204           205 
## -0.2353166917 -0.0674588282  0.5307172006 -0.1876587501  0.6549271344 
##           206           207           208           209           210 
##  0.1101739374  0.8274949788  1.4559981451  0.3554565455  0.7103235993 
##           211           212           213           214           215 
##  0.7061129742  0.2996600330  0.4468919654  0.9843736539 -0.2415448661 
##           216           217           218           219           220 
## -0.2579141685 -0.6539266645  1.5748167356  1.1335088881  0.5765305716 
##           221           222           223           224           225 
##  0.7562593595 -1.7604410771  0.5277514433  0.4698961793  0.7905451842 
##           226           227           228           229           230 
## -0.2579707862 -0.6487348405  0.3054486802  0.3253694512  1.4686680791 
##           231           232           233           234           235 
##  0.9919122836  0.4131497834 -0.3078297482  0.0285584769 -0.6513861094 
##           236           237           238           239           240 
##  0.3681032824  0.3090618480 -0.3418558697  0.7902253508 -3.2454552822 
##           241           242           243           244           245 
##  0.1800333369  0.8346732434  0.2368098958 -0.0255711092  0.5754728846 
##           246           247           248           249           250 
## -0.7524743160  0.6298941811  0.9589109480  0.9746052125 -0.3885956811 
##           251           252           253           254           255 
##  0.6232701275 -0.4032952899  0.0322427342 -0.1834912071  0.1866401736 
##           256           257           258           259           260 
##  0.0651910547  0.6398696958 -0.0643231272 -0.1996588200 -3.7191809895 
##           261           262           263           264           265 
## -0.1983436787  0.3412223140  0.0543158909  0.7253305289 -4.3235375199 
##           266           267           268           269           270 
## -0.4329724409  0.5996410186  0.8441178582  0.4958663742  0.7289192143 
##           271           272           273           274           275 
##  0.9129630224  0.4058879859  0.1400720999  0.4123382371  0.3775974832 
##           276           277           278           279           280 
## -0.3014842954 -1.2523785433  0.2958110028  0.6402187367 -0.0931338977 
##           281           282           283           284           285 
## -0.5088619061  0.4011358071  0.2863145136  0.9673403831  0.8422197556 
##           286           287           288           289           290 
##  0.4338445644  0.0617378233 -0.0378204890 -0.0076191941  0.7152672117 
##           291           292           293           294           295 
## -0.0853706002  0.0663540432  0.4420046330 -0.3607048582  0.2183309502 
##           296           297           298           299           300 
## -0.8535305888 -3.9674127712  0.2868316383  0.7393421041  1.2165644373 
##           301           302           303           304           305 
##  0.7844484676 -0.1572192889  0.7726366597  0.0639880485 -0.3626317627 
##           306           307           308           309           310 
##  0.2978126752 -0.1380729012 -0.5817615212  0.4932970312 -0.3389331079 
##           311           312           313           314           315 
## -3.6607982344  0.5943674837  0.4336098662  0.2630583357  0.2517000326 
##           316           317           318           319           320 
## -0.0889092254 -3.9875753012  0.0378023201 -0.0922656231  0.2926801660 
##           321           322           323           324           325 
## -0.6317632637  0.0769433943  0.8428862060  0.8701653201  0.4910181541 
##           326           327           328           329           330 
##  0.2824033660  0.3877075960 -0.2018601819  0.1423957939 -0.0840399494 
##           331           332           333           334           335 
##  0.3731013625  0.5873206180  0.9004048682 -3.2533068019 -4.2631000437 
##           336           337           338           339           340 
## -0.5592022796 -0.3063706577 -3.6372996591  1.1531680284  0.3385708752 
##           341           342           343           344           345 
##  0.5224311960 -4.4674516519 -0.0191528099 -3.6497165450  0.3643966348 
##           346           347           348           349           350 
##  0.5858901325  0.3803957358 -0.3874044036  0.2905455214 -0.0286016951 
##           351           352           353           354           355 
##  1.2282028384 -0.3717135356  1.2913443527  0.4074961169 -0.3336348898 
##           356           357           358           359           360 
##  0.2694645380  0.0187748256 -0.2840807820  0.4919837189 -0.3225656067 
##           361           362           363           364           365 
## -0.0876969272 -0.2183665147 -0.5126313255  0.3824862980  0.8469696574 
##           366           367           368           369           370 
##  0.1079877601  0.0798107145 -3.0824293165  0.1814437942 -0.7014455859 
##           371           372           373           374           375 
##  2.6396836035  0.0844053306  0.3140694118  0.4612072462 -0.0484542165 
##           376           377           378           379           380 
##  1.5113770927  0.4940021199  1.0820115221  0.1806768256 -0.4744100994 
##           381           382           383           384           385 
## -0.0059088709  0.5153161332  0.0001318181 -2.5177963282  0.0668198654 
##           386           387           388           389           390 
##  0.1973981871  0.9904799196 -2.1984580381  0.0168640664 -1.4291745534 
##           391           392           393           394           395 
## -0.0247006355 -0.1628380983 -0.2292329231 -1.4175670239  0.5530912212
outliers_G3 <- which(abs(rstudent(model_G3)) > 2)

Removed outliers and re-fit the Regression

#G1
G1removedoutliers <- data_G1[-c(1,80, 178, 193, 199, 246, 249, 261, 266, 287, 294, 375), ]
G1removedoutliers.fit <- lm(G1 ~ ., data=G1removedoutliers)
summary(G1removedoutliers.fit)
## 
## Call:
## lm(formula = G1 ~ ., data = G1removedoutliers)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.504 -1.881 -0.015  1.749  5.393 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      11.023708   3.074315   3.586 0.000385 ***
## schoolUP          0.076799   0.516558   0.149 0.881898    
## sexM              0.979764   0.325480   3.010 0.002804 ** 
## age              -0.072381   0.142293  -0.509 0.611306    
## addressU          0.312128   0.385330   0.810 0.418487    
## famsizeLE3        0.342357   0.322092   1.063 0.288568    
## PstatusT         -0.017866   0.477766  -0.037 0.970192    
## Medu              0.140202   0.210888   0.665 0.506615    
## Fedu              0.161796   0.181121   0.893 0.372322    
## Mjobhealth        0.421033   0.732222   0.575 0.565663    
## Mjobother        -1.190478   0.471761  -2.523 0.012071 *  
## Mjobservices     -0.216246   0.532075  -0.406 0.684688    
## Mjobteacher      -1.414362   0.685421  -2.063 0.039818 *  
## Fjobhealth       -0.200462   0.937490  -0.214 0.830808    
## Fjobother        -0.860084   0.675648  -1.273 0.203889    
## Fjobservices     -0.405829   0.696933  -0.582 0.560742    
## Fjobteacher       1.556865   0.857111   1.816 0.070180 .  
## reasonhome       -0.002914   0.359037  -0.008 0.993528    
## reasonother      -0.250935   0.540975  -0.464 0.643044    
## reasonreputation  0.350161   0.375661   0.932 0.351930    
## guardianmother    0.049023   0.356894   0.137 0.890826    
## guardianother     1.216849   0.657679   1.850 0.065142 .  
## traveltime       -0.149729   0.221444  -0.676 0.499403    
## studytime         0.596402   0.186815   3.192 0.001541 ** 
## failures         -1.345928   0.215340  -6.250 1.22e-09 ***
## schoolsupyes     -1.872729   0.434702  -4.308 2.15e-05 ***
## famsupyes        -1.089675   0.313580  -3.475 0.000577 ***
## paidyes          -0.126305   0.310776  -0.406 0.684689    
## activitiesyes     0.040578   0.291209   0.139 0.889260    
## nurseryyes       -0.142339   0.356053  -0.400 0.689576    
## higheryes         1.276850   0.697725   1.830 0.068115 .  
## internetyes       0.287973   0.404829   0.711 0.477354    
## romanticyes      -0.143955   0.307097  -0.469 0.639538    
## famrel           -0.054517   0.160027  -0.341 0.733557    
## freetime          0.397706   0.155449   2.558 0.010943 *  
## goout            -0.439882   0.145466  -3.024 0.002683 ** 
## Dalc             -0.140267   0.216547  -0.648 0.517584    
## Walc              0.035538   0.161879   0.220 0.826363    
## health           -0.047793   0.105139  -0.455 0.649707    
## absences          0.006728   0.018830   0.357 0.721082    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.641 on 343 degrees of freedom
## Multiple R-squared:  0.3748, Adjusted R-squared:  0.3037 
## F-statistic: 5.273 on 39 and 343 DF,  p-value: < 2.2e-16
par(mfrow =c(2,2),mar=c(2,2,2,2))
plot(G1removedoutliers.fit)

#G2
G2removedoutliers <- data_G2[-c(97,131,132,135,136,137,138,145,157,162,163,165,243,245,255,270,332,333), ]
G2removedoutliers.fit <- lm(G2 ~ ., data=G2removedoutliers)
summary(G2removedoutliers.fit)
## 
## Call:
## lm(formula = G2 ~ ., data = G2removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8753 -0.7800 -0.0314  0.6853  3.1114 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       5.611890   1.492754   3.759 0.000201 ***
## schoolUP          0.084947   0.244713   0.347 0.728711    
## sexM             -0.044970   0.156990  -0.286 0.774709    
## age              -0.285902   0.068067  -4.200 3.42e-05 ***
## addressU          0.306286   0.186991   1.638 0.102364    
## famsizeLE3        0.169568   0.150832   1.124 0.261724    
## PstatusT         -0.192067   0.224144  -0.857 0.392117    
## Medu              0.163594   0.100281   1.631 0.103752    
## Fedu             -0.005160   0.086595  -0.060 0.952517    
## Mjobhealth        0.033629   0.345852   0.097 0.922598    
## Mjobother         0.312651   0.227871   1.372 0.170962    
## Mjobservices      0.174961   0.249220   0.702 0.483143    
## Mjobteacher      -0.375983   0.323652  -1.162 0.246187    
## Fjobhealth       -0.001214   0.444317  -0.003 0.997821    
## Fjobother         0.247310   0.322184   0.768 0.443261    
## Fjobservices      0.336184   0.331236   1.015 0.310865    
## Fjobteacher       0.131220   0.407636   0.322 0.747725    
## reasonhome       -0.069284   0.172357  -0.402 0.687953    
## reasonother       0.419910   0.250035   1.679 0.094003 .  
## reasonreputation -0.216067   0.180314  -1.198 0.231652    
## guardianmother   -0.029532   0.169135  -0.175 0.861494    
## guardianother     0.375104   0.313223   1.198 0.231931    
## traveltime       -0.073445   0.108900  -0.674 0.500503    
## studytime        -0.004155   0.091074  -0.046 0.963642    
## failures         -0.160804   0.113032  -1.423 0.155768    
## schoolsupyes     -0.185162   0.215671  -0.859 0.391207    
## famsupyes        -0.011103   0.149927  -0.074 0.941010    
## paidyes           0.138838   0.147404   0.942 0.346925    
## activitiesyes     0.040914   0.139952   0.292 0.770203    
## nurseryyes       -0.024923   0.172539  -0.144 0.885232    
## higheryes         0.072575   0.346983   0.209 0.834450    
## internetyes       0.235969   0.195595   1.206 0.228507    
## romanticyes      -0.340530   0.147603  -2.307 0.021659 *  
## famrel           -0.037655   0.076480  -0.492 0.622788    
## freetime         -0.124520   0.073249  -1.700 0.090067 .  
## goout            -0.025639   0.070904  -0.362 0.717879    
## Dalc              0.134494   0.103935   1.294 0.196548    
## Walc             -0.023290   0.078423  -0.297 0.766663    
## health           -0.004548   0.049586  -0.092 0.926978    
## absences         -0.018950   0.008965  -2.114 0.035269 *  
## G1                0.893618   0.023909  37.375  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.248 on 336 degrees of freedom
## Multiple R-squared:  0.8729, Adjusted R-squared:  0.8578 
## F-statistic: 57.69 on 40 and 336 DF,  p-value: < 2.2e-16
par(mfrow =c(2,2),mar=c(2,2,2,2))
plot(G2removedoutliers.fit)

#G3
G3removedoutliers <- data_G3[-c(141,147,149,161,169,171,174,240,260,265,297,311,317,334,335,338,342,344,368,371,384,388), ]
G3removedoutliers.fit <- lm(G3 ~ ., data=G3removedoutliers)
summary(G3removedoutliers.fit)
## 
## Call:
## lm(formula = G3 ~ ., data = G3removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6298 -0.4931 -0.0415  0.5536  2.2218 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.3095048  1.1282551  -1.161  0.24662    
## schoolUP          0.2143879  0.1867972   1.148  0.25192    
## sexM             -0.0420204  0.1174444  -0.358  0.72073    
## age               0.0409396  0.0510871   0.801  0.42349    
## addressU          0.0602394  0.1350743   0.446  0.65591    
## famsizeLE3       -0.0929229  0.1147907  -0.809  0.41881    
## PstatusT         -0.2515662  0.1682894  -1.495  0.13591    
## Medu             -0.0167732  0.0752359  -0.223  0.82372    
## Fedu             -0.0334289  0.0650752  -0.514  0.60781    
## Mjobhealth        0.2484723  0.2647949   0.938  0.34874    
## Mjobother        -0.1736784  0.1711082  -1.015  0.31084    
## Mjobservices     -0.0069468  0.1918509  -0.036  0.97114    
## Mjobteacher       0.2206809  0.2451943   0.900  0.36876    
## Fjobhealth        0.1981070  0.3318343   0.597  0.55091    
## Fjobother         0.0840749  0.2394881   0.351  0.72577    
## Fjobservices      0.0752638  0.2487252   0.303  0.76239    
## Fjobteacher       0.0923559  0.3030118   0.305  0.76072    
## reasonhome        0.1896112  0.1310199   1.447  0.14879    
## reasonother       0.0576504  0.1916073   0.301  0.76370    
## reasonreputation  0.0127303  0.1344622   0.095  0.92463    
## guardianmother   -0.0969067  0.1284022  -0.755  0.45096    
## guardianother    -0.3598379  0.2449894  -1.469  0.14284    
## traveltime        0.1013376  0.0792731   1.278  0.20203    
## studytime         0.0416075  0.0689549   0.603  0.54665    
## failures         -0.1114026  0.0857673  -1.299  0.19488    
## schoolsupyes     -0.0008611  0.1600379  -0.005  0.99571    
## famsupyes         0.0869895  0.1133892   0.767  0.44352    
## paidyes          -0.1111658  0.1113145  -0.999  0.31869    
## activitiesyes    -0.1431917  0.1046973  -1.368  0.17234    
## nurseryyes       -0.2695707  0.1298686  -2.076  0.03869 *  
## higheryes         0.0595421  0.2678865   0.222  0.82424    
## internetyes       0.0586842  0.1457999   0.402  0.68758    
## romanticyes      -0.0570805  0.1117580  -0.511  0.60987    
## famrel            0.2698969  0.0581785   4.639 5.05e-06 ***
## freetime          0.0551286  0.0560304   0.984  0.32588    
## goout            -0.1076184  0.0550177  -1.956  0.05130 .  
## Dalc             -0.0005226  0.0770302  -0.007  0.99459    
## Walc              0.0474131  0.0588693   0.805  0.42117    
## health           -0.1046917  0.0380465  -2.752  0.00626 ** 
## absences         -0.0002087  0.0067873  -0.031  0.97548    
## G1                0.0456898  0.0311407   1.467  0.14327    
## G2                0.9734064  0.0264079  36.860  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9325 on 331 degrees of freedom
## Multiple R-squared:  0.9509, Adjusted R-squared:  0.9448 
## F-statistic: 156.3 on 41 and 331 DF,  p-value: < 2.2e-16
par(mfrow =c(2,2),mar=c(2,2,2,2))
plot(G3removedoutliers.fit)

Using Stepwise Regression

In this section, stepwise regression is done to iteratively select a subset of predictor variables that contribute significantly to the model’s fit for each response variable. The direction = "both" argument indicates that both forward and backward selection steps are used. Since the process is so long, the process is excluded and summary for the stepewise regression models are presented.

summary(step1)
## 
## Call:
## lm(formula = G1 ~ sex + address + Fedu + Mjob + Fjob + guardian + 
##     studytime + failures + schoolsup + famsup + higher + freetime + 
##     goout, data = G1removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3643 -1.9363 -0.1022  1.7557  5.6823 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     9.15426    1.19223   7.678 1.52e-13 ***
## sexM            0.96543    0.30042   3.214 0.001429 ** 
## addressU        0.52108    0.33165   1.571 0.117019    
## Fedu            0.23845    0.14879   1.603 0.109900    
## Mjobhealth      0.83876    0.60786   1.380 0.168487    
## Mjobother      -1.01986    0.43163  -2.363 0.018665 *  
## Mjobservices    0.05411    0.46274   0.117 0.906980    
## Mjobteacher    -1.01367    0.55454  -1.828 0.068382 .  
## Fjobhealth     -0.27277    0.89005  -0.306 0.759422    
## Fjobother      -0.85090    0.63693  -1.336 0.182408    
## Fjobservices   -0.48711    0.65956  -0.739 0.460667    
## Fjobteacher     1.40523    0.81699   1.720 0.086284 .  
## guardianmother  0.09204    0.34090   0.270 0.787310    
## guardianother   1.10334    0.57849   1.907 0.057277 .  
## studytime       0.64870    0.17268   3.757 0.000201 ***
## failures       -1.37022    0.20732  -6.609 1.38e-10 ***
## schoolsupyes   -1.76601    0.40856  -4.323 2.00e-05 ***
## famsupyes      -1.10465    0.28849  -3.829 0.000152 ***
## higheryes       1.35216    0.65207   2.074 0.038817 *  
## freetime        0.37801    0.14723   2.567 0.010646 *  
## goout          -0.45917    0.12737  -3.605 0.000356 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.597 on 362 degrees of freedom
## Multiple R-squared:  0.3618, Adjusted R-squared:  0.3266 
## F-statistic: 10.26 on 20 and 362 DF,  p-value: < 2.2e-16
summary(step2)
## 
## Call:
## lm(formula = G2 ~ age + address + Medu + Mjob + failures + romantic + 
##     freetime + Dalc + absences + G1, data = G2removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4093 -0.7952  0.0023  0.6926  3.2430 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.129287   0.981465   5.226 2.93e-07 ***
## age          -0.264588   0.054095  -4.891 1.51e-06 ***
## addressU      0.404964   0.161607   2.506   0.0127 *  
## Medu          0.137674   0.078938   1.744   0.0820 .  
## Mjobhealth    0.169752   0.310649   0.546   0.5851    
## Mjobother     0.322939   0.207593   1.556   0.1207    
## Mjobservices  0.274174   0.227944   1.203   0.2298    
## Mjobteacher  -0.250907   0.292351  -0.858   0.3913    
## failures     -0.160832   0.101826  -1.579   0.1151    
## romanticyes  -0.263242   0.140629  -1.872   0.0620 .  
## freetime     -0.138255   0.065461  -2.112   0.0354 *  
## Dalc          0.158854   0.074342   2.137   0.0333 *  
## absences     -0.017203   0.008203  -2.097   0.0367 *  
## G1            0.898633   0.021219  42.350  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.229 on 363 degrees of freedom
## Multiple R-squared:  0.8667, Adjusted R-squared:  0.862 
## F-statistic: 181.6 on 13 and 363 DF,  p-value: < 2.2e-16
summary(step3)
## 
## Call:
## lm(formula = G3 ~ failures + nursery + famrel + goout + health + 
##     G1 + G2, data = G3removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7068 -0.4262 -0.0597  0.5675  2.6300 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.43281    0.34990  -1.237   0.2169    
## failures    -0.11395    0.07142  -1.595   0.1115    
## nurseryyes  -0.23928    0.11914  -2.008   0.0453 *  
## famrel       0.25914    0.05368   4.828 2.03e-06 ***
## goout       -0.06547    0.04430  -1.478   0.1403    
## health      -0.08878    0.03462  -2.565   0.0107 *  
## G1           0.04787    0.02711   1.766   0.0783 .  
## G2           0.97496    0.02390  40.792  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9164 on 365 degrees of freedom
## Multiple R-squared:  0.9477, Adjusted R-squared:  0.9467 
## F-statistic: 944.8 on 7 and 365 DF,  p-value: < 2.2e-16

Final Reduced Models of G1, G2, G3

#G1
final1 <- lm(G1 ~ sex + address + Fedu + Mjob + Fjob + guardian + studytime + 
    failures + schoolsup + famsup + higher + freetime + goout, data = G1removedoutliers)
#G2
final2 <- lm(G2 ~ age + address + Medu + Mjob + failures + romantic + freetime + 
    Dalc + absences + G1, data = G2removedoutliers)
#G3
final3 <- lm(G3 ~ failures + nursery + famrel + goout + health + G1 + G2, data = G3removedoutliers)

Summary of Final Reduced Model

#Final Model of G1
summary(final1)
## 
## Call:
## lm(formula = G1 ~ sex + address + Fedu + Mjob + Fjob + guardian + 
##     studytime + failures + schoolsup + famsup + higher + freetime + 
##     goout, data = G1removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3643 -1.9363 -0.1022  1.7557  5.6823 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     9.15426    1.19223   7.678 1.52e-13 ***
## sexM            0.96543    0.30042   3.214 0.001429 ** 
## addressU        0.52108    0.33165   1.571 0.117019    
## Fedu            0.23845    0.14879   1.603 0.109900    
## Mjobhealth      0.83876    0.60786   1.380 0.168487    
## Mjobother      -1.01986    0.43163  -2.363 0.018665 *  
## Mjobservices    0.05411    0.46274   0.117 0.906980    
## Mjobteacher    -1.01367    0.55454  -1.828 0.068382 .  
## Fjobhealth     -0.27277    0.89005  -0.306 0.759422    
## Fjobother      -0.85090    0.63693  -1.336 0.182408    
## Fjobservices   -0.48711    0.65956  -0.739 0.460667    
## Fjobteacher     1.40523    0.81699   1.720 0.086284 .  
## guardianmother  0.09204    0.34090   0.270 0.787310    
## guardianother   1.10334    0.57849   1.907 0.057277 .  
## studytime       0.64870    0.17268   3.757 0.000201 ***
## failures       -1.37022    0.20732  -6.609 1.38e-10 ***
## schoolsupyes   -1.76601    0.40856  -4.323 2.00e-05 ***
## famsupyes      -1.10465    0.28849  -3.829 0.000152 ***
## higheryes       1.35216    0.65207   2.074 0.038817 *  
## freetime        0.37801    0.14723   2.567 0.010646 *  
## goout          -0.45917    0.12737  -3.605 0.000356 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.597 on 362 degrees of freedom
## Multiple R-squared:  0.3618, Adjusted R-squared:  0.3266 
## F-statistic: 10.26 on 20 and 362 DF,  p-value: < 2.2e-16
#Final Model of G2
summary(final2)
## 
## Call:
## lm(formula = G2 ~ age + address + Medu + Mjob + failures + romantic + 
##     freetime + Dalc + absences + G1, data = G2removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4093 -0.7952  0.0023  0.6926  3.2430 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.129287   0.981465   5.226 2.93e-07 ***
## age          -0.264588   0.054095  -4.891 1.51e-06 ***
## addressU      0.404964   0.161607   2.506   0.0127 *  
## Medu          0.137674   0.078938   1.744   0.0820 .  
## Mjobhealth    0.169752   0.310649   0.546   0.5851    
## Mjobother     0.322939   0.207593   1.556   0.1207    
## Mjobservices  0.274174   0.227944   1.203   0.2298    
## Mjobteacher  -0.250907   0.292351  -0.858   0.3913    
## failures     -0.160832   0.101826  -1.579   0.1151    
## romanticyes  -0.263242   0.140629  -1.872   0.0620 .  
## freetime     -0.138255   0.065461  -2.112   0.0354 *  
## Dalc          0.158854   0.074342   2.137   0.0333 *  
## absences     -0.017203   0.008203  -2.097   0.0367 *  
## G1            0.898633   0.021219  42.350  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.229 on 363 degrees of freedom
## Multiple R-squared:  0.8667, Adjusted R-squared:  0.862 
## F-statistic: 181.6 on 13 and 363 DF,  p-value: < 2.2e-16
#Final Model of G3
summary(final3)
## 
## Call:
## lm(formula = G3 ~ failures + nursery + famrel + goout + health + 
##     G1 + G2, data = G3removedoutliers)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7068 -0.4262 -0.0597  0.5675  2.6300 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.43281    0.34990  -1.237   0.2169    
## failures    -0.11395    0.07142  -1.595   0.1115    
## nurseryyes  -0.23928    0.11914  -2.008   0.0453 *  
## famrel       0.25914    0.05368   4.828 2.03e-06 ***
## goout       -0.06547    0.04430  -1.478   0.1403    
## health      -0.08878    0.03462  -2.565   0.0107 *  
## G1           0.04787    0.02711   1.766   0.0783 .  
## G2           0.97496    0.02390  40.792  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9164 on 365 degrees of freedom
## Multiple R-squared:  0.9477, Adjusted R-squared:  0.9467 
## F-statistic: 944.8 on 7 and 365 DF,  p-value: < 2.2e-16

Final Reduced Model Comparison

# ANOVA comparison
anova(step1, step2, step3)
## Warning in anova.lmlist(object, ...): models with response 'c("G2", "G3")'
## removed because response differs from model 1
## Analysis of Variance Table
## 
## Response: G1
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## sex         1   56.00   56.00  8.3001 0.0042005 ** 
## address     1   35.94   35.94  5.3273 0.0215565 *  
## Fedu        1  158.12  158.12 23.4355 1.916e-06 ***
## Mjob        4   95.45   23.86  3.5369 0.0075665 ** 
## Fjob        4   76.00   19.00  2.8162 0.0252094 *  
## guardian    2    1.22    0.61  0.0905 0.9134846    
## studytime   1  171.54  171.54 25.4241 7.288e-07 ***
## failures    1  428.45  428.45 63.5021 2.108e-14 ***
## schoolsup   1  139.77  139.77 20.7161 7.283e-06 ***
## famsup      1   88.68   88.68 13.1438 0.0003298 ***
## higher      1   28.20   28.20  4.1801 0.0416250 *  
## freetime    1   17.63   17.63  2.6133 0.1068438    
## goout       1   87.69   87.69 12.9972 0.0003557 ***
## Residuals 362 2442.40    6.75                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This code performs an ANOVA comparison between the final models obtained after stepwise regression to evaluate if there are significant differences in their fits.

Extract significant variables of each model where predictors have p-value < 0.05

significant_var1 <- summary(final1)$coefficients[summary(final1)$coefficients[, 4] < 0.05, ]
significant_var2 <- summary(final2)$coefficients[summary(final2)$coefficients[, 4] < 0.05, ]
significant_var3 <- summary(final1)$coefficients[summary(final3)$coefficients[, 4] < 0.05, ]

These lines extract the coefficients of the predictor variables that have p-values less than 0.05 from the summary of the final models (final1, final2, final3). This helps to identify the significant variables in the models that have a meaningful impact on the response variable.

The Significant features for each model are as follows:

G1 Model G2 Model G3 Model
sexM age failures
address addressU nursery
Fedu Medu famrel
Mjobother Mjob goout
studytime failures health
failures freetime failures
schoolsupyes Dalc higheryes
famsupyes absences freetime
higheryes G1 G1
freetime G2
goout

Selected Model: G3

## The output of the Model of G3 Exam provides a summary of a linear regression model that provides information about the goodness of fit and model performance. Here's a breakdown of the values:
## Residual Standard Error: 0.9163565
## Multiple R-squared: 0.9476972
## Adjusted R-squared: 0.9466941
## F-statistic: 944.7991 on 7 and 365 DF, p-value < 2.2e-16