Background

This project occurred during the summer of 2023 at the USDA Agricultural Research Services Fort Keogh Livestock and Range Research Laboratory, located in Miles City, MT. The purpose of this study is to determine the effects of prescribed fire on big sagebrush (Artemisia tridentata) in the US Great Northern Plains. Plots 4 and 8 were omitted from the study due to low shrub density.


Data Visualization

Data Table

SagebrushData <-
  read_xlsx("NoahTridentataData.xlsx")

df <-
  SagebrushData %>%
  select(- date) %>%
  dplyr::group_by(plot) %>%
  dplyr::summarize(frequency = n(),
                   'μ height' = round(mean(height)))

df %>%
  kbl() %>%
  kable_styling(full_width = F) %>%
  column_spec(1, bold = T, border_right = T)
plot frequency μ height
1 334 65
2 499 61
3 242 75
5 100 69
6 259 59
7 70 67
9 184 69
10 211 77
11 211 69
12 292 65
13 401 66
14 175 64
15 335 65
16 179 70
17 130 66
18 126 67
19 412 61
20 98 66
21 370 56
22 270 65
23 293 62
24 240 61
25 297 60
26 366 62
27 366 69



Graphs


Descriptive Statistics

# Descriptive Statistics

stat.desc(SagebrushData$height)
##      nbr.val     nbr.null       nbr.na          min          max        range 
## 6.460000e+03 0.000000e+00 0.000000e+00 6.000000e+00 1.510000e+02 1.450000e+02 
##          sum       median         mean      SE.mean CI.mean.0.95          var 
## 4.172963e+05 6.548908e+01 6.459695e+01 2.563626e-01 5.025557e-01 4.245628e+02 
##      std.dev     coef.var 
## 2.060492e+01 3.189767e-01
# Ratio between mean and median

knitr::kable(tibble(Mean = mean(SagebrushData$height),
                    Median = median(SagebrushData$height),
                    Ratio = Mean/Median))
Mean Median Ratio
64.59695 65.48908 0.9863775
# Histograms

meanvline1 <-
  SagebrushData %>%
  dplyr::summarise(count = n(),
            mean = mean(height))%>%
  mutate(lab = paste("μ = ", round(mean), "\nn = ", count))

histall <-
  ggplot(data = SagebrushData,
         aes(x = height)) +
  geom_histogram(data = SagebrushData,
                 aes(y = after_stat(.data[["density"]])),
                 binwidth = 8,
                 colour = "black",
                 fill = "lightyellow") +
  geom_density(alpha = .5, fill = "lightblue") +
  stat_function(fun = dnorm,
                args = list(mean = 64.59695,
                            sd = 20.60492),
                colour = "red",
                linewidth = 1.1) +
  geom_vline(data = meanvline1,
             mapping = aes(xintercept = mean),
             linewidth = 1,
             color = "black") +
  labs(y = "density")

histall + geom_text(data = meanvline1,
              aes(label = lab),
              x = Inf, y = Inf,
              hjust = 1,
              vjust = 1.2,
              size =15/.pt)

meanvline2 <-
  SagebrushData %>%
  group_by(plot) %>%
  dplyr::summarise(count = n(),
            mean = mean(height))%>%
  mutate(lab = paste("μ = ", round(mean), "\nn = ", count))

p <-
  ggplot(data = SagebrushData,
         aes(x = height)) +
  geom_histogram(data = SagebrushData,
                 aes(y = after_stat(.data[["density"]])),
                 fill = "white",
                 colour = "black",
                 binwidth = 8) +
  geom_density(data = SagebrushData,
               col = "red",
               fill = "red",
               alpha = 0.1) +
  geom_vline(data = meanvline2,
             mapping = aes(xintercept = mean),
             linewidth = .4,
             color = "red") +
  facet_wrap(~ plot)+
  labs(y = "density")

p + geom_text(data = meanvline2,
              aes(label = lab),
              x = Inf, y = Inf,
              hjust = 1,
              vjust = 1.2,
              size = 7/.pt)



LS0tDQp0aXRsZTogIkJpZyBzYWdlYnJ1c2ggKCpBLiB0cmlkZW50YXRhKikgcmVzcG9uc2UgdG8gcHJlc2NyaWJlZCBmaXJlIg0KYXV0aG9yOiAiW05vYWggQy4gV2VpZGlnXShodHRwczovL25vYWh3ZWlkaWcuY29tLykgfCBbVVNEQSwgQWdyaWN1bHR1cmFsIFJlc2VhcmNoIFNlcnZpY2VzLCBNaWxlcyBDaXR5LCBNVCBVU0FdKGh0dHBzOi8vd3d3LmFycy51c2RhLmdvdi9wbGFpbnMtYXJlYS9taWxlcy1jaXR5LW10L2xhcnJsLykiDQpkYXRlOiAiTGFzdCBjb21waWxlZCBvbiBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVCICVkLCAlWScpYCBhdCBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVJOiVNICVwJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogRkFMU0UNCiAgICB0b2NfZmxvYXQ6IEZBTFNFDQogICAgdG9jX2RlcHRoOiAzDQogICAgdGhlbWU6IGRlZmF1bHQNCiAgICBoaWdobGlnaHQ6IGRlZmF1bHQNCiAgICBkZl9wcmludDogcGFnZWQNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgc2VsZl9jb250YWluZWQ6IEZBTFNFDQotLS0NCg0KYGBgez1odG1sfQ0KPHN0eWxlIHR5cGUgPSAidGV4dC9jc3MiPg0KDQpoMS50aXRsZSB7DQogIGZvbnQtc2l6ZTogMzhweDsNCiAgZm9udC1mYW1pbHk6IEFyaWFsLCBIZWx2ZXRpY2EsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBEYXJrUmVkOw0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpoNC5hdXRob3Igew0KICAgIGZvbnQtc2l6ZTogMThweDsNCiAgZm9udC1mYW1pbHk6IEFyaWFsLCBIZWx2ZXRpY2EsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBCbGFjazsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KaDQuZGF0ZSB7DQogIGZvbnQtc2l6ZTogMTVweDsNCiAgZm9udC1mYW1pbHk6IEFyaWFsLCBIZWx2ZXRpY2EsIHNhbnMtc2VyaWY7DQogIGNvbG9yOiBCbGFjazsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KLm5hdi1waWxscz5saT5hIHsNCiAgICAgY29sb3I6IERhcmtSZWQ7DQogICAgIH0NCi5uYXYtcGlsbHM+bGk+YTpob3ZlciwgLm5hdi1waWxscz5saT5hOmZvY3VzLCAubmF2LXBpbGxzPmxpLmFjdGl2ZT5hLCAubmF2LXBpbGxzPmxpLmFjdGl2ZT5hOmhvdmVyLCAubmF2LXBpbGxzPmxpLmFjdGl2ZT5hOmZvY3Vzew0KICAgICBjb2xvcjogV2hpdGU7DQogICAgIGJhY2tncm91bmQtY29sb3I6IERhcmtSZWQ7DQogICAgIH0NCi5uYXYtcGlsbHMgPiBsaTpudGgtb2YtdHlwZSgyKT5hIHsNCiAgICAgY29sb3I6IERhcmtSZWQ7DQogICAgIH0NCi5uYXYtcGlsbHMgPiBsaTpudGgtb2YtdHlwZSgyKT5hOmhvdmVyLCAubmF2LXBpbGxzID4gbGk6bnRoLW9mLXR5cGUoMik+YTpmb2N1cywgLm5hdi1waWxscyA+IGxpOm50aC1vZi10eXBlKDIpLmFjdGl2ZT5hIHsNCiAgICAgY29sb3I6IFdoaXRlOw0KICAgICBiYWNrZ3JvdW5kLWNvbG9yOiBEYXJrUmVkO30NCi5uYXYtcGlsbHMgPiBsaTpub3QoLmFjdGl2ZSkgYSB7DQogICAgYmFja2dyb3VuZC1jb2xvcjogI0VDRUNFQzsNCiAgICBjb2xvcjogRGFya1JlZDsNCn0NCi5uYXYtcGlsbHM+bGk6bm90KC5hY3RpdmUpIGE6aG92ZXIgew0KICAgIGJhY2tncm91bmQtY29sb3I6ICNEQURBREE7DQogICAgY29sb3I6IERhcmtSZWQ7DQp9DQoubmF2LXBpbGxzIHsNCiAgICBkaXNwbGF5OiBmbGV4Ow0KICAgIGp1c3RpZnktY29udGVudDogY2VudGVyOw0KfQ0KLmh0bWwtd2lkZ2V0IHsNCiAgICBtYXJnaW46IGF1dG87DQp9DQo8L3N0eWxlPg0KYGBgDQpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQoNCiMgR2VuZXJhbCBzY3JpcHQgc2V0dXANCmxpYnJhcnkocmdsKQ0Ka25pdHI6OmtuaXRfaG9va3Mkc2V0KHdlYmdsID0gaG9va193ZWJnbCkNCmBgYA0KDQpgYGB7Y3NzLCBlY2hvPUZBTFNFLCBmaWcuYWxpZ249J2NlbnRlcid9DQoNCmgxLCBoMiwgaDMsIGg0LCBoNCwgaDUsIGg2LCBoNywgaDggew0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpgYGANCg0KPGJyPg0KDQpgYGB7ciBQYWNrYWdlcywgZWNobz1GQUxTRSwgZmlnLmFsaWduPSdjZW50ZXInLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRX0NCg0KIyBJbnN0YWxsIGFuZCBsb2FkIG5lY2Vzc2FyeSBwYWNrYWdlcw0KDQpwYWNtYW46OnBfbG9hZCh0aWR5dmVyc2UsIHJlYWR4bCwga25pdHIsIGRwbHlyLCBkYXRhLnRhYmxlLCBzY2FsZXMsIERpYWdyYW1tZVIsIG1vbWVudHMsIHBhc3RlY3MsIHBuZywgZ3JpZCwgcGFuZGVyLCByZ2wsIGthYmxlRXh0cmEsIHBsb3QzRCwga2FibGVFeHRyYSwgamFuaXRvcikNCg0KaW1nIDwtIHJlYWRQTkcoIlRyaWRlbnRhdGFJbWFnZS5wbmciKQ0KDQpncmlkLnJhc3RlcihpbWcpDQpgYGANCg0KIyMgQmFja2dyb3VuZA0KDQpUaGlzIHByb2plY3Qgb2NjdXJyZWQgZHVyaW5nIHRoZSBzdW1tZXIgb2YgMjAyMyBhdCB0aGUgVVNEQSBBZ3JpY3VsdHVyYWwgUmVzZWFyY2ggU2VydmljZXMgRm9ydCBLZW9naCBMaXZlc3RvY2sgYW5kIFJhbmdlIFJlc2VhcmNoIExhYm9yYXRvcnksIGxvY2F0ZWQgaW4gTWlsZXMgQ2l0eSwgTVQuIFRoZSBwdXJwb3NlIG9mIHRoaXMgc3R1ZHkgaXMgdG8gZGV0ZXJtaW5lIHRoZSBlZmZlY3RzIG9mIHByZXNjcmliZWQgZmlyZSBvbiBiaWcgc2FnZWJydXNoICgqQXJ0ZW1pc2lhIHRyaWRlbnRhdGEqKSBpbiB0aGUgVVMgR3JlYXQgTm9ydGhlcm4gUGxhaW5zLiBQbG90cyA0IGFuZCA4IHdlcmUgb21pdHRlZCBmcm9tIHRoZSBzdHVkeSBkdWUgdG8gbG93IHNocnViIGRlbnNpdHkuDQoNCjxicj4NCg0KIyMgRGF0YSBWaXN1YWxpemF0aW9uIHsudGFic2V0IC50YWJzZXQtZmFkZSAudGFic2V0LXBpbGxzfQ0KDQojIyMgRGF0YSBUYWJsZQ0KDQpgYGB7ciBEYXRhVmlzdWFsaXphdGlvbiwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgcmdsPVRSVUUsIHdlYmdsPVRSVUV9DQoNClNhZ2VicnVzaERhdGEgPC0NCiAgcmVhZF94bHN4KCJOb2FoVHJpZGVudGF0YURhdGEueGxzeCIpDQoNCmRmIDwtDQogIFNhZ2VicnVzaERhdGEgJT4lDQogIHNlbGVjdCgtIGRhdGUpICU+JQ0KICBkcGx5cjo6Z3JvdXBfYnkocGxvdCkgJT4lDQogIGRwbHlyOjpzdW1tYXJpemUoZnJlcXVlbmN5ID0gbigpLA0KICAgICAgICAgICAgICAgICAgICfOvCBoZWlnaHQnID0gcm91bmQobWVhbihoZWlnaHQpKSkNCg0KZGYgJT4lDQogIGtibCgpICU+JQ0KICBrYWJsZV9zdHlsaW5nKGZ1bGxfd2lkdGggPSBGKSAlPiUNCiAgY29sdW1uX3NwZWMoMSwgYm9sZCA9IFQsIGJvcmRlcl9yaWdodCA9IFQpDQpgYGANCjxicj4NCjxicj4NCg0KIyMjIEdyYXBocw0KDQo8YnI+DQoNCiMjIyMgRGVzY3JpcHRpdmUgU3RhdGlzdGljcw0KDQpgYGB7ciBoaXN0b2dyYW1zLCBmaWcuYWxpZ249J2NlbnRlcid9DQojIERlc2NyaXB0aXZlIFN0YXRpc3RpY3MNCg0Kc3RhdC5kZXNjKFNhZ2VicnVzaERhdGEkaGVpZ2h0KQ0KDQojIFJhdGlvIGJldHdlZW4gbWVhbiBhbmQgbWVkaWFuDQoNCmtuaXRyOjprYWJsZSh0aWJibGUoTWVhbiA9IG1lYW4oU2FnZWJydXNoRGF0YSRoZWlnaHQpLA0KICAgICAgICAgICAgICAgICAgICBNZWRpYW4gPSBtZWRpYW4oU2FnZWJydXNoRGF0YSRoZWlnaHQpLA0KICAgICAgICAgICAgICAgICAgICBSYXRpbyA9IE1lYW4vTWVkaWFuKSkNCg0KIyBIaXN0b2dyYW1zDQoNCm1lYW52bGluZTEgPC0NCiAgU2FnZWJydXNoRGF0YSAlPiUNCiAgZHBseXI6OnN1bW1hcmlzZShjb3VudCA9IG4oKSwNCiAgICAgICAgICAgIG1lYW4gPSBtZWFuKGhlaWdodCkpJT4lDQogIG11dGF0ZShsYWIgPSBwYXN0ZSgizrwgPSAiLCByb3VuZChtZWFuKSwgIlxubiA9ICIsIGNvdW50KSkNCg0KaGlzdGFsbCA8LQ0KICBnZ3Bsb3QoZGF0YSA9IFNhZ2VicnVzaERhdGEsDQogICAgICAgICBhZXMoeCA9IGhlaWdodCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0oZGF0YSA9IFNhZ2VicnVzaERhdGEsDQogICAgICAgICAgICAgICAgIGFlcyh5ID0gYWZ0ZXJfc3RhdCguZGF0YVtbImRlbnNpdHkiXV0pKSwNCiAgICAgICAgICAgICAgICAgYmlud2lkdGggPSA4LA0KICAgICAgICAgICAgICAgICBjb2xvdXIgPSAiYmxhY2siLA0KICAgICAgICAgICAgICAgICBmaWxsID0gImxpZ2h0eWVsbG93IikgKw0KICBnZW9tX2RlbnNpdHkoYWxwaGEgPSAuNSwgZmlsbCA9ICJsaWdodGJsdWUiKSArDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZG5vcm0sDQogICAgICAgICAgICAgICAgYXJncyA9IGxpc3QobWVhbiA9IDY0LjU5Njk1LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNkID0gMjAuNjA0OTIpLA0KICAgICAgICAgICAgICAgIGNvbG91ciA9ICJyZWQiLA0KICAgICAgICAgICAgICAgIGxpbmV3aWR0aCA9IDEuMSkgKw0KICBnZW9tX3ZsaW5lKGRhdGEgPSBtZWFudmxpbmUxLA0KICAgICAgICAgICAgIG1hcHBpbmcgPSBhZXMoeGludGVyY2VwdCA9IG1lYW4pLA0KICAgICAgICAgICAgIGxpbmV3aWR0aCA9IDEsDQogICAgICAgICAgICAgY29sb3IgPSAiYmxhY2siKSArDQogIGxhYnMoeSA9ICJkZW5zaXR5IikNCg0KaGlzdGFsbCArIGdlb21fdGV4dChkYXRhID0gbWVhbnZsaW5lMSwNCiAgICAgICAgICAgICAgYWVzKGxhYmVsID0gbGFiKSwNCiAgICAgICAgICAgICAgeCA9IEluZiwgeSA9IEluZiwNCiAgICAgICAgICAgICAgaGp1c3QgPSAxLA0KICAgICAgICAgICAgICB2anVzdCA9IDEuMiwNCiAgICAgICAgICAgICAgc2l6ZSA9MTUvLnB0KQ0KDQoNCg0KbWVhbnZsaW5lMiA8LQ0KICBTYWdlYnJ1c2hEYXRhICU+JQ0KICBncm91cF9ieShwbG90KSAlPiUNCiAgZHBseXI6OnN1bW1hcmlzZShjb3VudCA9IG4oKSwNCiAgICAgICAgICAgIG1lYW4gPSBtZWFuKGhlaWdodCkpJT4lDQogIG11dGF0ZShsYWIgPSBwYXN0ZSgizrwgPSAiLCByb3VuZChtZWFuKSwgIlxubiA9ICIsIGNvdW50KSkNCg0KcCA8LQ0KICBnZ3Bsb3QoZGF0YSA9IFNhZ2VicnVzaERhdGEsDQogICAgICAgICBhZXMoeCA9IGhlaWdodCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0oZGF0YSA9IFNhZ2VicnVzaERhdGEsDQogICAgICAgICAgICAgICAgIGFlcyh5ID0gYWZ0ZXJfc3RhdCguZGF0YVtbImRlbnNpdHkiXV0pKSwNCiAgICAgICAgICAgICAgICAgZmlsbCA9ICJ3aGl0ZSIsDQogICAgICAgICAgICAgICAgIGNvbG91ciA9ICJibGFjayIsDQogICAgICAgICAgICAgICAgIGJpbndpZHRoID0gOCkgKw0KICBnZW9tX2RlbnNpdHkoZGF0YSA9IFNhZ2VicnVzaERhdGEsDQogICAgICAgICAgICAgICBjb2wgPSAicmVkIiwNCiAgICAgICAgICAgICAgIGZpbGwgPSAicmVkIiwNCiAgICAgICAgICAgICAgIGFscGhhID0gMC4xKSArDQogIGdlb21fdmxpbmUoZGF0YSA9IG1lYW52bGluZTIsDQogICAgICAgICAgICAgbWFwcGluZyA9IGFlcyh4aW50ZXJjZXB0ID0gbWVhbiksDQogICAgICAgICAgICAgbGluZXdpZHRoID0gLjQsDQogICAgICAgICAgICAgY29sb3IgPSAicmVkIikgKw0KICBmYWNldF93cmFwKH4gcGxvdCkrDQogIGxhYnMoeSA9ICJkZW5zaXR5IikNCg0KcCArIGdlb21fdGV4dChkYXRhID0gbWVhbnZsaW5lMiwNCiAgICAgICAgICAgICAgYWVzKGxhYmVsID0gbGFiKSwNCiAgICAgICAgICAgICAgeCA9IEluZiwgeSA9IEluZiwNCiAgICAgICAgICAgICAgaGp1c3QgPSAxLA0KICAgICAgICAgICAgICB2anVzdCA9IDEuMiwNCiAgICAgICAgICAgICAgc2l6ZSA9IDcvLnB0KQ0KYGBgDQo8YnI+DQo8YnI+DQo=