UMAP and
clustering
acc_immune_ln <- FindNeighbors(acc_immune_ln, dims = pc2use,verbose = F)
acc_immune_ln <- FindClusters(acc_immune_ln, resolution = clus_res,verbose = F)
# Run non-linear dimensional reduction (UMAP)
acc_immune_ln <- RunUMAP(acc_immune_ln, dims = pc2use,verbose = F, metric = "euclidean")
DimPlot(object = acc_immune_ln, reduction = "umap", pt.size = 1, label = F)
SeuratDisk::SaveH5Seurat(object = acc_immune_ln,filename = "./Data/acc_immune_ln.h5seurat")
prefix="acc_tpm_nCount_mito_no146_"
acc_caf = readRDS(paste(prefix,"cafs.rds",sep=""))
acc_caf = readRDS("/sci/labs/yotamd/lab_share/ACC/ACC_sc/analysis/acc_tpm_nCount_mito_no146_cafs.rds")
acc_caf <- FindVariableFeatures(acc_caf, selection.method = "vst", nfeatures = 7500)
acc_caf <- ScaleData(acc_caf, vars.to.regress = c("percent.mt","nCount_RNA"))
clus_res=.25
gs=acc_caf@assays$RNA@var.features
myCAF=apply(acc_caf@assays$RNA@scale.data[intersect(c("ADIRF","ACTA2","MYH11","TAGLN","SPARCL1","MCAM","A2M","MYLK","IGFBP7","CRIP1","TINAGL1","TPM2","PTP4A3","PPP1R14A","CRIP2","ADAMTS1","CSRP2","NDUFA4L2","TPM1","MAP1B","FRZB","PRKCDBP","CSRP1","CAV1","ADAMTS4","GJA4","RGS5","MEF2C","CALM2","APOLD1","OAZ2","MGST3","ISYNA1","CPM","PGF","GUCY1B3","UBA2","YIF1A","PHLDA1","NDRG2","ID3","RGS16","CYB5R3","CRYAB","OLFML2A","TIMP3","GUCY1A3","FILIP1","FAM13C","NDUFS4","ITGB1","KCNE4","CPE"),gs),],2,mean)
dCAF=apply(acc_caf@assays$RNA@scale.data[intersect(c("COL1A1","THBS2","CTHRC1","COL3A1","LUM","COL1A2","LGALS1","COL5A1","POSTN","SERPINE1","LOXL2","COL11A1","CTSK","COL12A1","MMP2","INHBA","TNFAIP6","VCAN","ADAM12","THY1","FN1","STEAP1","SPON2","PLAUR","SPHK1","LOX","EMP1","ANGPTL2","RARRES2","SULF1","IGFBP3","COL8A1","GREM1","DCN","ITGA5","ANTXR1","RIN2","TMEM119","TNFRSF12A","P4HA3","CRABP2","TPM4","LOXL1","CPXM1","COL6A1","ASPN","PDLIM4","ITGA11","PRSS23","COL6A2","SFRP2","PLAU","YIF1A","SNAI2","C1S","TMEM176B","CTGF","MORF4L2","UAP1","SERPINF1","ITGB1","TGFBI","HTRA3","C1R","TIMP1","LMNA","CYP1B1","MGP","ANGPTL4"),gs),],2,mean)
iCAF=apply(acc_caf@assays$RNA@scale.data[intersect(c("CFD","GPC3","C3","ADH1B","IGF1","EFEMP1","PODN","SEPP1","CXCL12","ABI3BP","FBLN1","MGST1","MFAP4","PLA2G2A","DPT","WISP2","CCDC80","SFRP2","PTGDS","DCN","MGP","C1S","IGFBP6","GSN","TMEM176A","FIBIN","TMEM176B","SERPINF1","FHL1","GPX3","CTGF","C1R","SFRP4","CYP1B1","CST3","SLC40A1","FHL2","ELN","KLF4","RARRES1","CYR61","IGFBP5"),gs),],2,mean)
iCAF2=apply(acc_caf@assays$RNA@scale.data[intersect(c("IER3","CXCL2","ICAM1","TNFAIP2","NFKBIA","NR4A1","CCL2","SOD2","FOSB","PIM1","ZFP36","CLU","ABL2","GEM","NR4A3","APOD","SAT1","UAP1","OGN","GFPT2","JUNB","THBS1","CDKN1A","C3","CYP1B1","EGR1","ABI3BP","GADD45B","DUSP1","RARRES1","CST3"),gs),],2,mean)
pCAF=apply(acc_caf@assays$RNA@scale.data[intersect(c("NUSAP1","DIAPH3","LOXL2","ADAM12","LOX","POSTN","THY1","CD248","FN1","COL12A1","CTHRC1","COL5A1","LOXL1","COL1A1","COL8A1","COL6A1","COL6A2"),gs),],2,mean)
acc_caf=AddMetaData(acc_caf,myCAF,"pan.myCAF")
acc_caf=AddMetaData(acc_caf,dCAF,"pan.dCAF")
acc_caf=AddMetaData(acc_caf,iCAF,"pan.iCAF")
acc_caf=AddMetaData(acc_caf,iCAF2,"pan.iCAF2")
acc_caf=AddMetaData(acc_caf,pCAF,"pan.pCAF")
pc2use=1:11
acc_caf <- RunPCA(acc_caf, features = VariableFeatures(object = acc_caf))
pcaplot <- PCAPlot(acc_caf, label = FALSE)
elbowplot <- ElbowPlot(acc_caf, ndims = 50) # checking the dimensionality
acc_caf <- FindNeighbors(acc_caf, dims = pc2use)
acc_caf <- FindClusters(acc_caf, resolution = clus_res)
acc_caf <- RunUMAP(acc_caf, dims = pc2use)
DimPlot(object = acc_caf, reduction = "umap", pt.size = 0.5, label = TRUE)
FeaturePlot(acc_caf, "pan.myCAF", pt.size = 0.5, cols = c("blue","yellow"))
FeaturePlot(acc_caf, "pan.dCAF", pt.size = 0.5, cols = c("blue","yellow"))
FeaturePlot(acc_caf, "pan.iCAF", pt.size = 0.5, cols = c("blue","yellow"))
FeaturePlot(acc_caf, "pan.iCAF2", pt.size = 0.5, cols = c("blue","yellow"))
FeaturePlot(acc_caf, "pan.pCAF", pt.size = 0.5, cols = c("blue","yellow"))