library(readxl)
library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha

CARAGAMOS LA BASE DE DATOS Y HACEMOS SUMMARY

data1 <- read_excel("C:/Users/estudio/Desktop/MAESTRIA/ANALISIS_MULTIVARIADO/Tabla 1.2.3 ejemplo automotriz.xlsx",range = "B2:P102"    )

summary(data1)
##        EL             UB             DP             VE             TR      
##  Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :1.00  
##  1st Qu.:4.00   1st Qu.:2.75   1st Qu.:2.00   1st Qu.:2.00   1st Qu.:2.00  
##  Median :5.00   Median :4.00   Median :3.00   Median :4.00   Median :3.00  
##  Mean   :4.87   Mean   :3.62   Mean   :3.29   Mean   :3.79   Mean   :3.23  
##  3rd Qu.:6.00   3rd Qu.:5.00   3rd Qu.:4.00   3rd Qu.:5.00   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.00   Max.   :6.00   Max.   :7.00   Max.   :7.00  
##        FI             IM             CO             DC             RB      
##  Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :1.00  
##  1st Qu.:2.75   1st Qu.:3.00   1st Qu.:5.00   1st Qu.:4.00   1st Qu.:3.00  
##  Median :4.00   Median :4.00   Median :6.00   Median :5.50   Median :4.00  
##  Mean   :3.63   Mean   :4.38   Mean   :5.54   Mean   :5.21   Mean   :4.14  
##  3rd Qu.:5.00   3rd Qu.:6.00   3rd Qu.:7.00   3rd Qu.:6.00   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.00   Max.   :7.00   Max.   :7.00   Max.   :7.00  
##        BG            MP             AP             EA             CM      
##  Min.   :1.0   Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :1.00  
##  1st Qu.:3.0   1st Qu.:2.00   1st Qu.:4.00   1st Qu.:4.00   1st Qu.:3.00  
##  Median :4.0   Median :3.00   Median :4.00   Median :5.50   Median :4.00  
##  Mean   :3.9   Mean   :3.35   Mean   :4.25   Mean   :5.21   Mean   :3.94  
##  3rd Qu.:5.0   3rd Qu.:5.00   3rd Qu.:5.00   3rd Qu.:6.00   3rd Qu.:5.00  
##  Max.   :7.0   Max.   :7.00   Max.   :6.00   Max.   :7.00   Max.   :7.00
# MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

apply(X = data1, MARGIN = 2, FUN = mean) # MEDIAS DE CADA VARIABLE
##   EL   UB   DP   VE   TR   FI   IM   CO   DC   RB   BG   MP   AP   EA   CM 
## 4.87 3.62 3.29 3.79 3.23 3.63 4.38 5.54 5.21 4.14 3.90 3.35 4.25 5.21 3.94
apply(X = data1, MARGIN = 2, FUN = var) # VARIANZA DE CADA VARIABLE
##       EL       UB       DP       VE       TR       FI       IM       CO 
## 3.548586 2.541010 2.127172 2.672626 3.047576 2.457677 2.864242 2.533737 
##       DC       RB       BG       MP       AP       EA       CM 
## 2.389798 1.939798 1.343434 2.573232 1.118687 2.389798 2.420606

CALCULAMOS LA MATRIZ DE VARIANZA - COVARIANZA

## CALCULAMOS LA MATRIZ DE VARIANZA - COVARIANZA

var_cor <- data.frame(cov(data1)) # en la diagonal está la varianza de cada variable
var_cor
##             EL          UB         DP         VE         TR           FI
## EL  3.54858586 -0.43373737  0.9875758  1.3764646  1.3837374 -0.402121212
## UB -0.43373737  2.54101010 -0.1816162 -0.5452525 -0.4268687  2.393333333
## DP  0.98757576 -0.18161616  2.1271717  1.1423232  1.6700000 -0.134040404
## VE  1.37646465 -0.54525253  1.1423232  2.6726263  1.1295960 -0.533030303
## TR  1.38373737 -0.42686869  1.6700000  1.1295960  3.0475758 -0.388787879
## FI -0.40212121  2.39333333 -0.1340404 -0.5330303 -0.3887879  2.457676768
## IM  0.57515152  0.14585859  0.5452525  0.2422222  0.7298990  0.030909091
## CO  0.64666667 -0.43919192  0.3569697  0.5185859  0.3088889 -0.363838384
## DC  1.46191919 -0.75777778  0.2112121  0.8122222  0.5572727 -0.578080808
## RB -0.10282828 -0.04727273  0.2418182  0.3529293  0.5129293 -0.119393939
## BG  0.01717172  0.04242424  0.1202020  0.1909091  0.3161616 -0.007070707
## MP  0.73282828 -0.21919192  1.3015152  0.7207071  2.5550505 -0.202525253
## AP  0.41666667 -0.30808081  0.4823232  0.3661616  0.4671717 -0.138888889
## EA  1.46191919 -0.75777778  0.2112121  0.8122222  0.5572727 -0.578080808
## CM  0.13353535 -0.13414141  0.2296970  0.3004040  0.3270707  0.028080808
##            IM         CO         DC          RB           BG         MP
## EL 0.57515152  0.6466667  1.4619192 -0.10282828  0.017171717  0.7328283
## UB 0.14585859 -0.4391919 -0.7577778 -0.04727273  0.042424242 -0.2191919
## DP 0.54525253  0.3569697  0.2112121  0.24181818  0.120202020  1.3015152
## VE 0.24222222  0.5185859  0.8122222  0.35292929  0.190909091  0.7207071
## TR 0.72989899  0.3088889  0.5572727  0.51292929  0.316161616  2.5550505
## FI 0.03090909 -0.3638384 -0.5780808 -0.11939394 -0.007070707 -0.2025253
## IM 2.86424242  1.2775758  0.3638384  0.33010101  0.240404040  0.7242424
## CO 1.27757576  2.5337374  0.9258586  0.64080808  0.589898990  0.3444444
## DC 0.36383838  0.9258586  2.3897980  0.21272727  0.223232323  0.3904040
## RB 0.33010101  0.6408081  0.2127273  1.93979798  1.115151515  0.4757576
## BG 0.24040404  0.5898990  0.2232323  1.11515152  1.343434343  0.2676768
## MP 0.72424242  0.3444444  0.3904040  0.47575758  0.267676768  2.5732323
## AP 0.40909091  0.6111111  0.8257576  0.17676768  0.035353535  0.3964646
## EA 0.36383838  0.9258586  2.3897980  0.21272727  0.223232323  0.3904040
## CM 0.49777778  0.8408081  0.4369697  1.40242424  1.014141414  0.2939394
##             AP         EA          CM
## EL  0.41666667  1.4619192  0.13353535
## UB -0.30808081 -0.7577778 -0.13414141
## DP  0.48232323  0.2112121  0.22969697
## VE  0.36616162  0.8122222  0.30040404
## TR  0.46717172  0.5572727  0.32707071
## FI -0.13888889 -0.5780808  0.02808081
## IM  0.40909091  0.3638384  0.49777778
## CO  0.61111111  0.9258586  0.84080808
## DC  0.82575758  2.3897980  0.43696970
## RB  0.17676768  0.2127273  1.40242424
## BG  0.03535354  0.2232323  1.01414141
## MP  0.39646465  0.3904040  0.29393939
## AP  1.11868687  0.8257576  0.41919192
## EA  0.82575758  2.3897980  0.43696970
## CM  0.41919192  0.4369697  2.42060606

CALCULAMOS LOS VALORES Y VECTORES PROPIOS

auto <- eigen(cov(data1))


auto$values  # valores propios
##  [1]  1.104326e+01  5.397022e+00  4.785816e+00  3.959578e+00  2.828401e+00
##  [6]  2.176940e+00  1.595934e+00  1.125946e+00  1.111098e+00  7.567603e-01
## [11]  5.339769e-01  4.251314e-01  1.623279e-01  6.578549e-02 -2.220446e-16
auto$vectors # vectores propios
##              [,1]         [,2]       [,3]        [,4]         [,5]        [,6]
##  [1,]  0.38277533  0.084980625  0.2009794 -0.41865660  0.104940975  0.32856154
##  [2,] -0.19627184 -0.440678407 -0.1394138 -0.47046683  0.116815354 -0.01299471
##  [3,]  0.25910195 -0.271286960  0.2040792  0.05460784  0.008073716  0.19365101
##  [4,]  0.30393209 -0.004831676  0.1437609 -0.02832031  0.253581979  0.58497233
##  [5,]  0.38074027 -0.361386694  0.2844687  0.15230159  0.029438749 -0.25126463
##  [6,] -0.17682394 -0.412145802 -0.1504044 -0.48661434  0.153027925 -0.07483337
##  [7,]  0.20318499 -0.207613561 -0.2462993 -0.09565388 -0.721423656  0.12336650
##  [8,]  0.24689394  0.052398871 -0.3904180 -0.02320697 -0.360310400  0.16340848
##  [9,]  0.31959956  0.312819052 -0.1213701 -0.28244200  0.111698800 -0.32903864
## [10,]  0.13452204 -0.152405810 -0.3812459  0.27341381  0.286901424  0.03242335
## [11,]  0.09751468 -0.102981010 -0.3117268  0.15561340  0.215091431  0.03091499
## [12,]  0.30374117 -0.368857270  0.2053546  0.17209739 -0.045091817 -0.39019123
## [13,]  0.16477225  0.039485501 -0.0846866 -0.06744521 -0.044265568 -0.16518182
## [14,]  0.31959956  0.312819052 -0.1213701 -0.28244200  0.111698800 -0.32903864
## [15,]  0.16024857 -0.107183999 -0.4897921  0.19298205  0.280873622  0.05878295
##               [,7]        [,8]        [,9]       [,10]        [,11]
##  [1,]  0.653778399  0.17528792  0.02507365  0.01237796  0.178544499
##  [2,] -0.059423401 -0.08059210  0.09870545 -0.04183261  0.033919180
##  [3,] -0.261132077  0.43232854 -0.24725939 -0.56038893 -0.310008962
##  [4,] -0.492889447 -0.40164204  0.03849746  0.25282365  0.034362582
##  [5,]  0.100802190 -0.03368844  0.09397564  0.11557674  0.024804088
##  [6,] -0.126216314  0.07300825  0.00998406  0.09151583 -0.026593473
##  [7,]  0.105679134 -0.42020920 -0.32626541 -0.10389710 -0.020409122
##  [8,] -0.183563957  0.42752118  0.59759683  0.18685948 -0.020053654
##  [9,] -0.129687269 -0.14272715 -0.02600721 -0.10454143 -0.151982873
## [10,]  0.101185699 -0.19736062  0.10188207 -0.33150635  0.524823379
## [11,]  0.152279576 -0.12724909  0.27367266 -0.37545096 -0.268159963
## [12,] -0.007007441 -0.07642855  0.17674174  0.26040978 -0.008526656
## [13,] -0.306546218  0.32547253 -0.32508763 -0.01387051  0.628288892
## [14,] -0.129687269 -0.14272715 -0.02600721 -0.10454143 -0.151982873
## [15,]  0.160848910  0.20268251 -0.48058095  0.46040603 -0.281384616
##              [,12]        [,13]        [,14]         [,15]
##  [1,]  0.034380565  0.134222332  0.040252106 -3.259264e-16
##  [2,] -0.041869693  0.074592776 -0.694768564 -1.992801e-15
##  [3,] -0.206830002  0.088909934 -0.003643757 -2.109712e-16
##  [4,]  0.089143607  0.023651767  0.017066838 -9.012624e-17
##  [5,]  0.073697394 -0.710903495 -0.106780228  1.636071e-15
##  [6,]  0.004366406 -0.124828835  0.681463457  2.071356e-15
##  [7,]  0.030959638 -0.009889070  0.060561178  6.684597e-17
##  [8,] -0.107333500 -0.071759266 -0.035020793  1.992742e-16
##  [9,] -0.109325629 -0.021539610 -0.021051489  7.071068e-01
## [10,] -0.447859869 -0.003684249  0.098545815  1.886544e-16
## [11,]  0.690781192  0.069192833  0.046465163  4.286322e-17
## [12,] -0.028168771  0.658218384  0.080970065 -1.350587e-15
## [13,]  0.472396779  0.052523623 -0.062323079 -6.572293e-16
## [14,] -0.109325629 -0.021539610 -0.021051489 -7.071068e-01
## [15,] -0.052885000  0.001842352 -0.107174377 -3.953732e-16

VARIANZA TOTAL Y VARIANZA GENERALIZADA

vtotal <- sum(diag(cov(data1)))  # varianza total
vtotal
## [1] 35.96798
vgen <- det(cov(data1)) # varianza generalizada
vgen
## [1] 0

PRIMERAS COMPONENTES PRINCIPALES

x1 <- scale(data1[,1], scale = FALSE) # la función scale le resta la media a nuestros datos
x2 <- scale(data1[,2], scale = FALSE)
x3 <- scale(data1[,3], scale = FALSE)
x4 <- scale(data1[,4], scale = FALSE)
x5 <- scale(data1[,5], scale = FALSE)
x6 <- scale(data1[,6], scale = FALSE)
x7 <- scale(data1[,7], scale = FALSE)
x8 <- scale(data1[,8], scale = FALSE)
x9 <- scale(data1[,9], scale = FALSE)
x10 <- scale(data1[,10], scale = FALSE)
x11 <- scale(data1[,11], scale = FALSE)
x12 <- scale(data1[,12], scale = FALSE)
x13 <- scale(data1[,13], scale = FALSE)
x14 <- scale(data1[,14], scale = FALSE)
x15 <- scale(data1[,15], scale = FALSE)

suma1 <- function(x1, x2,x3,x4, x5, x6, x7, x8,x9,x10,x11,x12,x13,x14,x15) {
  z1 <-  0.38277533 * (x1) - 0.19627184*(x2) + 0.25910195*(x3) + 0.30393209*(x4)  + 0.38074027* (x5)+
    -0.17682394* (x6) + 0.20318499*(x7) + 0.24689394* (x8) + 0.31959956* (x9) + 0.13452204 * (x10)
  + 0.09751468* (x11) + 0.30374117* (x12) + 0.16477225*(x13) + 0.31959956*(x14) + 0.16024857*(x15)
  return(z1)
}


s1 <- suma1(x1, x2,x3,x4, x5, x6, x7, x8,x9,x10,x11,x12,x13,x14,x15) # valores de la primera componente principal
s1
##                 EL
##   [1,]  2.01698262
##   [2,]  0.31588596
##   [3,] -1.56940434
##   [4,]  1.05842928
##   [5,] -0.22854081
##   [6,] -3.22557875
##   [7,]  4.05718298
##   [8,] -0.03875068
##   [9,] -4.87662615
##  [10,] -1.94243413
##  [11,] -3.20274713
##  [12,]  4.65256480
##  [13,]  1.66240222
##  [14,]  2.03292839
##  [15,]  3.03543450
##  [16,] -0.72798600
##  [17,] -2.24601336
##  [18,] -3.14498644
##  [19,] -4.27399245
##  [20,] -2.66800601
##  [21,]  0.49956500
##  [22,] -2.23354849
##  [23,] -0.76516014
##  [24,] -3.81699225
##  [25,] -1.33034430
##  [26,]  1.36951423
##  [27,]  3.56290378
##  [28,]  3.64374947
##  [29,] -1.65376038
##  [30,]  0.46022318
##  [31,] -1.67668996
##  [32,] -1.03989297
##  [33,]  1.97504436
##  [34,]  0.08229125
##  [35,]  4.03920297
##  [36,]  1.12546945
##  [37,]  5.25260707
##  [38,] -2.68540077
##  [39,] -1.02835824
##  [40,]  4.30334558
##  [41,] -2.85718786
##  [42,] -1.61911313
##  [43,] -0.21981632
##  [44,]  1.01156247
##  [45,]  3.65165739
##  [46,]  2.24213668
##  [47,]  0.51077502
##  [48,]  1.48204784
##  [49,]  0.47743742
##  [50,] -5.90681999
##  [51,] -1.33034430
##  [52,] -2.29704489
##  [53,] -3.29349735
##  [54,] -2.48082026
##  [55,] -3.02724210
##  [56,] -5.36471724
##  [57,] -1.81638075
##  [58,] -0.51325813
##  [59,] -3.85678772
##  [60,] -3.80943537
##  [61,]  3.29083602
##  [62,]  0.69939830
##  [63,]  0.79956549
##  [64,]  0.09332535
##  [65,] -6.82579163
##  [66,]  1.07423911
##  [67,] -0.86544638
##  [68,] -0.00759917
##  [69,] -1.22627165
##  [70,]  4.41567373
##  [71,]  2.56024567
##  [72,]  0.14378222
##  [73,]  0.99166267
##  [74,]  0.37604904
##  [75,] -0.79600161
##  [76,]  1.39594442
##  [77,]  1.87965874
##  [78,]  2.25153753
##  [79,]  3.27686363
##  [80,]  0.93923608
##  [81,] -3.85997641
##  [82,] -0.15598442
##  [83,]  1.11470925
##  [84,]  1.05868457
##  [85,]  0.98780440
##  [86,]  0.85204012
##  [87,]  1.91993516
##  [88,] -0.18349541
##  [89,]  2.69547400
##  [90,]  3.12944895
##  [91,] -1.46260393
##  [92,]  1.99751266
##  [93,]  1.01248275
##  [94,]  1.91458831
##  [95,]  2.97683870
##  [96,]  0.46493224
##  [97,] -1.36688772
##  [98,] -0.92135683
##  [99,]  2.12759438
## [100,] -0.52231310
## attr(,"scaled:center")
##   EL 
## 4.87
## de esta misma manera se procede con las componentes Z2 hasta Z15

VARIABILIDAD ExPLICADA

auto_val <- data.frame(auto$values)
auto_val
##      auto.values
## 1   1.104326e+01
## 2   5.397022e+00
## 3   4.785816e+00
## 4   3.959578e+00
## 5   2.828401e+00
## 6   2.176940e+00
## 7   1.595934e+00
## 8   1.125946e+00
## 9   1.111098e+00
## 10  7.567603e-01
## 11  5.339769e-01
## 12  4.251314e-01
## 13  1.623279e-01
## 14  6.578549e-02
## 15 -2.220446e-16
l1 <- auto_val[1]/ sum(auto$values) # variabilidad explicada por cada componente
l1
##      auto.values
## 1   3.070304e-01
## 2   1.500508e-01
## 3   1.330577e-01
## 4   1.100862e-01
## 5   7.863664e-02
## 6   6.052438e-02
## 7   4.437095e-02
## 8   3.130411e-02
## 9   3.089131e-02
## 10  2.103983e-02
## 11  1.484590e-02
## 12  1.181972e-02
## 13  4.513123e-03
## 14  1.829002e-03
## 15 -6.173397e-18
sum(l1[1:6,]) # tomando las 6 primeras componentes principales se explica un 83.9% de la variabilidad total
## [1] 0.8393861

PCA UTILIZANDO R

pca1 <- prcomp(data1)
pca1
## Standard deviations (1, .., p=15):
##  [1] 3.323141e+00 2.323149e+00 2.187651e+00 1.989869e+00 1.681785e+00
##  [6] 1.475446e+00 1.263303e+00 1.061106e+00 1.054086e+00 8.699197e-01
## [11] 7.307373e-01 6.520210e-01 4.028994e-01 2.564868e-01 3.021308e-16
## 
## Rotation (n x k) = (15 x 15):
##            PC1          PC2        PC3         PC4          PC5         PC6
## EL -0.38277533 -0.084980625 -0.2009794  0.41865660  0.104940975 -0.32856154
## UB  0.19627184  0.440678407  0.1394138  0.47046683  0.116815354  0.01299471
## DP -0.25910195  0.271286960 -0.2040792 -0.05460784  0.008073716 -0.19365101
## VE -0.30393209  0.004831676 -0.1437609  0.02832031  0.253581979 -0.58497233
## TR -0.38074027  0.361386694 -0.2844687 -0.15230159  0.029438749  0.25126463
## FI  0.17682394  0.412145802  0.1504044  0.48661434  0.153027925  0.07483337
## IM -0.20318499  0.207613561  0.2462993  0.09565388 -0.721423656 -0.12336650
## CO -0.24689394 -0.052398871  0.3904180  0.02320697 -0.360310400 -0.16340848
## DC -0.31959956 -0.312819052  0.1213701  0.28244200  0.111698800  0.32903864
## RB -0.13452204  0.152405810  0.3812459 -0.27341381  0.286901424 -0.03242335
## BG -0.09751468  0.102981010  0.3117268 -0.15561340  0.215091431 -0.03091499
## MP -0.30374117  0.368857270 -0.2053546 -0.17209739 -0.045091817  0.39019123
## AP -0.16477225 -0.039485501  0.0846866  0.06744521 -0.044265568  0.16518182
## EA -0.31959956 -0.312819052  0.1213701  0.28244200  0.111698800  0.32903864
## CM -0.16024857  0.107183999  0.4897921 -0.19298205  0.280873622 -0.05878295
##             PC7         PC8         PC9        PC10         PC11         PC12
## EL -0.653778399 -0.17528792  0.02507365 -0.01237796 -0.178544499 -0.034380565
## UB  0.059423401  0.08059210  0.09870545  0.04183261 -0.033919180  0.041869693
## DP  0.261132077 -0.43232854 -0.24725939  0.56038893  0.310008962  0.206830002
## VE  0.492889447  0.40164204  0.03849746 -0.25282365 -0.034362582 -0.089143607
## TR -0.100802190  0.03368844  0.09397564 -0.11557674 -0.024804088 -0.073697394
## FI  0.126216314 -0.07300825  0.00998406 -0.09151583  0.026593473 -0.004366406
## IM -0.105679134  0.42020920 -0.32626541  0.10389710  0.020409122 -0.030959638
## CO  0.183563957 -0.42752118  0.59759683 -0.18685948  0.020053654  0.107333500
## DC  0.129687269  0.14272715 -0.02600721  0.10454143  0.151982873  0.109325629
## RB -0.101185699  0.19736062  0.10188207  0.33150635 -0.524823379  0.447859869
## BG -0.152279576  0.12724909  0.27367266  0.37545096  0.268159963 -0.690781192
## MP  0.007007441  0.07642855  0.17674174 -0.26040978  0.008526656  0.028168771
## AP  0.306546218 -0.32547253 -0.32508763  0.01387051 -0.628288892 -0.472396779
## EA  0.129687269  0.14272715 -0.02600721  0.10454143  0.151982873  0.109325629
## CM -0.160848910 -0.20268251 -0.48058095 -0.46040603  0.281384616  0.052885000
##            PC13         PC14          PC15
## EL -0.134222332 -0.040252106  1.197502e-16
## UB -0.074592776  0.694768564 -1.271662e-16
## DP -0.088909934  0.003643757  3.746338e-17
## VE -0.023651767 -0.017066838  1.449390e-18
## TR  0.710903495  0.106780228  2.068647e-16
## FI  0.124828835 -0.681463457 -6.172902e-17
## IM  0.009889070 -0.060561178  1.048803e-16
## CO  0.071759266  0.035020793 -8.150091e-18
## DC  0.021539610  0.021051489 -7.071068e-01
## RB  0.003684249 -0.098545815 -4.210912e-17
## BG -0.069192833 -0.046465163 -9.331311e-17
## MP -0.658218384 -0.080970065 -1.871306e-16
## AP -0.052523623  0.062323079  1.497522e-16
## EA  0.021539610  0.021051489  7.071068e-01
## CM -0.001842352  0.107174377  3.855327e-17

VARIABILIDAD EXPLICADA FORMA GRAFICA 1

prop_varianza1 <- pca1$sdev^2 / sum(pca1$sdev^2)
prop_varianza1
##  [1] 3.070304e-01 1.500508e-01 1.330577e-01 1.100862e-01 7.863664e-02
##  [6] 6.052438e-02 4.437095e-02 3.130411e-02 3.089131e-02 2.103983e-02
## [11] 1.484590e-02 1.181972e-02 4.513123e-03 1.829002e-03 2.537897e-33
ggplot(data = data.frame(prop_varianza1, pc = 1:15),
       aes(x = pc, y = prop_varianza1)) +
  geom_col(width = 0.3) +
  scale_y_continuous(limits = c(0,1)) +
  theme_bw() +
  labs(x = "Componente principal",
       y = "Prop. de varianza explicada")

REPRESENTACÓN PERPENDICULAR DE LAS COMPONENTES

biplot(x = pca1, scale = 0, cex = 1, col = c("blue4", "brown3"))

VARIABILIDAD EXPLICADA FORMA GRAFICA 2

prop_varianza_acum1 <- cumsum(prop_varianza1)
prop_varianza_acum1
##  [1] 0.3070304 0.4570812 0.5901388 0.7002250 0.7788617 0.8393861 0.8837570
##  [8] 0.9150611 0.9459524 0.9669923 0.9818382 0.9936579 0.9981710 1.0000000
## [15] 1.0000000
ggplot(data = data.frame(prop_varianza_acum1, pc = 1:15),
       aes(x = pc, y = prop_varianza_acum1)) +
  geom_point() +
  geom_line() +
  theme_bw() +
  labs(x = "Componente principal",
       y = "Prop. varianza explicada acumulada")

PRUEBA DE ESFERICIDAD DE BARTLETT

correl1=cor(data1,use="pairwise.complete.obs") # matriz de correlacion
correl1 # HAY CORRELACIONES > 0.3 
##              EL          UB          DP          VE         TR           FI
## EL  1.000000000 -0.14444283  0.35945248  0.44695962  0.4207739 -0.136165455
## UB -0.144442831  1.00000000 -0.07811780 -0.20923068 -0.1533959  0.957717916
## DP  0.359452482 -0.07811780  1.00000000  0.47909167  0.6559005 -0.058623544
## VE  0.446959618 -0.20923068  0.47909167  1.00000000  0.3958009 -0.207979439
## TR  0.420773865 -0.15339593  0.65590047  0.39580088  1.0000000 -0.142060415
## FI -0.136165455  0.95771792 -0.05862354 -0.20797944 -0.1420604  1.000000000
## IM  0.180405479  0.05406596  0.22089787  0.08754674  0.2470476  0.011649813
## CO  0.215661200 -0.17308935  0.15376209  0.19928323  0.1111589 -0.145802622
## DC  0.502013174 -0.30750917  0.09367786  0.32138467  0.2064952 -0.238531409
## RB -0.039192834 -0.02129263  0.11904452  0.15500308  0.2109609 -0.054681655
## BG  0.007864622  0.02296163  0.07110535  0.10075098  0.1562513 -0.003891278
## MP  0.242513023 -0.08571994  0.55629922  0.27482116  0.9123947 -0.080533635
## AP  0.209125422 -0.18272887  0.31266742  0.21176268  0.2530143 -0.083762735
## EA  0.502013174 -0.30750917  0.09367786  0.32138467  0.2064952 -0.238531409
## CM  0.045562395 -0.05408759  0.10122597  0.11810672  0.1204210  0.011512911
##            IM         CO          DC          RB           BG          MP
## EL 0.18040548  0.2156612  0.50201317 -0.03919283  0.007864622  0.24251302
## UB 0.05406596 -0.1730893 -0.30750917 -0.02129263  0.022961628 -0.08571994
## DP 0.22089787  0.1537621  0.09367786  0.11904452  0.071105348  0.55629922
## VE 0.08754674  0.1992832  0.32138467  0.15500308  0.100750978  0.27482116
## TR 0.24704759  0.1111589  0.20649519  0.21096091  0.156251309  0.91239466
## FI 0.01164981 -0.1458026 -0.23853141 -0.05468165 -0.003891278 -0.08053363
## IM 1.00000000  0.4742431  0.13906666  0.14004374  0.122554328  0.26677159
## CO 0.47424305  1.0000000  0.37625585  0.28904731  0.319733860  0.13489594
## DC 0.13906666  0.3762559  1.00000000  0.09880168  0.124585718  0.15743243
## RB 0.14004374  0.2890473  0.09880168  1.00000000  0.690792167  0.21294525
## BG 0.12255433  0.3197339  0.12458572  0.69079217  1.000000000  0.14396700
## MP 0.26677159  0.1348959  0.15743243  0.21294525  0.143967001  1.00000000
## AP 0.22853918  0.3629820  0.50503061  0.11999698  0.028838347  0.23367416
## EA 0.13906666  0.3762559  1.00000000  0.09880168  0.124585718  0.15743243
## CM 0.18904646  0.3395111  0.18168065  0.64720088  0.562377889  0.11777585
##             AP          EA          CM
## EL  0.20912542  0.50201317  0.04556239
## UB -0.18272887 -0.30750917 -0.05408759
## DP  0.31266742  0.09367786  0.10122597
## VE  0.21176268  0.32138467  0.11810672
## TR  0.25301427  0.20649519  0.12042103
## FI -0.08376274 -0.23853141  0.01151291
## IM  0.22853918  0.13906666  0.18904646
## CO  0.36298202  0.37625585  0.33951113
## DC  0.50503061  1.00000000  0.18168065
## RB  0.11999698  0.09880168  0.64720088
## BG  0.02883835  0.12458572  0.56237789
## MP  0.23367416  0.15743243  0.11777585
## AP  1.00000000  0.50503061  0.25473967
## EA  0.50503061  1.00000000  0.18168065
## CM  0.25473967  0.18168065  1.00000000
det(correl1) # determinate de la matriz de correlación
## [1] 0
ep <- -(100-1-(1/6)*(2*15+5))*log(0) # estadistico de prueba

(15^2-15)/2 #grados de libertad
## [1] 105
x_2_0_05 <- 124.3421 # valor aproximado de una chi cuadrado con 105 grados de libertad y significacia 0.05

## como ep > x_2_0_05 se rechaza ho, por tanto se debe aplicar PCA

cortest.bartlett(data1) # prueba de hipotesis 
## R was not square, finding R from data
## $chisq
## [1] Inf
## 
## $p.value
## [1] 0
## 
## $df
## [1] 105
# dado que el valor p < 0.05 se rechaza ho. Por tanto  se debe apicar PCA.

NÚMERO DE COMPONENTES A RETENER EN EL PCA

h_10 <- (sum(l1[6:15,])) / (15-5)
h_10
## [1] 0.02211383
sumlog <- log(6.052438e-02)+ log(4.437095e-02)+ log(3.089131e-02)+ log(2.103983e-02)+
log(1.484590e-02)+ log(1.181972e-02)+ log(4.513123e-03)+ log(1.829002e-03)+
log(6.173397e-18)

sumlog
## [1] -73.23755
log(h_10)
## [1] -3.811552
(100-((2*15+11)/6))* ((15-5)*log(h_10)-sumlog) # estadistico de prueba
## [1] 3272.202
((15-5+2)*(15-5+1))/2 # grados de libertad
## [1] 66
x2_0_05 <-  90.5313 # valor aproximado de una chi cuadrado con 66 grados de libertad y significacia 0.05


## como ep > x2_0_05 se rechaza ho, por tanto con 6 componentes está bien