https://www.youtube.com/watch?v=UeMpYEktLfU&ab_channel=Comunicaci%C3%B3nNum%C3%A9rica
El análisis exploratorio de datos (EDA por sus siglas en inglés) implica el uso de gráficos y visualizaciones para explorar y analizar un conjunto de datos. El objetivo es explorar, investigar y aprender, no confirmar hipótesis estadísticas.
El análisis exploratorio de datos es una potente herramienta para explorar un conjunto de datos. Incluso cuando su objetivo es efectuar análisis planificados, el EDA puede utilizarse para limpiar datos, para análisis de subgrupos o simplemente para comprender mejor los datos. Un paso inicial importante en cualquier análisis de datos es representar los datos gráficamente.
No gráfico: Calcula estadísticas descriptivas de las variables
Gráfico: Calcula estadísticas de forma gráfica
Univariado: Analiza una sola variable a la vez
Multivariado: Analiza dos o más variables
A su vez, cada uno de esas dividisiones puede subdividirse según los tipos de datos con los que trabajemos: cateógicos o numéricos.
Lo primero que tenemos que hacer es cargar los paquetes que vamos a utilizar para el análisis. En este caso vamos a usar:
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(readxl)
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.2.3
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.2.3
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.2.3
(Recordar que si no ha instalado estos paquetes debe correr primero el comando: install.packages(“nombre del paquete”))
Puedes usar el programa R como una calculadora, basta con conocer cuáles son los signos y comandos a utilizar para realizar las opereaciones. Copia los comandos en tu script de R y ejecútalos para ver los resultados.
#suma
2+2
## [1] 4
#multiplicación
2*2
## [1] 4
#división
2/2
## [1] 1
#potencia
4^2
## [1] 16
#raíz cuadrada
sqrt(16)
## [1] 4
R ya incorpora una serie de bases de datos que te pueden resultar de utilidad para empezar a explorar las posibilidades de análisis estadístico que te ofrece este programa.
Como ejemplo vamos a explorara la base de datos llamada “cars”.
#cargar la base
data(cars)
#visualizar los encabezados
head(cars)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
#resumir con algunas estadísticas las variables de la base
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
Puedes agregar fácilmente gráficos a tu análisis. Por ejemplo:
data(pressure)
head(pressure)
## temperature pressure
## 1 0 0.0002
## 2 20 0.0012
## 3 40 0.0060
## 4 60 0.0300
## 5 80 0.0900
## 6 100 0.2700
plot(pressure)
edad<-c(11,12,15,20,41)
edad
## [1] 11 12 15 20 41
altura=c(50,65,120,156,182)
altura
## [1] 50 65 120 156 182
datos=data.frame(edad,altura)
datos
## edad altura
## 1 11 50
## 2 12 65
## 3 15 120
## 4 20 156
## 5 41 182
plot(datos,type="b")