Init

library(kirkegaard)
## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: magrittr
## 
## 
## Attaching package: 'magrittr'
## 
## 
## The following object is masked from 'package:purrr':
## 
##     set_names
## 
## 
## The following object is masked from 'package:tidyr':
## 
##     extract
## 
## 
## Loading required package: weights
## 
## Loading required package: Hmisc
## 
## 
## Attaching package: 'Hmisc'
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## 
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## 
## 
## Loading required package: assertthat
## 
## 
## Attaching package: 'assertthat'
## 
## 
## The following object is masked from 'package:tibble':
## 
##     has_name
## 
## 
## Loading required package: psych
## 
## 
## Attaching package: 'psych'
## 
## 
## The following object is masked from 'package:Hmisc':
## 
##     describe
## 
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## 
## 
## Attaching package: 'kirkegaard'
## 
## 
## The following object is masked from 'package:psych':
## 
##     rescale
## 
## 
## The following object is masked from 'package:assertthat':
## 
##     are_equal
## 
## 
## The following object is masked from 'package:purrr':
## 
##     is_logical
## 
## 
## The following object is masked from 'package:base':
## 
##     +
load_packages(
  haven
)

theme_set(theme_bw())

options(
    digits = 3
)

Data

d = read_spss("data/anes_timeseries_cdf_spss_20220916/anes_timeseries_cdf_spss_20220916.sav")
d_vars = df_var_table(d)

anes2022 = read_spss("data/anes_pilot_2022_spss_20221114/anes_pilot_2022_spss_20221214.sav")
anes2022_vars = df_var_table(anes2022)

Analysis

#feelings for all groups
feeling_vars = anes2022_vars %>% filter(str_detect(label, "How would you rate "))
feelings = anes2022 %>% select(!!(feeling_vars$var_name))

#merge half missing vars
feelings$white = miss_fill(feelings$ftwhite1, feelings$ftwhite2)
feelings$black = miss_fill(feelings$ftblack1, feelings$ftblack2)
feelings$ftwhite1 = NULL
feelings$ftwhite2 = NULL
feelings$ftblack1 = NULL
feelings$ftblack2 = NULL

feelings_long = feelings %>% 
  pivot_longer(cols = everything()) %>% 
  mutate(
    label = plyr::revalue(name, replace = c(
      "black" = "Blacks",
      "white" = "Whites",
      "fthisp" = "Hispanics",
      "ftasian" = "Asians",
      "ftfbi" = "FBI",
      "ftscotus" = "Supreme Court",
      "fttrump" = "Trump",
      "ftbiden" = "Biden",
      "ftdem" = "Democrats",
      "ftrep" = "Republicans",
      "ftteach" = "Teachers",
      "ftfem" = "Feminists",
      "ftnfem" = "Non-feminists",
      "ftjourn" = "Journalists",
      "ftmen" = "Men",
      "ftwomen" = "Women",
      "fttrans" = "Transsexuals",
      "jan6therm" = "January 6th Capital invaders"
    ))
  )

#men vs. women
feelings_long %>% 
  filter(label %in% c("Men", "Women")) %>% 
  GG_denhist(var = "value", group = "label") +
  ggtitle("How would you rate (men/women)? On a scale of 0-100") +
  scale_x_continuous("Rating") +
  scale_fill_discrete("Group")
## Warning in GG_denhist(., var = "value", group = "label"): There were groups
## without any data. These were removed
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

GG_save("figs/ratings_men_women.png")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#barplot
feelings_long %>% 
  filter(label %in% c("Men", "Women")) %>% 
  GG_group_means(var = "value", groupvar = "label") +
  ggtitle("How would you rate (men/women)? On a scale of 0-100") +
  geom_hline(yintercept = 50, linetype = "dashed") +
  scale_y_continuous(breaks = seq(0, 100, 10))
## Missing values were removed.

GG_save("figs/men_women_barplot.png")

#stats
describe2(feelings_long$value, feelings_long$label)
## New names:
## • `` -> `...1`
#effect size
feelings_long %>% 
  filter(label %in% c("Men", "Women")) %>% 
  {
    SMD_matrix(
    .$value %>% as.numeric(),
    .$label,
    extended_output = T
    )
  }
## $d
##          Men  Women
## Men       NA -0.429
## Women -0.429     NA
## 
## $d_string
##       Men                   Women                
## Men   NA                    "-0.43 [-0.50 -0.36]"
## Women "-0.43 [-0.50 -0.36]" NA                   
## 
## $CI_lower
##          Men  Women
## Men       NA -0.499
## Women -0.499     NA
## 
## $CI_upper
##          Men  Women
## Men       NA -0.358
## Women -0.358     NA
## 
## $se_z
## [1] 1.96
## 
## $se
##          Men  Women
## Men       NA 0.0359
## Women 0.0359     NA
## 
## $p
##            Men    Women
## Men         NA 8.45e-33
## Women 8.45e-33       NA
## 
## $pairwise_n
##        Men Women
## Men     NA  3168
## Women 3168    NA
#every group
feelings_long %>% 
  mutate(
    label = fct_reorder(label, value, .fun = mean)
  ) %>% 
  GG_group_means(var = "value", groupvar = "label") +
  ggtitle("How would you rate (men/women)? On a scale of 0-100", subtitle = "Data from ANES 2022 Pilot sample (USA, n = 1585)") +
  geom_hline(yintercept = 50, linetype = "dashed") +
  scale_y_continuous(breaks = seq(0, 100, 10), limits = c(0, 100)) +
  scale_x_discrete(guide = guide_axis(n.dodge = 2))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `label = fct_reorder(label, value, .fun = mean)`.
## Caused by warning:
## ! `fct_reorder()` removing 34 missing values.
## ℹ Use `.na_rm = TRUE` to silence this message.
## ℹ Use `.na_rm = FALSE` to preserve NAs.
## Missing values were removed.
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.

GG_save("figs/ratings_all_groups.png")

Meta

#versions
write_sessioninfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Linux Mint 21.1
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_DK.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_DK.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Europe/Berlin
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] haven_2.5.3           kirkegaard_2023-08-04 psych_2.3.6          
##  [4] assertthat_0.2.1      weights_1.0.4         Hmisc_5.1-0          
##  [7] magrittr_2.0.3        lubridate_1.9.2       forcats_1.0.0        
## [10] stringr_1.5.0         dplyr_1.1.2           purrr_1.0.1          
## [13] readr_2.1.4           tidyr_1.3.0           tibble_3.2.1         
## [16] ggplot2_3.4.2         tidyverse_2.0.0      
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.0  farver_2.1.1      fastmap_1.1.1     digest_0.6.33    
##  [5] rpart_4.1.19      timechange_0.2.0  lifecycle_1.0.3   cluster_2.1.4    
##  [9] survival_3.5-5    gdata_2.19.0      compiler_4.3.1    rlang_1.1.1      
## [13] sass_0.4.6        tools_4.3.1       utf8_1.2.3        yaml_2.3.7       
## [17] data.table_1.14.8 knitr_1.43        labeling_0.4.2    htmlwidgets_1.6.2
## [21] mnormt_2.1.1      plyr_1.8.8        withr_2.5.0       foreign_0.8-82   
## [25] nnet_7.3-19       grid_4.3.1        fansi_1.0.4       jomo_2.7-6       
## [29] colorspace_2.1-0  mice_3.16.0       scales_1.2.1      gtools_3.9.4     
## [33] iterators_1.0.14  MASS_7.3-60       cli_3.6.1         rmarkdown_2.23   
## [37] ragg_1.2.5        generics_0.1.3    rstudioapi_0.15.0 tzdb_0.4.0       
## [41] minqa_1.2.5       cachem_1.0.8      splines_4.3.1     parallel_4.3.1   
## [45] base64enc_0.1-3   vctrs_0.6.3       boot_1.3-28       glmnet_4.1-7     
## [49] Matrix_1.6-0      jsonlite_1.8.7    hms_1.1.3         mitml_0.4-5      
## [53] Formula_1.2-5     htmlTable_2.4.1   systemfonts_1.0.4 foreach_1.5.2    
## [57] jquerylib_0.1.4   glue_1.6.2        nloptr_2.0.3      pan_1.8          
## [61] codetools_0.2-19  stringi_1.7.12    gtable_0.3.3      shape_1.4.6      
## [65] lme4_1.1-34       munsell_0.5.0     pillar_1.9.0      htmltools_0.5.5  
## [69] R6_2.5.1          textshaping_0.3.6 evaluate_0.21     lattice_0.21-8   
## [73] highr_0.10        backports_1.4.1   broom_1.0.5       bslib_0.5.0      
## [77] Rcpp_1.0.11       gridExtra_2.3     nlme_3.1-162      checkmate_2.2.0  
## [81] xfun_0.39         pkgconfig_2.0.3
#OSF
if (F) {
  library(osfr)
  
  #login
  osf_auth(readr::read_lines("~/.config/osf_token"))
  
  #the project we will use
  osf_proj = osf_retrieve_node("https://osf.io/XXX/")
  
  #upload all files in project
  #overwrite existing (versioning)
  osf_upload(
    osf_proj,
    path = c("data", "figures", "papers", "notebook.Rmd", "notebook.html", "sessions_info.txt"), 
    conflicts = "overwrite"
    )
}