
Background
This project occurred during the summer of 2023 at the USDA
Agricultural Research Services Fort Keogh Livestock and Range Research
Laboratory, located in Miles City, MT. The purpose of this study is to
determine the effects of prescribed fire on silver sagebrush
(Artemisia cana) in the US Great Northern Plains. The heights,
major diameters, and minor diameters of 101 A. cana plants were
recorded. The plant was then cut down, dried at 60°C for 4 days, and
weighted. A linear model for mass, height, major diameter, minor
diameter was then created using the R statistical environment.
Regression
Statistics
Linear Model
BagMass <-
read_excel("NoahSilverSagebrushData.xlsx",
sheet = 'BagTares') %>%
group_by(BagSize) %>%
summarize(
bagmass = mean(Mass))
SagebrushData <-
read_xlsx("NoahSilverSagebrushData.xlsx", sheet = "LinearRegressData") %>%
mutate(Mass = case_when(
BagSize ==
"g" ~ MassGrams - filter(BagMass, BagSize == "g") $bagmass
)) %>%
select( - MassGrams, - BagSize) %>%
mutate(Area = (pi*(Diameter)/2*(Diameter2)/2))
Sagelm <-
lm(Mass ~ Diameter + Diameter2 + Height, data = SagebrushData)
summary(Sagelm)
##
## Call:
## lm(formula = Mass ~ Diameter + Diameter2 + Height, data = SagebrushData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -291.07 -42.31 -20.17 10.52 455.75
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -51.7295 29.3588 -1.762 0.0812 .
## Diameter 0.1877 0.7120 0.264 0.7926
## Diameter2 1.4047 0.7892 1.780 0.0782 .
## Height 1.7847 0.7844 2.275 0.0251 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 97.44 on 97 degrees of freedom
## Multiple R-squared: 0.3382, Adjusted R-squared: 0.3177
## F-statistic: 16.52 on 3 and 97 DF, p-value: 9.495e-09
Graphs
3D Scatterplot of Sagebrush Height vs. Mass vs. Area*
*For the purpose of 3-dimensional visualization, area is expressed
as Elliptical Area = (pi)(Diameter/2)(Diameter2/2)
# 3D-Plot
open3d()
plot3d(
x = SagebrushData$Area, y = SagebrushData$Mass, z = SagebrushData$Height,
xlab="Elliptical Area", ylab="Mass", zlab="Height",
col = "red", type = "s", size = 1)
Histograms
# 3D-Plot
SagebrushData %>%
ggplot(aes(x = Mass)) + theme_bw(16) +
geom_histogram(aes(y = after_stat(.data[["density"]])),
binwidth = 37,
colour = "black",
fill = "lightyellow")+
geom_density(alpha = .5, fill = "lightblue") +
labs(y = "Density",
x = "Mass (g)")

SagebrushData %>%
ggplot(aes(x = Height)) + theme_bw(16) +
geom_histogram(aes(y = after_stat(.data[["density"]])),
binwidth = 4,
colour = "black",
fill = "lightyellow")+
geom_density(alpha = .5, fill = "lightblue") +
labs(y = "Density",
x = "Height (cm)")

SagebrushData %>%
ggplot(aes(Height, Mass)) +
geom_point(
shape = 21,
fill = "RED",
stroke = .5,)+
stat_smooth(method = "lm")+
theme_bw(14)
## `geom_smooth()` using formula = 'y ~ x'

LS0tDQp0aXRsZTogIlNpbHZlciBzYWdlYnJ1c2ggKihBLiBjYW5hKSogcmVzcG9uc2UgdG8gcHJlc2NyaWJlZCBmaXJlIg0KYXV0aG9yOiAiW05vYWggQy4gV2VpZGlnXShodHRwczovL25vYWh3ZWlkaWcuY29tLykgfCBbVVNEQSwgQWdyaWN1bHR1cmFsIFJlc2VhcmNoIFNlcnZpY2VzLCBNaWxlcyBDaXR5LCBNVCBVU0FdKGh0dHBzOi8vd3d3LmFycy51c2RhLmdvdi9wbGFpbnMtYXJlYS9taWxlcy1jaXR5LW10L2xhcnJsLykiDQpkYXRlOiAiTGFzdCBjb21waWxlZCBvbiBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVCICVkLCAlWScpYCBhdCBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVJOiVNICVwJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogRkFMU0UNCiAgICB0b2NfZmxvYXQ6IEZBTFNFDQogICAgdG9jX2RlcHRoOiAzDQogICAgdGhlbWU6IGRlZmF1bHQNCiAgICBoaWdobGlnaHQ6IGRlZmF1bHQNCiAgICBkZl9wcmludDogcGFnZWQNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgc2VsZl9jb250YWluZWQ6IEZBTFNFDQotLS0NCg0KYGBgez1odG1sfQ0KPHN0eWxlIHR5cGUgPSAidGV4dC9jc3MiPg0KDQpoMS50aXRsZSB7DQogIGZvbnQtc2l6ZTogMzhweDsNCiAgZm9udC1mYW1pbHk6IEFyaWFsLCBIZWx2ZXRpY2EsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBEYXJrUmVkOw0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpoNC5hdXRob3Igew0KICAgIGZvbnQtc2l6ZTogMThweDsNCiAgZm9udC1mYW1pbHk6IEFyaWFsLCBIZWx2ZXRpY2EsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBCbGFjazsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KaDQuZGF0ZSB7DQogIGZvbnQtc2l6ZTogMTVweDsNCiAgZm9udC1mYW1pbHk6IEFyaWFsLCBIZWx2ZXRpY2EsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBCbGFjazsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KLm5hdi1waWxscz5saT5hIHsNCiAgICAgY29sb3I6IERhcmtSZWQ7DQogICAgIH0NCi5uYXYtcGlsbHM+bGk+YTpob3ZlciwgLm5hdi1waWxscz5saT5hOmZvY3VzLCAubmF2LXBpbGxzPmxpLmFjdGl2ZT5hLCAubmF2LXBpbGxzPmxpLmFjdGl2ZT5hOmhvdmVyLCAubmF2LXBpbGxzPmxpLmFjdGl2ZT5hOmZvY3Vzew0KICAgICBjb2xvcjogV2hpdGU7DQogICAgIGJhY2tncm91bmQtY29sb3I6IERhcmtSZWQ7DQogICAgIH0NCi5uYXYtcGlsbHMgPiBsaTpudGgtb2YtdHlwZSgyKT5hIHsNCiAgICAgY29sb3I6IERhcmtSZWQ7DQogICAgIH0NCi5uYXYtcGlsbHMgPiBsaTpudGgtb2YtdHlwZSgyKT5hOmhvdmVyLCAubmF2LXBpbGxzID4gbGk6bnRoLW9mLXR5cGUoMik+YTpmb2N1cywgLm5hdi1waWxscyA+IGxpOm50aC1vZi10eXBlKDIpLmFjdGl2ZT5hIHsNCiAgICAgY29sb3I6IFdoaXRlOw0KICAgICBiYWNrZ3JvdW5kLWNvbG9yOiBEYXJrUmVkO30NCi5uYXYtcGlsbHMgPiBsaTpub3QoLmFjdGl2ZSkgYSB7DQogICAgYmFja2dyb3VuZC1jb2xvcjogI0VDRUNFQzsNCiAgICBjb2xvcjogRGFya1JlZDsNCn0NCi5uYXYtcGlsbHM+bGk6bm90KC5hY3RpdmUpIGE6aG92ZXIgew0KICAgIGJhY2tncm91bmQtY29sb3I6ICNEQURBREE7DQogICAgY29sb3I6IERhcmtSZWQ7DQp9DQoubmF2LXBpbGxzIHsNCiAgICBkaXNwbGF5OiBmbGV4Ow0KICAgIGp1c3RpZnktY29udGVudDogY2VudGVyOw0KfQ0KLmh0bWwtd2lkZ2V0IHsNCiAgICBtYXJnaW46IGF1dG87DQp9DQo8L3N0eWxlPg0KYGBgDQpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQoNCiMgR2VuZXJhbCBzY3JpcHQgc2V0dXANCmxpYnJhcnkocmdsKQ0Ka25pdHI6OmtuaXRfaG9va3Mkc2V0KHdlYmdsID0gaG9va193ZWJnbCkNCmBgYA0KDQpgYGB7Y3NzLCBlY2hvPUZBTFNFLCBmaWcuYWxpZ249J2NlbnRlcid9DQoNCmgxLCBoMiwgaDMsIGg0LCBoNCwgaDUsIGg2LCBoNywgaDggew0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpgYGANCg0KPGJyPg0KDQpgYGB7ciBQYWNrYWdlcywgZWNobz1GQUxTRSwgZmlnLmFsaWduPSdjZW50ZXInLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRX0NCg0KIyBJbnN0YWxsIGFuZCBsb2FkIG5lY2Vzc2FyeSBwYWNrYWdlcw0KDQpwYWNtYW46OnBfbG9hZCh0aWR5dmVyc2UsIHJlYWR4bCwga25pdHIsIGRwbHlyLCBkYXRhLnRhYmxlLCBzY2FsZXMsIERpYWdyYW1tZVIsIG1vbWVudHMsIHBhc3RlY3MsIHBuZywgZ3JpZCwgcGFuZGVyLCByZ2wsIGthYmxlRXh0cmEsIHBsb3QzRCkNCg0KaW1nIDwtIHJlYWRQTkcoIkFjYW5JbWFnZS5wbmciKQ0KDQpncmlkLnJhc3RlcihpbWcpDQpgYGANCg0KIyMgQmFja2dyb3VuZA0KDQpUaGlzIHByb2plY3Qgb2NjdXJyZWQgZHVyaW5nIHRoZSBzdW1tZXIgb2YgMjAyMyBhdCB0aGUgVVNEQSBBZ3JpY3VsdHVyYWwgUmVzZWFyY2ggU2VydmljZXMgRm9ydCBLZW9naCBMaXZlc3RvY2sgYW5kIFJhbmdlIFJlc2VhcmNoIExhYm9yYXRvcnksIGxvY2F0ZWQgaW4gTWlsZXMgQ2l0eSwgTVQuIFRoZSBwdXJwb3NlIG9mIHRoaXMgc3R1ZHkgaXMgdG8gZGV0ZXJtaW5lIHRoZSBlZmZlY3RzIG9mIHByZXNjcmliZWQgZmlyZSBvbiBzaWx2ZXIgc2FnZWJydXNoICgqQXJ0ZW1pc2lhIGNhbmEqKSBpbiB0aGUgVVMgR3JlYXQgTm9ydGhlcm4gUGxhaW5zLiBUaGUgaGVpZ2h0cywgbWFqb3IgZGlhbWV0ZXJzLCBhbmQgbWlub3IgZGlhbWV0ZXJzIG9mIDEwMSAqQS4gY2FuYSogcGxhbnRzIHdlcmUgcmVjb3JkZWQuIFRoZSBwbGFudCB3YXMgdGhlbiBjdXQgZG93biwgZHJpZWQgYXQgNjDCsEMgZm9yIDQgZGF5cywgYW5kIHdlaWdodGVkLiBBIGxpbmVhciBtb2RlbCBmb3IgbWFzcywgaGVpZ2h0LCBtYWpvciBkaWFtZXRlciwgbWlub3IgZGlhbWV0ZXIgd2FzIHRoZW4gY3JlYXRlZCB1c2luZyB0aGUgUiBzdGF0aXN0aWNhbCBlbnZpcm9ubWVudC4NCg0KPGJyPg0KDQojIyBSZWdyZXNzaW9uIHsudGFic2V0IC50YWJzZXQtZmFkZSAudGFic2V0LXBpbGxzfQ0KDQojIyMgU3RhdGlzdGljcw0KDQojIyMjIExpbmVhciBNb2RlbA0KDQpgYGB7ciB0ZXN0LXJnbCwgd2ViZ2w9VFJVRSwgcmdsPVRSVUV9DQoNCkJhZ01hc3MgPC0gDQogIHJlYWRfZXhjZWwoIk5vYWhTaWx2ZXJTYWdlYnJ1c2hEYXRhLnhsc3giLA0KICAgICAgICAgICAgIHNoZWV0ID0gJ0JhZ1RhcmVzJykgJT4lDQogIGdyb3VwX2J5KEJhZ1NpemUpICU+JQ0KICBzdW1tYXJpemUoDQogICAgYmFnbWFzcyA9IG1lYW4oTWFzcykpDQoNClNhZ2VicnVzaERhdGEgPC0NCiAgcmVhZF94bHN4KCJOb2FoU2lsdmVyU2FnZWJydXNoRGF0YS54bHN4Iiwgc2hlZXQgPSAiTGluZWFyUmVncmVzc0RhdGEiKSAlPiUNCiAgbXV0YXRlKE1hc3MgPSBjYXNlX3doZW4oDQogICAgIEJhZ1NpemUgPT0NCiAgICAgICJnIiB+IE1hc3NHcmFtcyAtIGZpbHRlcihCYWdNYXNzLCBCYWdTaXplID09ICJnIikgJGJhZ21hc3MNCiAgKSkgJT4lDQogIHNlbGVjdCggLSBNYXNzR3JhbXMsIC0gQmFnU2l6ZSkgJT4lDQogIG11dGF0ZShBcmVhID0gKHBpKihEaWFtZXRlcikvMiooRGlhbWV0ZXIyKS8yKSkNCg0KU2FnZWxtIDwtDQogIGxtKE1hc3MgfiBEaWFtZXRlciArIERpYW1ldGVyMiArIEhlaWdodCwgZGF0YSA9IFNhZ2VicnVzaERhdGEpDQoNCnN1bW1hcnkoU2FnZWxtKQ0KYGBgDQoNCiMjIyBHcmFwaHMNCg0KIyMjIyAzRCBTY2F0dGVycGxvdCBvZiBTYWdlYnJ1c2ggSGVpZ2h0IHZzLiBNYXNzIHZzLiBBcmVhXCoNCg0KIyMjIyMjIFwqRm9yIHRoZSBwdXJwb3NlIG9mIDMtZGltZW5zaW9uYWwgdmlzdWFsaXphdGlvbiwgYXJlYSBpcyBleHByZXNzZWQgYXMgRWxsaXB0aWNhbCBBcmVhID0gKHBpKShEaWFtZXRlci8yKShEaWFtZXRlcjIvMikNCg0KYGBge3IgM2RwbG90LCB3ZWJnbD1UUlVFLCByZ2w9VFJVRSxyZXN1bHRzPSdoaWRlJywgZmlnLmFsaWduPSdjZW50ZXInfQ0KIyAzRC1QbG90DQoNCm9wZW4zZCgpDQoNCnBsb3QzZCggDQogIHggPSBTYWdlYnJ1c2hEYXRhJEFyZWEsIHkgPSBTYWdlYnJ1c2hEYXRhJE1hc3MsIHogPSBTYWdlYnJ1c2hEYXRhJEhlaWdodCwNCiAgeGxhYj0iRWxsaXB0aWNhbCBBcmVhIiwgeWxhYj0iTWFzcyIsIHpsYWI9IkhlaWdodCIsDQogIGNvbCA9ICJyZWQiLCB0eXBlID0gInMiLCBzaXplID0gMSkNCmBgYA0KDQo8YnI+DQoNCiMjIyMgSGlzdG9ncmFtcw0KDQpgYGB7ciBoaXN0b2dyYW1zLHJlc3VsdHM9J2hpZGUnLCBmaWcuYWxpZ249J2NlbnRlcid9DQojIDNELVBsb3QNCg0KU2FnZWJydXNoRGF0YSAlPiUNCiAgZ2dwbG90KGFlcyh4ID0gTWFzcykpICsgdGhlbWVfYncoMTYpICsgDQogIGdlb21faGlzdG9ncmFtKGFlcyh5ID0gYWZ0ZXJfc3RhdCguZGF0YVtbImRlbnNpdHkiXV0pKSwgICAgICANCiAgICAgICAgICAgICAgICAgYmlud2lkdGggPSAzNywNCiAgICAgICAgICAgICAgICAgY29sb3VyID0gImJsYWNrIiwNCiAgICAgICAgICAgICAgICAgZmlsbCA9ICJsaWdodHllbGxvdyIpKw0KICBnZW9tX2RlbnNpdHkoYWxwaGEgPSAuNSwgZmlsbCA9ICJsaWdodGJsdWUiKSArDQogIGxhYnMoeSA9ICJEZW5zaXR5IiwgDQogICAgICAgeCA9ICJNYXNzIChnKSIpDQoNClNhZ2VicnVzaERhdGEgJT4lDQogIGdncGxvdChhZXMoeCA9IEhlaWdodCkpICsgdGhlbWVfYncoMTYpICsgDQogIGdlb21faGlzdG9ncmFtKGFlcyh5ID0gYWZ0ZXJfc3RhdCguZGF0YVtbImRlbnNpdHkiXV0pKSwgICAgICANCiAgICAgICAgICAgICAgICAgYmlud2lkdGggPSA0LA0KICAgICAgICAgICAgICAgICBjb2xvdXIgPSAiYmxhY2siLA0KICAgICAgICAgICAgICAgICBmaWxsID0gImxpZ2h0eWVsbG93IikrDQogIGdlb21fZGVuc2l0eShhbHBoYSA9IC41LCBmaWxsID0gImxpZ2h0Ymx1ZSIpICsNCiAgbGFicyh5ID0gIkRlbnNpdHkiLCANCiAgICAgICB4ID0gIkhlaWdodCAoY20pIikNCg0KU2FnZWJydXNoRGF0YSAlPiUNCmdncGxvdChhZXMoSGVpZ2h0LCBNYXNzKSkgKyAgICAgICAgICAgDQogIGdlb21fcG9pbnQoDQogICAgc2hhcGUgPSAyMSwNCiAgICBmaWxsID0gIlJFRCIsDQogICAgc3Ryb2tlID0gLjUsKSsNCiAgc3RhdF9zbW9vdGgobWV0aG9kID0gImxtIikrDQogIHRoZW1lX2J3KDE0KQ0KYGBgDQo=