title: “combine data together and calculate the correlation between
miRs” output: html_notebook
suppressMessages(library(data.table))
suppressMessages(library(tidyverse))
suppressMessages(library(readxl))
suppressMessages(library(ggpubr))
suppressMessages(library(dplyr))
suppressMessages(library(dtplyr))
suppressMessages(library(purrr))
suppressMessages(library(stringr))
suppressMessages(library(gridExtra))
suppressMessages(library(caret))
suppressMessages(library(plotly))
suppressMessages(library(biomaRt))
suppressMessages(library(systemPipeR))
suppressMessages(library(GenomicFeatures))
suppressMessages(library(BiocParallel))
suppressMessages(library(ConservationtextmineR))
###Import cohort1 and cohort2 csv files
cohort1 <- fread("./data/cohort1.csv")
cohort2 <- fread("./data/cohort2.csv")
cohort1$dataset <- "cohort1"
cohort2$dataset <- "cohort2"
combined <- rbind(cohort1, cohort2)
p <- ggplot(combined, aes(x=log2FC_miRNA1, y=log2FC_miRNA2))+
geom_point(shape = 21, size = 3, colour = "black", fill = "#08519C")+
scale_color_manual(values=c("#E31A1C")) +
geom_point(data = subset(combined, combined$dataset == "cohort2"),
aes(x=log2FC_miRNA1, y=log2FC_miRNA2),
shape = 21, size = 3, colour = "black", fill = "#E31A1C") +
geom_smooth(method = "lm")+
ggtitle("correlation")+
theme_pubr(); p
##correlation test
cor.test(combined_comp$log2FC_miRNA1, combined_comp$log2FC_miRNA2, method=c("pearson"))
##wilcox test
wilcox.test(combined_comp$log2FC_miRNA1, combined_comp$log2FC_miRNA2, conf.int = TRUE,
paired = FALSE, formula = "lhs")
LS0tCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdAotLS0KLS0tCnRpdGxlOiAiY29tYmluZSBkYXRhIHRvZ2V0aGVyIGFuZCBjYWxjdWxhdGUgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gbWlScyIKb3V0cHV0OiBodG1sX25vdGVib29rCgpgYGB7cn0Kc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KGRhdGEudGFibGUpKQpzdXBwcmVzc01lc3NhZ2VzKGxpYnJhcnkodGlkeXZlcnNlKSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KHJlYWR4bCkpCnN1cHByZXNzTWVzc2FnZXMobGlicmFyeShnZ3B1YnIpKQpzdXBwcmVzc01lc3NhZ2VzKGxpYnJhcnkoZHBseXIpKQpzdXBwcmVzc01lc3NhZ2VzKGxpYnJhcnkoZHRwbHlyKSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KHB1cnJyKSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KHN0cmluZ3IpKQpzdXBwcmVzc01lc3NhZ2VzKGxpYnJhcnkoZ3JpZEV4dHJhKSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KGNhcmV0KSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KHBsb3RseSkpCnN1cHByZXNzTWVzc2FnZXMobGlicmFyeShiaW9tYVJ0KSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KHN5c3RlbVBpcGVSKSkKc3VwcHJlc3NNZXNzYWdlcyhsaWJyYXJ5KEdlbm9taWNGZWF0dXJlcykpCnN1cHByZXNzTWVzc2FnZXMobGlicmFyeShCaW9jUGFyYWxsZWwpKQpzdXBwcmVzc01lc3NhZ2VzKGxpYnJhcnkoQ29uc2VydmF0aW9udGV4dG1pbmVSKSkKIyMjSW1wb3J0IGNvaG9ydDEgYW5kIGNvaG9ydDIgY3N2IGZpbGVzCmNvaG9ydDEgPC0gZnJlYWQoIi4vZGF0YS9jb2hvcnQxLmNzdiIpCmNvaG9ydDIgPC0gZnJlYWQoIi4vZGF0YS9jb2hvcnQyLmNzdiIpCmNvaG9ydDEkZGF0YXNldCA8LSAiY29ob3J0MSIKY29ob3J0MiRkYXRhc2V0IDwtICJjb2hvcnQyIgpjb21iaW5lZCA8LSByYmluZChjb2hvcnQxLCBjb2hvcnQyKQpwIDwtIGdncGxvdChjb21iaW5lZCwgYWVzKHg9bG9nMkZDX21pUk5BMSwgeT1sb2cyRkNfbWlSTkEyKSkrCiAgZ2VvbV9wb2ludChzaGFwZSA9IDIxLCBzaXplID0gMywgY29sb3VyID0gImJsYWNrIiwgZmlsbCA9ICIjMDg1MTlDIikrCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcz1jKCIjRTMxQTFDIikpICsKICBnZW9tX3BvaW50KGRhdGEgPSBzdWJzZXQoY29tYmluZWQsIGNvbWJpbmVkJGRhdGFzZXQgPT0gImNvaG9ydDIiKSwKICAgICAgICAgICAgIGFlcyh4PWxvZzJGQ19taVJOQTEsIHk9bG9nMkZDX21pUk5BMiksIAogICAgICAgICAgICAgc2hhcGUgPSAyMSwgc2l6ZSA9IDMsIGNvbG91ciA9ICJibGFjayIsIGZpbGwgPSAiI0UzMUExQyIpICsKICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iKSsKICBnZ3RpdGxlKCJjb3JyZWxhdGlvbiIpKwogIHRoZW1lX3B1YnIoKTsgcAogIAogICMjY29ycmVsYXRpb24gdGVzdAogIGNvci50ZXN0KGNvbWJpbmVkX2NvbXAkbG9nMkZDX21pUk5BMSwgY29tYmluZWRfY29tcCRsb2cyRkNfbWlSTkEyLCBtZXRob2Q9YygicGVhcnNvbiIpKQogIAogICMjd2lsY294IHRlc3QKICB3aWxjb3gudGVzdChjb21iaW5lZF9jb21wJGxvZzJGQ19taVJOQTEsIGNvbWJpbmVkX2NvbXAkbG9nMkZDX21pUk5BMiwgY29uZi5pbnQgPSBUUlVFLCAKICAgICAgICAgICAgcGFpcmVkID0gRkFMU0UsIGZvcm11bGEgPSAibGhzIikKCmBgYAoK