Closing the gap analyser.

## Warning in vtable::sumtable(tt, summ = c("mean(x)", "sd(x)", "pctile(x)[25]", :
## Some labelled variables have unlabeled values. Treating these as numeric
## variables and ignoring labels.
## Warning in vtable::sumtable(tt, summ = c("mean(x)", "sd(x)", "pctile(x)[25]", : Factor variables ignore custom summ options. Cols 1 and 2 are count and percentage.
## Beware combining factors with a custom summ unless factor.numeric = TRUE.
Summary Statistics
Variable Mean Sd Pctile[25] Pctile[75]
T2_LS_S 18 5.9 14 23
T2_PI_S 8.8 2.3 9 10
T2_WR_S 6.4 3.5 3 10
T2_SP_S 4.8 3.3 1 8
T2_RAN_T 57 16 46 65
T2_DS_S 6.1 1.7 5 7
T3_LW_R 2170
… 0 1941 89%
… 1 229 11%
T3_PI_R 2169
… 0 2035 94%
… 1 134 6%
T3_SP_R 2170
… 0 1988 92%
… 1 182 8%
T3_WR_R 2169
… 0 2015 93%
… 1 154 7%
T3_RC_R 2166
… 0 2025 93%
… 1 141 7%
T1_M_edR 2153
… 1 344 16%
… 2 1809 84%
T2_Risk 2170
… 0 1684 78%
… 1 486 22%
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00249606 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00216612 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00313584 (tol = 0.002, component 1)
Observations 2106
Dependent variable T3_LW_R
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.37 0.28 -8.57 0.00
cond1 -0.63 0.30 -2.08 0.04
T2_LS_S -0.79 0.14 -5.58 0.00
T2_PI_S -0.05 0.08 -0.66 0.51
T2_WR_S -0.34 0.16 -2.07 0.04
T2_SP_S 0.07 0.18 0.37 0.71
T2_RAN_T 0.17 0.07 2.29 0.02
T2_DS_S -0.18 0.09 -1.95 0.05
Random Effects
Group Parameter Std. Dev.
Class:school (Intercept) 0.30
school (Intercept) 0.57
Grouping Variables
Group # groups ICC
Class:school 101 0.03
school 41 0.09
Observations 2105
Dependent variable T3_PI_R
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -3.54 0.34 -10.37 0.00
cond1 -0.82 0.33 -2.46 0.01
T2_LS_S -0.75 0.18 -4.15 0.00
T2_PI_S -0.11 0.10 -1.14 0.26
T2_WR_S -0.72 0.25 -2.88 0.00
T2_SP_S -0.04 0.29 -0.14 0.89
T2_RAN_T 0.41 0.09 4.61 0.00
T2_DS_S -0.13 0.12 -1.02 0.31
Random Effects
Group Parameter Std. Dev.
Class:school (Intercept) 0.58
school (Intercept) 0.40
Grouping Variables
Group # groups ICC
Class:school 101 0.09
school 41 0.04
Observations 2106
Dependent variable T3_SP_R
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -3.38 0.28 -11.99 0.00
cond1 -0.66 0.24 -2.71 0.01
T2_LS_S -0.42 0.15 -2.83 0.00
T2_PI_S -0.41 0.08 -4.97 0.00
T2_WR_S -0.59 0.23 -2.62 0.01
T2_SP_S -0.52 0.26 -1.96 0.05
T2_RAN_T 0.36 0.08 4.47 0.00
T2_DS_S -0.20 0.11 -1.73 0.08
Random Effects
Group Parameter Std. Dev.
Class:school (Intercept) 0.00
school (Intercept) 0.25
Grouping Variables
Group # groups ICC
Class:school 101 0.00
school 41 0.02
Observations 2105
Dependent variable T3_WR_R
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -3.01 0.22 -13.84 0.00
cond1 -0.49 0.22 -2.26 0.02
T2_LS_S -0.55 0.15 -3.60 0.00
T2_PI_S -0.23 0.08 -2.69 0.01
T2_WR_S -0.42 0.21 -2.02 0.04
T2_SP_S 0.00 0.23 0.01 0.99
T2_RAN_T 0.37 0.08 4.68 0.00
T2_DS_S -0.19 0.11 -1.74 0.08
Random Effects
Group Parameter Std. Dev.
Class:school (Intercept) 0.00
school (Intercept) 0.00
Grouping Variables
Group # groups ICC
Class:school 101 0.00
school 41 0.00
Observations 2102
Dependent variable T3_RC_R
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -3.55 0.33 -10.70 0.00
cond1 -0.58 0.32 -1.81 0.07
T2_LS_S -0.91 0.18 -5.08 0.00
T2_PI_S -0.19 0.09 -2.04 0.04
T2_WR_S -0.50 0.25 -2.01 0.04
T2_SP_S 0.08 0.28 0.28 0.78
T2_RAN_T 0.39 0.09 4.49 0.00
T2_DS_S -0.22 0.13 -1.72 0.09
Random Effects
Group Parameter Std. Dev.
Class:school (Intercept) 0.47
school (Intercept) 0.40
Grouping Variables
Group # groups ICC
Class:school 101 0.06
school 41 0.04

Replikasjonsanalyser

Tables

Dependent variable: T2_R_LW_KP

Observations 680
Dependent variable T2_R_LW_KP
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -1.60 0.19 -8.45 0.00
cond2 0.07 0.30 0.25 0.80
T1_LR_S -0.35 0.11 -3.24 0.00
T1_PI_S -0.20 0.13 -1.51 0.13
T1_STM -0.10 0.11 -0.87 0.39
T1_WR_S -0.87 0.24 -3.61 0.00
T1_RAN_S 0.32 0.11 3.01 0.00
T1_SP_S 0.48 0.23 2.07 0.04
Random Effects
Group Parameter Std. Dev.
class:school (Intercept) 0.25
school (Intercept) 0.29
Grouping Variables
Group # groups ICC
class:school 41 0.02
school 12 0.03

Dependent variable: T2_R_PI_KP

Observations 680
Dependent variable T2_R_PI_KP
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.03 0.21 -9.73 0.00
cond2 -0.16 0.28 -0.58 0.56
T1_LR_S -0.42 0.12 -3.56 0.00
T1_PI_S -0.18 0.14 -1.24 0.21
T1_STM -0.44 0.13 -3.28 0.00
T1_WR_S -0.39 0.27 -1.44 0.15
T1_RAN_S 0.37 0.11 3.25 0.00
T1_SP_S -0.38 0.30 -1.28 0.20
Random Effects
Group Parameter Std. Dev.
class:school (Intercept) 0.43
school (Intercept) 0.00
Grouping Variables
Group # groups ICC
class:school 41 0.05
school 12 0.00

Dependent variable: T2_R1_WR_KP

Observations 680
Dependent variable T2_R1_WR_KP
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.45 0.31 -7.88 0.00
cond2 -0.04 0.47 -0.09 0.93
T1_LR_S -0.43 0.13 -3.42 0.00
T1_PI_S -0.20 0.16 -1.25 0.21
T1_STM -0.18 0.14 -1.31 0.19
T1_WR_S -0.71 0.32 -2.19 0.03
T1_RAN_S 0.55 0.12 4.59 0.00
T1_SP_S -0.11 0.34 -0.32 0.75
Random Effects
Group Parameter Std. Dev.
class:school (Intercept) 0.00
school (Intercept) 0.61
Grouping Variables
Group # groups ICC
class:school 41 0.00
school 12 0.10

Dependent variable: T2_RI_RC_KP

Observations 680
Dependent variable T2_RI_RC_KP
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.81 0.32 -8.73 0.00
cond2 0.07 0.46 0.15 0.88
T1_LR_S -0.42 0.14 -3.05 0.00
T1_PI_S -0.21 0.18 -1.17 0.24
T1_STM -0.36 0.16 -2.30 0.02
T1_WR_S -0.90 0.37 -2.43 0.02
T1_RAN_S 0.46 0.12 3.72 0.00
T1_SP_S 0.18 0.37 0.48 0.63
Random Effects
Group Parameter Std. Dev.
class:school (Intercept) 0.00
school (Intercept) 0.57
Grouping Variables
Group # groups ICC
class:school 41 0.00
school 12 0.09

Dependent variable: T2_RI_SP_KP

Observations 680
Dependent variable T2_RI_SP_KP
Type Mixed effects generalized linear model
Family binomial
Link logit
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.13 0.22 -9.69 0.00
cond2 -0.28 0.29 -0.95 0.34
T1_LR_S -0.27 0.12 -2.25 0.02
T1_PI_S -0.46 0.15 -3.04 0.00
T1_STM -0.48 0.14 -3.46 0.00
T1_WR_S -0.72 0.31 -2.32 0.02
T1_RAN_S 0.30 0.11 2.61 0.01
T1_SP_S 0.00 0.32 0.00 1.00
Random Effects
Group Parameter Std. Dev.
class:school (Intercept) 0.00
school (Intercept) 0.24
Grouping Variables
Group # groups ICC
class:school 41 0.00
school 12 0.02

A visual aid

I was able to make this graph for the naiv logistic regressions (i.e. without class taken into account). If the parameters for the logistic model with clustering are comparable for the naive, then this graph may be useful:

## Registered S3 methods overwritten by 'broom':
##   method            from  
##   tidy.glht         jtools
##   tidy.summary.glht jtools
## Loading required namespace: broom.mixed