library(kirkegaard)
## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: magrittr
##
##
## Attaching package: 'magrittr'
##
##
## The following object is masked from 'package:purrr':
##
## set_names
##
##
## The following object is masked from 'package:tidyr':
##
## extract
##
##
## Loading required package: weights
##
## Loading required package: Hmisc
##
##
## Attaching package: 'Hmisc'
##
##
## The following objects are masked from 'package:dplyr':
##
## src, summarize
##
##
## The following objects are masked from 'package:base':
##
## format.pval, units
##
##
## Loading required package: assertthat
##
##
## Attaching package: 'assertthat'
##
##
## The following object is masked from 'package:tibble':
##
## has_name
##
##
## Loading required package: psych
##
##
## Attaching package: 'psych'
##
##
## The following object is masked from 'package:Hmisc':
##
## describe
##
##
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
##
##
##
## Attaching package: 'kirkegaard'
##
##
## The following object is masked from 'package:psych':
##
## rescale
##
##
## The following object is masked from 'package:assertthat':
##
## are_equal
##
##
## The following object is masked from 'package:purrr':
##
## is_logical
##
##
## The following object is masked from 'package:base':
##
## +
load_packages(
haven
)
theme_set(theme_bw())
options(
digits = 3
)
d = read_spss("data/anes_timeseries_cdf_spss_20220916/anes_timeseries_cdf_spss_20220916.sav")
d_vars = df_var_table(d)
anes2022 = read_spss("data/anes_pilot_2022_spss_20221114/anes_pilot_2022_spss_20221214.sav")
anes2022_vars = df_var_table(anes2022)
#feelings for all groups
feeling_vars = anes2022_vars %>% filter(str_detect(label, "How would you rate "))
feelings = anes2022 %>% select(!!(feeling_vars$var_name))
#merge half missing vars
feelings$white = miss_fill(feelings$ftwhite1, feelings$ftwhite2)
feelings$black = miss_fill(feelings$ftblack1, feelings$ftblack2)
feelings$ftwhite1 = NULL
feelings$ftwhite2 = NULL
feelings$ftblack1 = NULL
feelings$ftblack2 = NULL
feelings_long = feelings %>%
pivot_longer(cols = everything()) %>%
mutate(
label = plyr::revalue(name, replace = c(
"black" = "Blacks",
"white" = "Whites",
"fthisp" = "Hispanics",
"ftasian" = "Asians",
"ftfbi" = "FBI",
"ftscotus" = "Supreme Court",
"fttrump" = "Trump",
"ftbiden" = "Biden",
"ftdem" = "Democrats",
"ftrep" = "Republicans",
"ftteach" = "Teachers",
"ftfem" = "Feminists",
"ftnfem" = "Non-feminists",
"ftjourn" = "Journalists",
"ftmen" = "Men",
"ftwomen" = "Women",
"fttrans" = "Transsexuals",
"jan6therm" = "January 6th Capital invaders"
))
)
#men vs. women
feelings_long %>%
filter(label %in% c("Men", "Women")) %>%
GG_denhist(var = "value", group = "label") +
ggtitle("How would you rate (men/women)? On a scale of 0-100") +
scale_x_continuous("Rating") +
scale_fill_discrete("Group")
## Warning in GG_denhist(., var = "value", group = "label"): There were groups
## without any data. These were removed
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
GG_save("figs/ratings_men_women.png")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#barplot
feelings_long %>%
filter(label %in% c("Men", "Women")) %>%
GG_group_means(var = "value", groupvar = "label") +
ggtitle("How would you rate (men/women)? On a scale of 0-100") +
geom_hline(yintercept = 50, linetype = "dashed") +
scale_y_continuous(breaks = seq(0, 100, 10))
## Missing values were removed.
GG_save("figs/men_women_barplot.png")
#stats
describe2(feelings_long$value, feelings_long$label)
## New names:
## • `` -> `...1`
#effect size
feelings_long %>%
filter(label %in% c("Men", "Women")) %>%
{
SMD_matrix(
.$value %>% as.numeric(),
.$label,
extended_output = T
)
}
## $d
## Men Women
## Men NA -0.429
## Women -0.429 NA
##
## $d_string
## Men Women
## Men NA "-0.43 [-0.50 -0.36]"
## Women "-0.43 [-0.50 -0.36]" NA
##
## $CI_lower
## Men Women
## Men NA -0.499
## Women -0.499 NA
##
## $CI_upper
## Men Women
## Men NA -0.358
## Women -0.358 NA
##
## $se_z
## [1] 1.96
##
## $se
## Men Women
## Men NA 0.0359
## Women 0.0359 NA
##
## $p
## Men Women
## Men NA 8.45e-33
## Women 8.45e-33 NA
##
## $pairwise_n
## Men Women
## Men NA 3168
## Women 3168 NA
#every group
feelings_long %>%
mutate(
label = fct_reorder(label, value, .fun = mean)
) %>%
GG_group_means(var = "value", groupvar = "label") +
ggtitle("How would you rate (men/women)? On a scale of 0-100", subtitle = "Data from ANES 2022 Pilot sample (USA, n = 1585)") +
geom_hline(yintercept = 50, linetype = "dashed") +
scale_y_continuous(breaks = seq(0, 100, 10), limits = c(0, 100)) +
scale_x_discrete(guide = guide_axis(n.dodge = 2))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `label = fct_reorder(label, value, .fun = mean)`.
## Caused by warning:
## ! `fct_reorder()` removing 34 missing values.
## ℹ Use `.na_rm = TRUE` to silence this message.
## ℹ Use `.na_rm = FALSE` to preserve NAs.
## Missing values were removed.
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
GG_save("figs/ratings_all_groups.png")
#versions
write_sessioninfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Linux Mint 21.1
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_DK.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_DK.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Berlin
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] haven_2.5.3 kirkegaard_2023-08-04 psych_2.3.6
## [4] assertthat_0.2.1 weights_1.0.4 Hmisc_5.1-0
## [7] magrittr_2.0.3 lubridate_1.9.2 forcats_1.0.0
## [10] stringr_1.5.0 dplyr_1.1.2 purrr_1.0.1
## [13] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1
## [16] ggplot2_3.4.2 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.0 farver_2.1.1 fastmap_1.1.1 digest_0.6.33
## [5] rpart_4.1.19 timechange_0.2.0 lifecycle_1.0.3 cluster_2.1.4
## [9] survival_3.5-5 gdata_2.19.0 compiler_4.3.1 rlang_1.1.1
## [13] sass_0.4.6 tools_4.3.1 utf8_1.2.3 yaml_2.3.7
## [17] data.table_1.14.8 knitr_1.43 labeling_0.4.2 htmlwidgets_1.6.2
## [21] mnormt_2.1.1 plyr_1.8.8 withr_2.5.0 foreign_0.8-82
## [25] nnet_7.3-19 grid_4.3.1 fansi_1.0.4 jomo_2.7-6
## [29] colorspace_2.1-0 mice_3.16.0 scales_1.2.1 gtools_3.9.4
## [33] iterators_1.0.14 MASS_7.3-60 cli_3.6.1 rmarkdown_2.23
## [37] ragg_1.2.5 generics_0.1.3 rstudioapi_0.15.0 tzdb_0.4.0
## [41] minqa_1.2.5 cachem_1.0.8 splines_4.3.1 parallel_4.3.1
## [45] base64enc_0.1-3 vctrs_0.6.3 boot_1.3-28 glmnet_4.1-7
## [49] Matrix_1.6-0 jsonlite_1.8.7 hms_1.1.3 mitml_0.4-5
## [53] Formula_1.2-5 htmlTable_2.4.1 systemfonts_1.0.4 foreach_1.5.2
## [57] jquerylib_0.1.4 glue_1.6.2 nloptr_2.0.3 pan_1.8
## [61] codetools_0.2-19 stringi_1.7.12 gtable_0.3.3 shape_1.4.6
## [65] lme4_1.1-34 munsell_0.5.0 pillar_1.9.0 htmltools_0.5.5
## [69] R6_2.5.1 textshaping_0.3.6 evaluate_0.21 lattice_0.21-8
## [73] highr_0.10 backports_1.4.1 broom_1.0.5 bslib_0.5.0
## [77] Rcpp_1.0.11 gridExtra_2.3 nlme_3.1-162 checkmate_2.2.0
## [81] xfun_0.39 pkgconfig_2.0.3
#OSF
if (F) {
library(osfr)
#login
osf_auth(readr::read_lines("~/.config/osf_token"))
#the project we will use
osf_proj = osf_retrieve_node("https://osf.io/XXX/")
#upload all files in project
#overwrite existing (versioning)
osf_upload(
osf_proj,
path = c("data", "figures", "papers", "notebook.Rmd", "notebook.html", "sessions_info.txt"),
conflicts = "overwrite"
)
}