Rasters da bacia
# Só precisamos uma rodada para os raster de condições inicias
list.Simulacoes <- basename(list.dirs(path = "../../run/", full.names = F, recursive = F))
sims <- as.numeric(gsub(pattern = "_",replacement = "",
x = substr(list.Simulacoes, start = 1,stop = 2)))
list.Simulacoes <- list.Simulacoes[order(sims)]
list.Simulacoes
## [1] "1_0_1_0_1_0.5" "2_1_1_0_1_0.5" "3_2_1_0_1_0.5"
## [4] "4_3_1_0_1_0.5" "5_0_11_0_1_0.5" "6_1_11_0_1_0.5"
## [7] "7_2_11_0_1_0.5" "8_3_11_0_1_0.5" "9_0_26_0_1_0.5"
## [10] "10_1_26_0_1_0.5" "11_2_26_0_1_0.5" "12_3_26_0_1_0.5"
basin <- raster(paste("../../run/",list.Simulacoes[1],"/basin1.asc", sep = ""))
# plot(basin)
wsdem <- raster(paste("../../run/",list.Simulacoes[1],"/wsdem_pauliceia.asc", sep = ""))
# plot(wsdem)
sib2diag <- read.table(file = paste("../../run/",
list.Simulacoes[1],
"/sib2diag.txt", sep = ""),
header = T)
vars <- c("rn","ldwn","lupw","radswd","radswa","LE","ec","eg","H","G")
torre <- sib2diag[c(T,F,F),vars]
length(torre[,1]) == length(date)
## [1] TRUE
torre$date <- date
head(torre)
## rn ldwn lupw radswd radswa LE ec eg
## 1 -31.07615 398.8981 430.0596 0.100000 0.085363 19.46067 0 19.46067
## 4 -29.48080 395.7124 425.2785 0.100000 0.085363 17.98696 0 17.98696
## 7 -28.94879 392.7964 421.8304 0.100000 0.085363 16.19161 0 16.19161
## 10 -27.57398 390.0948 417.7541 0.100000 0.085363 17.38367 0 17.38367
## 13 -29.04882 387.5692 416.7033 0.100000 0.085363 14.27821 0 14.27821
## 16 -36.30805 374.7288 413.3773 2.789559 2.340510 15.95515 0 15.95515
## H G date
## 1 -8.555209 -3.230353 2009-01-01 00:00:00
## 4 -10.439493 -10.583304 2009-01-01 01:00:00
## 7 -11.012618 -15.328748 2009-01-01 02:00:00
## 10 -8.006154 -19.395637 2009-01-01 03:00:00
## 13 -12.342865 -21.588011 2009-01-01 04:00:00
## 16 -16.209661 -24.174086 2009-01-01 05:00:00
center <- sib2diag[c(F,T,F),vars]
center$date <- date
head(center)
## rn ldwn lupw radswd radswa LE ec eg
## 2 -31.06573 398.8669 430.0181 0.100000 0.0853621 19.21301 0 19.21301
## 5 -29.46664 395.6815 425.2335 0.100000 0.0853621 17.82387 0 17.82387
## 8 -28.93696 392.7663 421.7885 0.100000 0.0853621 16.05640 0 16.05640
## 11 -27.63436 390.0651 417.7848 0.100000 0.0853621 17.10388 0 17.10388
## 14 -29.05959 387.5399 416.6849 0.100000 0.0853621 14.19649 0 14.19649
## 17 -36.29332 374.7217 413.3542 2.787854 2.3391252 15.83558 0 15.83558
## H G date
## 2 -8.372032 -3.162889 2009-01-01 00:00:00
## 5 -10.329166 -10.469583 2009-01-01 01:00:00
## 8 -10.919917 -15.228049 2009-01-01 02:00:00
## 11 -8.066582 -19.243603 2009-01-01 03:00:00
## 14 -12.282153 -21.456825 2009-01-01 04:00:00
## 17 -16.111380 -24.046228 2009-01-01 05:00:00
Saldo de Radiação (Rn)
selec <- "rn"
Rn <- sapply(1:length(list.Simulacoes),
function(i){
cat(i,"..")
read.table(file = paste("../../run/",
list.Simulacoes[i],
"/sib2diag.txt", sep = ""),
header = T)[c(T,F,F),selec]
})
## 1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..
str( Rn )
## num [1:52584, 1:12] -31.1 -29.5 -28.9 -27.6 -29 ...
Rn <- as.data.frame( Rn )
str( Rn )
## 'data.frame': 52584 obs. of 12 variables:
## $ V1 : num -31.1 -29.5 -28.9 -27.6 -29 ...
## $ V2 : num -27.5 -26.2 -25.6 -25.6 -25.8 ...
## $ V3 : num -29.8 -28.3 -26.9 -27.8 -28.9 ...
## $ V4 : num -27.5 -26.2 -25.6 -25.6 -25.8 ...
## $ V5 : num -31.1 -29.3 -26.4 -26.9 -27.7 ...
## $ V6 : num -27.5 -26.2 -25.6 -25.6 -25.8 ...
## $ V7 : num -29.8 -28.3 -26.9 -27.8 -28.5 ...
## $ V8 : num -27.5 -26.2 -25.6 -25.6 -25.8 ...
## $ V9 : num -31.1 -29.1 -26.9 -27.3 -27.6 ...
## $ V10: num -27.5 -26.2 -25.6 -25.6 -25.8 ...
## $ V11: num -29.8 -28.3 -26.9 -27.7 -28.3 ...
## $ V12: num -27.5 -26.2 -25.6 -25.6 -25.8 ...
names( Rn ) <- gsub(pattern = "V",replacement = "",
x = names( Rn ))
Rn$date <- date
Fluxo de calor latente (LE)
selec <- "LE"
LE <- sapply(1:length(list.Simulacoes),
function(i){
cat(i,"..")
read.table(file = paste("../../run/",
list.Simulacoes[i],
"/sib2diag.txt", sep = ""),
header = T)[c(T,F,F),selec]
})
## 1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..
str(LE)
## num [1:52584, 1:12] 19.5 18 16.2 17.4 14.3 ...
LE <- as.data.frame(LE)
str(LE)
## 'data.frame': 52584 obs. of 12 variables:
## $ V1 : num 19.5 18 16.2 17.4 14.3 ...
## $ V2 : num 9.2441 2.1611 0.9841 0.1738 0.0524 ...
## $ V3 : num 11.8 13.8 15 13.8 13.9 ...
## $ V4 : num 9.2441 2.1611 0.9841 0.1738 0.0524 ...
## $ V5 : num 19.5 17.7 18.1 13.7 12.5 ...
## $ V6 : num 9.2441 2.1611 0.9841 0.1738 0.0524 ...
## $ V7 : num 11.8 13.8 14.9 13.5 12.8 ...
## $ V8 : num 9.2441 2.1611 0.9841 0.1738 0.0524 ...
## $ V9 : num 19.5 17.5 16.6 13.3 12.6 ...
## $ V10: num 9.2441 2.1612 0.9842 0.174 0.0524 ...
## $ V11: num 11.8 13.8 14.8 13.1 12.3 ...
## $ V12: num 9.2441 2.1612 0.9842 0.174 0.0524 ...
names(LE) <- gsub(pattern = "V",replacement = "",
x = names(LE))
LE$date <- date
Fluxo de calor sensível (H)
# Calor sensível na torre
selec <- "H"
H <- sapply(1:length(list.Simulacoes),
function(i){
cat(i,"..")
read.table(file = paste("../../run/",
list.Simulacoes[i],
"/sib2diag.txt", sep = ""),
header = T)[c(T,F,F),selec]
})
## 1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..
str(H)
## num [1:52584, 1:12] -8.56 -10.44 -11.01 -8.01 -12.34 ...
H <- as.data.frame(H)
str(H)
## 'data.frame': 52584 obs. of 12 variables:
## $ V1 : num -8.56 -10.44 -11.01 -8.01 -12.34 ...
## $ V2 : num 4.781 -0.303 -0.679 -1.046 -1.523 ...
## $ V3 : num -2.3 -7.39 -7.1 -10.72 -12.14 ...
## $ V4 : num 4.781 -0.303 -0.679 -1.046 -1.523 ...
## $ V5 : num -8.56 -10.36 -6.28 -10.01 -11.48 ...
## $ V6 : num 4.781 -0.303 -0.679 -1.046 -1.523 ...
## $ V7 : num -2.3 -7.39 -7.13 -10.62 -11.43 ...
## $ V8 : num 4.781 -0.303 -0.679 -1.046 -1.523 ...
## $ V9 : num -8.56 -10.29 -8 -11.22 -11.17 ...
## $ V10: num 4.781 -0.303 -0.679 -1.046 -1.523 ...
## $ V11: num -2.3 -7.39 -7.16 -10.48 -11.11 ...
## $ V12: num 4.781 -0.303 -0.679 -1.046 -1.523 ...
names(H) <- gsub(pattern = "V",replacement = "",
x = names(H))
H$date <- date
# Arquivo que contém a descripção das configurações
rodadas <- read.table("../../run/.rodadas", header = F)
rodadas <- rodadas[order(rodadas$V1),]
# Plotando com a distribuição PRatio
vars <- which(rodadas[,2] == 3)
timePlot( Rn , vars,
group = F, stack = F, lty = 1,
name.pol = c(paste("Ks", as.character(rodadas[vars,3]*3.3))),
ylab = "Radiação neta", xlab = "Data",
main = "Radiação neta [W/m²], distribuição PRatio"
)
timePlot(LE, vars,
group = F, stack = F, lty = 1,
name.pol = c(paste("Ks", as.character(rodadas[vars,3]*3.3))),
ylab = "Fluxo de calor latente", xlab = "Data",
main = "Fluxo de calor latente [W/m²], distribuição PRatio"
)
timePlot(H, vars,
group = F, stack = F, lty = 1,
name.pol = c(paste("Ks", as.character(rodadas[vars,3]*3.3))),
ylab = "Fluxo de calor sensível", xlab = "Data",
main = "Fluxo de calor sensível [W/m²], distribuição PRatio"
)
# Plotando Com a distribuição da precipitação a media horária em 24 horas
vars <- which(rodadas[,2] == 2)
timePlot( Rn , vars,
group = F, stack = F, lty = 1,
name.pol = c(paste("Ks", as.character(rodadas[vars,3]*3.3))),
ylab = "Radiação neta", xlab = "Data",
main = "Radiação neta [W/m²], distribuição 24 horas"
)
timePlot(LE, vars,
group = F, stack = F, lty = 1,
name.pol = c(paste("Ks", as.character(rodadas[vars,3]*3.3))),
ylab = "Fluxo de calor latente", xlab = "Data",
main = "Fluxo de calor latente [W/m²], distribuição 24 horas"
)
timePlot(H, vars,
group = F, stack = F, lty = 1,
name.pol = c(paste("Ks", as.character(rodadas[vars,3]*3.3))),
ylab = "Fluxo de calor sensível", xlab = "Data",
main = "Fluxo de calor sensível [W/m²], distribuição 24 horas"
)