#Creating the Vectors:
a<-c(2,5,6,7)
b<-c(1,0,9,8)
c<-c(6,5,8,3)
mat<-rbind(a,b,c)
mat
## [,1] [,2] [,3] [,4]
## a 2 5 6 7
## b 1 0 9 8
## c 6 5 8 3
colnames(mat)<-c("Mon", "Tue", "Wed", "Thu")
rownames(mat)<-c("Present","Absent","On leave")
mat
## Mon Tue Wed Thu
## Present 2 5 6 7
## Absent 1 0 9 8
## On leave 6 5 8 3
row<-rowSums(mat)
row
## Present Absent On leave
## 20 18 22
col<-colSums(mat)
col
## Mon Tue Wed Thu
## 9 10 23 18
data<-mtcars
str(data)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(ggthemes)
#Scatterplot of mpg vs disp
p<-ggplot(data=data)+theme_economist()
p1<-p+
geom_point(mapping=aes(x=mpg,y=disp), col="Blue")
p2<-ggplotly(p1)
p2
q<-ggplot(data=data, aes(gear, mpg))+theme_economist()
q1<-q+
geom_boxplot(notch=TRUE, col="Blue")+
facet_wrap(~gear, nrow=2)
q2<-ggplotly(q1)
## Warning: Continuous x aesthetic
## ℹ did you forget `aes(group = ...)`?
q2
h<-ggplot(data=data, aes(disp))+theme_economist()
h1<-h+
geom_histogram()+
geom_freqpoly()
h2<-ggplotly(h1)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
h2