The general approach for this simulation run is as following:
library(tidyverse)
library(here)
library(ggthemes)
test_d <- read_csv(here("data/test_d.csv"))
train_d <- read_csv(here("data/train_d.csv"))
sim_d <- read_csv(here("data/summarized_results_detailed.csv")) %>%
rename(stimuli_sequence = stim_squence) %>%
mutate(trial_number = stimulus_id + 1) %>%
group_by(stimuli_sequence, trial_number) %>%
summarise(n_sample = mean(n_sample))
tidy_train_d <- train_d %>%
mutate(
stimuli_sequence = case_when(
total_trial_number == 2 & block_type == "deviant_block" ~ "BD",
total_trial_number == 4 & block_type == "deviant_block" ~ "BBBD",
total_trial_number == 6 & block_type == "deviant_block" ~ "BBBBBD",
total_trial_number == 2 & block_type != "deviant_block" ~ "BB",
total_trial_number == 4 & block_type != "deviant_block" ~ "BBBB",
total_trial_number == 6 & block_type != "deviant_block" ~ "BBBBBB",
)
) %>%
select(subject, total_rt, trial_number, trial_type, stimuli_sequence)
tidy_test_d <- test_d %>%
mutate(
stimuli_sequence = case_when(
total_trial_number == 2 & block_type == "deviant_block" ~ "BD",
total_trial_number == 4 & block_type == "deviant_block" ~ "BBBD",
total_trial_number == 6 & block_type == "deviant_block" ~ "BBBBBD",
total_trial_number == 2 & block_type != "deviant_block" ~ "BB",
total_trial_number == 4 & block_type != "deviant_block" ~ "BBBB",
total_trial_number == 6 & block_type != "deviant_block" ~ "BBBBBB",
)
) %>%
select(subject, total_rt, trial_number, trial_type, stimuli_sequence)
tidy_train_summary_d <- tidy_train_d %>%
group_by(trial_number, trial_type, stimuli_sequence) %>%
summarise(total_rt = mean(total_rt))
tidy_test_summary_d <- tidy_test_d %>%
group_by(trial_number, trial_type, stimuli_sequence) %>%
summarise(total_rt = mean(total_rt))
scaled_train_sim_res_info <- sim_d %>%
left_join(tidy_train_summary_d, by = c("trial_number", "stimuli_sequence")) %>%
ungroup() %>%
summarise(
mean_sim = mean((n_sample), na.rm = TRUE),
sd_sim = sd((n_sample), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
)
scaled_train_res <- sim_d %>%
mutate(
multiply_const = scaled_train_sim_res_info$sd_rt /scaled_train_sim_res_info$sd_sim
) %>%
mutate(
scaled_stim_sample_n = scaled_train_sim_res_info$mean_rt + (n_sample - scaled_train_sim_res_info$mean_sim) * multiply_const
) %>%
select(stimuli_sequence, trial_number,scaled_stim_sample_n) %>%
left_join(tidy_train_summary_d, by = c("trial_number", "stimuli_sequence"))
scaled_test_sim_res_info <- sim_d %>%
left_join(tidy_test_summary_d, by = c("trial_number", "stimuli_sequence")) %>%
ungroup() %>%
summarise(
mean_sim = mean((n_sample), na.rm = TRUE),
sd_sim = sd((n_sample), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
)
scaled_test_res <- sim_d %>%
mutate(
multiply_const = scaled_test_sim_res_info$sd_rt /scaled_test_sim_res_info$sd_sim
) %>%
mutate(
scaled_stim_sample_n = scaled_test_sim_res_info$mean_rt + (n_sample - scaled_test_sim_res_info$mean_sim) * multiply_const
) %>%
select(stimuli_sequence, trial_number,scaled_stim_sample_n) %>%
left_join(tidy_test_summary_d, by = c("trial_number", "stimuli_sequence"))
model_d <- read_csv(here("data/model_res_old.csv")) %>%
mutate(row_n = row_number()) %>%
filter(row_n %% 201 != 0) %>%
select(-row_n)
all_model_sim_res <- model_d %>%
group_by(mu_prior, v_prior, alpha_prior, beta_prior, epsilon, world_EIG, stim_sequence) %>%
summarise(across(c("stim1", "stim2", "stim3", "stim4", "stim5", "stim6"), ~ mean(.x, na.rm = TRUE))) %>%
pivot_longer(
cols = c("stim1", "stim2", "stim3", "stim4", "stim5", "stim6"),
values_to = "sample_n",
names_to = "trial_number"
) %>%
mutate(
param_info = paste("mu", mu_prior, "v", v_prior, "a", alpha_prior, "b", beta_prior, "ep", epsilon, "eig", world_EIG, sep = "_"),
trial_number = case_when(
trial_number == "stim1" ~ 1,
trial_number == "stim2" ~ 2,
trial_number == "stim3" ~ 3,
trial_number == "stim4" ~ 4,
trial_number == "stim5" ~ 5,
trial_number == "stim6" ~ 6
)
) %>%
ungroup() %>%
select(stim_sequence, trial_number, sample_n, param_info)
get_exact_sequence <- function(all_model_sim_res, seq_type){
if(seq_type == "BB" | seq_type == "BBBB" | seq_type == "BBBBBB"){
df <- all_model_sim_res %>%
filter(stim_sequence == "BBBBBB") %>%
filter(trial_number <= nchar(seq_type)) %>%
mutate(stim_sequence = seq_type)
}else if(seq_type == "BD"){
df <- all_model_sim_res %>%
filter(stim_sequence == "BDBBBB") %>%
filter(trial_number <= nchar(seq_type)) %>%
mutate(stim_sequence = seq_type)
}else if(seq_type == "BBBD"){
df <- all_model_sim_res %>%
filter(stim_sequence == "BBBDBB") %>%
filter(trial_number <= nchar(seq_type)) %>%
mutate(stim_sequence = seq_type)
}else if(seq_type == "BBBBBD"){
df <- all_model_sim_res %>%
filter(stim_sequence == "BBBBBD")
}
return (df)
}
complete_sim_res <- all_model_sim_res %>%
group_by(param_info) %>%
count() %>%
filter(n == 24)
chopped_sim_res <- lapply(
c("BB", "BD", "BBBB", "BBBD", "BBBBBB", "BBBBBD"),
function(x){
get_exact_sequence(all_model_sim_res %>% filter(param_info %in% complete_sim_res$param_info), x)
}
) %>%
bind_rows()
scaled_sim_res <- chopped_sim_res %>%
rename(stimuli_sequence = stim_sequence) %>%
left_join(tidy_train_summary_d %>% ungroup(), by = c("trial_number", "stimuli_sequence")) %>%
group_by(param_info) %>%
summarise(
mean_sim = mean((sample_n), na.rm = TRUE),
sd_sim = sd((sample_n), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
) %>%
left_join(chopped_sim_res %>% rename(stimuli_sequence = stim_sequence), by = "param_info") %>%
left_join(tidy_train_summary_d, by = c("trial_number", "stimuli_sequence")) %>%
mutate(
multiply_const = sd_rt /sd_sim
) %>%
mutate(
scaled_stim_sample_n = mean_rt + (sample_n - mean_sim) * multiply_const
) %>%
select(param_info, stimuli_sequence, sample_n, trial_number, scaled_stim_sample_n,total_rt) %>%
group_by(param_info) %>%
nest()
scaled_sim_res$r <- unlist(map(scaled_sim_res$data, function(x){
r <- cor(x$total_rt, x$scaled_stim_sample_n, method = "pearson")
}))
test_scaled_sim_res <- chopped_sim_res %>%
rename(stimuli_sequence = stim_sequence) %>%
left_join(tidy_test_summary_d, by = c("trial_number", "stimuli_sequence")) %>%
group_by(param_info) %>%
summarise(
mean_sim = mean((sample_n), na.rm = TRUE),
sd_sim = sd((sample_n), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
) %>%
left_join(chopped_sim_res %>% rename(stimuli_sequence = stim_sequence), by = "param_info") %>%
left_join(tidy_test_summary_d, by = c("trial_number", "stimuli_sequence")) %>%
mutate(
multiply_const = sd_rt /sd_sim
) %>%
mutate(
scaled_stim_sample_n = mean_rt + (sample_n - mean_sim) * multiply_const
) %>%
select(param_info, stimuli_sequence, trial_number, scaled_stim_sample_n,total_rt) %>%
group_by(param_info) %>%
nest()
test_scaled_sim_res$r <- unlist(map(test_scaled_sim_res$data, function(x){
r <- cor(x$total_rt, x$scaled_stim_sample_n, method = "pearson")
}))
#sim_d
scaled_sim_res %>%
arrange(-r) %>%
head(1) %>%
unnest(data) %>%
ungroup() %>%
select(stimuli_sequence, sample_n, trial_number) %>%
mutate(sim_type = "param_search_exp") %>%
bind_rows(sim_d %>% rename(sample_n = n_sample) %>% select(stimuli_sequence, sample_n, trial_number) %>% mutate(sim_type = "condition_exp")) %>%
ggplot(aes(
x = trial_number,
y = sample_n,
color = sim_type,
group = sim_type
)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_wrap( ~ stimuli_sequence) +
theme_few()
train_r <- cor(scaled_train_res$total_rt, scaled_train_res$scaled_stim_sample_n, method = "pearson")
test_r <- cor(scaled_test_res$total_rt, scaled_test_res$scaled_stim_sample_n, method = "pearson")
train_r
## [1] 0.9703497
test_r
## [1] 0.9861476
bind_rows(scaled_test_res %>% mutate(data_type = "test"),
scaled_train_res %>% mutate(data_type = "train")) %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(data_type ~ stimuli_sequence) +
theme_few()
condition_sim_d <- read_csv(here("data/summarized_results_detailed.csv")) %>%
rename(stimuli_sequence = stim_squence) %>%
mutate(trial_number = stimulus_id + 1) %>%
group_by(stimuli_sequence, trial_number, violation_type) %>%
summarise(n_sample = mean(n_sample)) %>%
mutate(violation_type = case_when(
stimuli_sequence %in% c("BB", "BBBB", "BBBBBB") ~ "all_background",
TRUE ~ violation_type
))
tidy_condition_test_summary_d <- read_csv(here("data/full_human_d.csv")) %>%
filter(subject %in% (tidy_test_d %>% distinct(subject) %>% pull())) %>%
mutate(
stimuli_sequence = case_when(
total_trial_number == 2 & block_type == "deviant_block" ~ "BD",
total_trial_number == 4 & block_type == "deviant_block" ~ "BBBD",
total_trial_number == 6 & block_type == "deviant_block" ~ "BBBBBD",
total_trial_number == 2 & block_type != "deviant_block" ~ "BB",
total_trial_number == 4 & block_type != "deviant_block" ~ "BBBB",
total_trial_number == 6 & block_type != "deviant_block" ~ "BBBBBB",
)
) %>%
select(subject, total_rt, violation_type, trial_number, trial_type, stimuli_sequence) %>%
group_by(violation_type, trial_number, stimuli_sequence) %>%
summarise(total_rt = mean(total_rt)) %>%
mutate(violation_type = if_else(violation_type == "null", "all_background", violation_type))
scaled_condition_test_sim_res_info <- condition_sim_d %>%
left_join(tidy_condition_test_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type")) %>%
ungroup() %>%
summarise(
mean_sim = mean((n_sample), na.rm = TRUE),
sd_sim = sd((n_sample), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
)
scaled_condition_test_res <- condition_sim_d %>%
mutate(
multiply_const = scaled_condition_test_sim_res_info$sd_rt /scaled_condition_test_sim_res_info$sd_sim
) %>%
mutate(
scaled_stim_sample_n = scaled_condition_test_sim_res_info$mean_rt + (n_sample - scaled_condition_test_sim_res_info$mean_sim) * multiply_const
) %>%
select(stimuli_sequence, trial_number, violation_type, scaled_stim_sample_n) %>%
left_join(tidy_condition_test_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type"))
scaled_condition_test_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type == "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
scaled_condition_test_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type != "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
cor(scaled_condition_test_res$total_rt, scaled_condition_test_res$scaled_stim_sample_n, method = "pearson")
## [1] 0.9820528
scaled_condition_test_res %>%
mutate(trial_type = case_when(
stimuli_sequence == "BBBBBD" & trial_number == 6 ~ "deviant",
stimuli_sequence == "BBBD" & trial_number == 4 ~ "deviant",
stimuli_sequence == "BD" & trial_number == 2 ~ "deviant",
TRUE ~ "background"
)) %>%
filter(trial_type == "deviant") %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
ggplot(aes(x = violation_type, y = value, color = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .2)) +
theme_few()
tidy_condition_train_summary_d <- read_csv(here("data/full_human_d.csv")) %>%
filter(subject %in% (tidy_train_d %>% distinct(subject) %>% pull())) %>%
mutate(
stimuli_sequence = case_when(
total_trial_number == 2 & block_type == "deviant_block" ~ "BD",
total_trial_number == 4 & block_type == "deviant_block" ~ "BBBD",
total_trial_number == 6 & block_type == "deviant_block" ~ "BBBBBD",
total_trial_number == 2 & block_type != "deviant_block" ~ "BB",
total_trial_number == 4 & block_type != "deviant_block" ~ "BBBB",
total_trial_number == 6 & block_type != "deviant_block" ~ "BBBBBB",
)
) %>%
select(subject, total_rt, violation_type, trial_number, trial_type, stimuli_sequence) %>%
group_by(violation_type, trial_number, stimuli_sequence) %>%
summarise(total_rt = mean(total_rt)) %>%
mutate(violation_type = if_else(violation_type == "null", "all_background", violation_type))
scaled_condition_train_sim_res_info <- condition_sim_d %>%
left_join(tidy_condition_train_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type")) %>%
ungroup() %>%
summarise(
mean_sim = mean((n_sample), na.rm = TRUE),
sd_sim = sd((n_sample), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
)
scaled_condition_train_res <- condition_sim_d %>%
mutate(
multiply_const = scaled_condition_train_sim_res_info$sd_rt /scaled_condition_train_sim_res_info$sd_sim
) %>%
mutate(
scaled_stim_sample_n = scaled_condition_train_sim_res_info$mean_rt + (n_sample - scaled_condition_train_sim_res_info$mean_sim) * multiply_const
) %>%
select(stimuli_sequence, trial_number, violation_type, scaled_stim_sample_n) %>%
left_join(tidy_condition_train_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type"))
scaled_condition_train_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type == "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
scaled_condition_train_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type != "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
cor(scaled_condition_train_res$total_rt, scaled_condition_train_res$scaled_stim_sample_n, method = "pearson")
## [1] 0.8797483
scaled_condition_train_res %>%
mutate(trial_type = case_when(
stimuli_sequence == "BBBBBD" & trial_number == 6 ~ "deviant",
stimuli_sequence == "BBBD" & trial_number == 4 ~ "deviant",
stimuli_sequence == "BD" & trial_number == 2 ~ "deviant",
TRUE ~ "background"
)) %>%
filter(trial_type == "deviant") %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
ggplot(aes(x = violation_type, y = value, color = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .2)) +
theme_few()
We noticed that the positive relationship between embedding distance and the raw number of samples on the deviant trial only exist in the lower end of the x-axis, so we hypothesize that maybe it is because of our grid being too narrow. We decided to scale the embedding between 0-1
read_csv(here("data/summarized_results_detailed_new.csv")) %>%
filter(epsilon == 0.001) %>%
filter(stim_squence %in% c("BD", "BBBD", "BBBBBD")) %>%
filter(stimulus_id == case_when(
stim_squence == "BD" ~ 1,
stim_squence == "BBBD" ~ 3,
stim_squence == "BBBBBD" ~ 5,
)) %>%
mutate(abs_magnitude = abs(b_val - d_val)) %>%
distinct(violation_type, abs_magnitude, stim_squence, n_sample, epsilon) %>%
group_by(violation_type, abs_magnitude, stim_squence, epsilon) %>%
summarise(mean_n_sample = n_sample) %>%
ggplot(aes(x = abs_magnitude, y = mean_n_sample)) +
geom_point(alpha = .05) +
facet_grid(~stim_squence) +
geom_smooth()+
theme_few()
(note that this is a very rough attempt – we are scaling it after PCA, but probably should have done it before that)
se_d <- read_csv(here("data/summarized_results_scaled.csv"))
se_d %>%
filter(stim_squence %in% c("BD", "BBBD", "BBBBBD")) %>%
mutate(abs_magnitude = abs(b_val - d_val)) %>%
distinct(violation_type, abs_magnitude, stim_squence) %>%
ggplot(aes(x = violation_type, y = abs_magnitude)) +
stat_summary(fun.data = "mean_cl_boot") +
geom_jitter(position = position_jitter(width = .2), alpha = .3) +
theme_few() +
facet_wrap(~stim_squence)
### clean up data
se_condition_sim_d <- se_d %>%
rename(stimuli_sequence = stim_squence) %>%
mutate(trial_number = stimulus_id + 1) %>%
group_by(stimuli_sequence, trial_number, violation_type) %>%
summarise(n_sample = mean(n_sample)) %>%
mutate(violation_type = case_when(
stimuli_sequence %in% c("BB", "BBBB", "BBBBBB") ~ "all_background",
TRUE ~ violation_type
))
scaled_se_condition_test_sim_res_info <- se_condition_sim_d %>%
left_join(tidy_condition_test_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type")) %>%
ungroup() %>%
summarise(
mean_sim = mean((n_sample), na.rm = TRUE),
sd_sim = sd((n_sample), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
)
scaled_se_condition_test_res <- se_condition_sim_d %>%
mutate(
multiply_const = scaled_se_condition_test_sim_res_info$sd_rt /scaled_se_condition_test_sim_res_info$sd_sim
) %>%
mutate(
scaled_stim_sample_n = scaled_se_condition_test_sim_res_info$mean_rt + (n_sample - scaled_se_condition_test_sim_res_info$mean_sim) * multiply_const
) %>%
select(stimuli_sequence, trial_number, violation_type, scaled_stim_sample_n) %>%
left_join(tidy_condition_test_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type"))
scaled_se_condition_test_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type == "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
scaled_se_condition_test_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type != "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
cor(scaled_se_condition_test_res$total_rt, scaled_se_condition_test_res$scaled_stim_sample_n, method = "pearson")
## [1] 0.9777929
scaled_se_condition_test_res %>%
mutate(trial_type = case_when(
stimuli_sequence == "BBBBBD" & trial_number == 6 ~ "deviant",
stimuli_sequence == "BBBD" & trial_number == 4 ~ "deviant",
stimuli_sequence == "BD" & trial_number == 2 ~ "deviant",
TRUE ~ "background"
)) %>%
filter(trial_type == "deviant") %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
ggplot(aes(x = violation_type, y = value, color = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .2)) +
theme_few()
scaled_se_condition_train_sim_res_info <- se_condition_sim_d %>%
left_join(tidy_condition_train_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type")) %>%
ungroup() %>%
summarise(
mean_sim = mean((n_sample), na.rm = TRUE),
sd_sim = sd((n_sample), na.rm = TRUE),
mean_rt = mean((total_rt), na.rm = TRUE),
sd_rt = sd((total_rt), na.rm = TRUE)
)
scaled_se_condition_train_res <- se_condition_sim_d %>%
mutate(
multiply_const = scaled_se_condition_train_sim_res_info$sd_rt /scaled_se_condition_train_sim_res_info$sd_sim
) %>%
mutate(
scaled_stim_sample_n = scaled_se_condition_train_sim_res_info$mean_rt + (n_sample - scaled_se_condition_train_sim_res_info$mean_sim) * multiply_const
) %>%
select(stimuli_sequence, trial_number, violation_type, scaled_stim_sample_n) %>%
left_join(tidy_condition_train_summary_d, by = c("trial_number", "stimuli_sequence", "violation_type"))
scaled_se_condition_train_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type == "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
scaled_se_condition_train_res %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
filter(violation_type != "all_background") %>%
ggplot(aes(x = trial_number, y = value, color = value_type, group = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .4)) +
stat_summary(geom = "line", position = position_dodge(width = .4)) +
#scale_y_log10()+
facet_grid(violation_type ~ stimuli_sequence) +
theme_few()
cor(scaled_se_condition_train_res$total_rt, scaled_se_condition_train_res$scaled_stim_sample_n, method = "pearson")
## [1] 0.8728853
scaled_se_condition_train_res %>%
mutate(trial_type = case_when(
stimuli_sequence == "BBBBBD" & trial_number == 6 ~ "deviant",
stimuli_sequence == "BBBD" & trial_number == 4 ~ "deviant",
stimuli_sequence == "BD" & trial_number == 2 ~ "deviant",
TRUE ~ "background"
)) %>%
filter(trial_type == "deviant") %>%
pivot_longer(cols = c("scaled_stim_sample_n", "total_rt"),
names_to = "value_type",
values_to = "value") %>%
ggplot(aes(x = violation_type, y = value, color = value_type)) +
stat_summary(fun.data = "mean_cl_boot", position = position_dodge(width = .2)) +
theme_few()