Instalación

install.packages("quantmod")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)

Ejecución de la libreria

library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Scraping a Apple

apple_df <- getSymbols('AAPL', src='yahoo', auto.assign=FALSE)
apple_df
##             AAPL.Open  AAPL.High   AAPL.Low AAPL.Close AAPL.Volume
## 2007-01-03   3.081786   3.092143   2.925000   2.992857  1238319600
## 2007-01-04   3.001786   3.069643   2.993571   3.059286   847260400
## 2007-01-05   3.063214   3.078571   3.014286   3.037500   834741600
## 2007-01-08   3.070000   3.090357   3.045714   3.052500   797106800
## 2007-01-09   3.087500   3.320714   3.041071   3.306071  3349298400
## 2007-01-10   3.383929   3.492857   3.337500   3.464286  2952880000
## 2007-01-11   3.426429   3.456429   3.396429   3.421429  1440252800
## 2007-01-12   3.378214   3.395000   3.329643   3.379286  1312690400
## 2007-01-16   3.417143   3.473214   3.408929   3.467857  1244076400
## 2007-01-17   3.484286   3.485714   3.386429   3.391071  1646260000
##        ...                                                        
## 2023-07-17 191.899994 194.320007 191.809998 193.990005    50520200
## 2023-07-18 193.350006 194.330002 192.419998 193.729996    48353800
## 2023-07-19 193.100006 198.229996 192.649994 195.100006    80507300
## 2023-07-20 195.089996 196.470001 192.500000 193.130005    59581200
## 2023-07-21 194.100006 194.970001 191.229996 191.940002    71917800
## 2023-07-24 193.410004 194.910004 192.250000 192.750000    45377800
## 2023-07-25 193.330002 194.440002 192.919998 193.619995    37283200
## 2023-07-26 193.669998 195.639999 193.320007 194.500000    47471900
## 2023-07-27 196.020004 197.199997 192.550003 193.220001    47460200
## 2023-07-28 194.669998 196.630005 194.139999 195.830002    48254600
##            AAPL.Adjusted
## 2007-01-03      2.543757
## 2007-01-04      2.600217
## 2007-01-05      2.581701
## 2007-01-08      2.594451
## 2007-01-09      2.809971
## 2007-01-10      2.944444
## 2007-01-11      2.908018
## 2007-01-12      2.872200
## 2007-01-16      2.947480
## 2007-01-17      2.882216
##        ...              
## 2023-07-17    193.990005
## 2023-07-18    193.729996
## 2023-07-19    195.100006
## 2023-07-20    193.130005
## 2023-07-21    191.940002
## 2023-07-24    192.750000
## 2023-07-25    193.619995
## 2023-07-26    194.500000
## 2023-07-27    193.220001
## 2023-07-28    195.830002

Grafica

chartSeries(apple_df, name="AAPL", subset="last 6 months", theme=chartTheme("white"))

Scraping a Microsoft

MSFT_df <- getSymbols('MSFT', src='yahoo', auto.assign=FALSE)
MSFT_df
##            MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
## 2007-01-03     29.91     30.25    29.40      29.86    76935100      21.52598
## 2007-01-04     29.70     29.97    29.44      29.81    45774500      21.48993
## 2007-01-05     29.63     29.75    29.45      29.64    44607200      21.36739
## 2007-01-08     29.65     30.10    29.53      29.93    50220200      21.57644
## 2007-01-09     30.00     30.18    29.73      29.96    44636600      21.59807
## 2007-01-10     29.80     29.89    29.43      29.66    55017400      21.38181
## 2007-01-11     29.76     30.75    29.65      30.70    99464300      22.13154
## 2007-01-12     30.65     31.39    30.64      31.21   103972500      22.49919
## 2007-01-16     31.26     31.45    31.03      31.16    62379600      22.46315
## 2007-01-17     31.26     31.44    31.01      31.10    58519600      22.41990
##        ...                                                                  
## 2023-07-17    345.68    346.99   342.20     345.73    20363900     345.73001
## 2023-07-18    345.83    366.78   342.17     359.49    64872700     359.48999
## 2023-07-19    361.75    362.46   352.44     355.08    39732900     355.07999
## 2023-07-20    353.57    357.97   345.37     346.87    33778400     346.87000
## 2023-07-21    349.15    350.30   339.83     343.77    69368900     343.76999
## 2023-07-24    345.85    346.92   342.31     345.11    26678100     345.10999
## 2023-07-25    347.11    351.89   345.07     350.98    41637700     350.98001
## 2023-07-26    341.44    344.67   333.11     337.77    58383700     337.76999
## 2023-07-27    340.48    341.33   329.05     330.72    39635300     330.72000
## 2023-07-28    333.67    340.01   333.17     338.37    28463000     338.37000

Grafica

chartSeries(MSFT_df, name="Microsoft", subset="last 6 months", theme=chartTheme("white"))

Scraping a Coca cola

KO_df <- getSymbols('KO', src='yahoo', auto.assign=FALSE)
KO_df
##            KO.Open KO.High KO.Low KO.Close KO.Volume KO.Adjusted
## 2007-01-03  24.180  24.440 24.140   24.290  15753400    14.65590
## 2007-01-04  24.210  24.350 24.125   24.300  11810400    14.66193
## 2007-01-05  24.250  24.285 24.085   24.130  11607000    14.55936
## 2007-01-08  24.005  24.335 24.005   24.285  17551000    14.65288
## 2007-01-09  24.270  24.415 24.230   24.305  13724000    14.66495
## 2007-01-10  24.245  24.395 24.185   24.340   8928000    14.68606
## 2007-01-11  24.375  24.435 24.300   24.370  11009600    14.70417
## 2007-01-12  24.300  24.335 24.125   24.275  13667200    14.64684
## 2007-01-16  24.240  24.345 24.170   24.250  12685200    14.63176
## 2007-01-17  24.265  24.430 24.240   24.300  14400200    14.66193
##        ...                                                      
## 2023-07-17  60.760  61.100 60.490   60.810  10014300    60.81000
## 2023-07-18  60.960  61.250 60.410   60.570  11152900    60.57000
## 2023-07-19  60.770  61.790 60.680   61.640  12936000    61.64000
## 2023-07-20  61.680  62.410 61.670   62.390  11563000    62.39000
## 2023-07-21  62.460  62.680 62.240   62.440  12813200    62.44000
## 2023-07-24  62.420  62.810 62.400   62.460  10251100    62.46000
## 2023-07-25  62.300  62.390 62.050   62.250  13422700    62.25000
## 2023-07-26  61.860  63.170 61.390   63.050  17145500    63.05000
## 2023-07-27  63.050  63.270 62.380   62.440  11517100    62.44000
## 2023-07-28  62.590  62.770 62.220   62.480   9721800    62.48000

Grafica

chartSeries(KO_df, name="Coca Cola", subset="last 6 months", theme=chartTheme("white"))

Scraping a Toyota

TM_df <- getSymbols('TM', src='yahoo', auto.assign=FALSE)
TM_df
##            TM.Open TM.High TM.Low TM.Close TM.Volume TM.Adjusted
## 2007-01-03  135.25  136.54 134.45   135.30    758600    107.8092
## 2007-01-04  136.65  137.97 135.64   137.77    842700    109.7774
## 2007-01-05  133.30  133.87 132.55   133.72   1068400    106.5502
## 2007-01-08  134.60  134.74 133.80   133.97    511600    106.7494
## 2007-01-09  132.17  132.94 131.24   132.16    645700    105.3072
## 2007-01-10  129.00  129.86 128.21   129.43    726200    103.1319
## 2007-01-11  128.00  130.43 127.81   128.78    803900    102.6140
## 2007-01-12  129.87  130.89 129.79   130.89    498500    104.2953
## 2007-01-16  131.49  132.49 130.75   131.21    641200    104.5502
## 2007-01-17  131.64  131.89 130.78   131.10    641100    104.4626
##        ...                                                      
## 2023-07-17  159.40  159.59 158.17   159.45    241300    159.4500
## 2023-07-18  161.94  163.53 161.87   163.19    435500    163.1900
## 2023-07-19  164.95  164.98 163.68   163.97    216700    163.9700
## 2023-07-20  163.08  163.64 162.40   163.28    217800    163.2800
## 2023-07-21  163.58  163.68 162.60   162.81    214400    162.8100
## 2023-07-24  164.58  164.92 164.25   164.53    212100    164.5300
## 2023-07-25  165.00  165.80 164.74   165.56    233300    165.5600
## 2023-07-26  165.16  166.02 164.88   165.70    162300    165.7000
## 2023-07-27  165.87  166.73 165.38   165.43    182200    165.4300
## 2023-07-28  167.10  167.80 166.69   167.15    292200    167.1500

Grafica

chartSeries(TM_df, name="Toyota", subset="last 6 months", theme=chartTheme("white"))