hoiquy <- function(data, x, y) {
model <- lm(formula = paste(y, "~", x), data = data)
summary(model)
return(summary(model))
# Kiểm định tương quan
cor.test(data, x)
# Một số đồ thị trong phân tích tương quan
raqMatrix <- cor(data %>% select(y, x))
# Tìm dộ tin cậy 95%
confint(model)
re <- resid(model)
# Giả thiết 1: Sai số ngẫu nhiên có phân phối chuẩn
shapiro.test(re)
# Giả thiết 2: Kỳ vọng của sai số ngẫu nhiên tại mỗi giá trị bằng 0
t.test(re, mu = 0)
# Giả thiết 3: Phương sai của sai số ngẫu nhiên không đổi
ncvTest(model)
}
x <- c(57, 60, 55.5, 117, 98, 69, 100, 150, 200, 125, 170, 195, 270, 198)
y <- c(10, 15.7, 50, 76, 24.8, 200, 198, 150, 99.8, 76.5, 45.4, 187, 78.3, 200)
new <- data.frame(x,y)
hoiquy(new, "x", "y")
##
## Call:
## lm(formula = paste(y, "~", x), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.20 -64.01 -22.05 60.76 119.70
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 58.2275 44.4415 1.310 0.215
## x 0.3198 0.3010 1.062 0.309
##
## Residual standard error: 71.76 on 12 degrees of freedom
## Multiple R-squared: 0.08598, Adjusted R-squared: 0.00981
## F-statistic: 1.129 on 1 and 12 DF, p-value: 0.3089
LS0tDQp0aXRsZTogIlVudGl0bGVkIg0KYXV0aG9yOiAia2nhu4NtIHRyYSINCmRhdGU6ICIyMDIzLTA3LTI1Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgaGlnaGxpZ2h0OiBweWdtZW50cw0KICAgICMgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0aGVtZTogImZsYXRseSINCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCmBgYA0KDQpgYGB7cn0NCmhvaXF1eSA8LSBmdW5jdGlvbihkYXRhLCB4LCB5KSB7DQogIG1vZGVsIDwtIGxtKGZvcm11bGEgPSBwYXN0ZSh5LCAifiIsIHgpLCBkYXRhID0gZGF0YSkNCiAgc3VtbWFyeShtb2RlbCkNCiAgcmV0dXJuKHN1bW1hcnkobW9kZWwpKSANCiAgIyBLaeG7g20gxJHhu4tuaCB0xrDGoW5nIHF1YW4NCiAgY29yLnRlc3QoZGF0YSwgeCkNCiAgIyBN4buZdCBz4buRIMSR4buTIHRo4buLIHRyb25nIHBow6JuIHTDrWNoIHTGsMahbmcgcXVhbg0KICByYXFNYXRyaXggPC0gY29yKGRhdGEgJT4lIHNlbGVjdCh5LCB4KSkNCiAjIFTDrG0gZOG7mSB0aW4gY+G6rXkgOTUlDQogIGNvbmZpbnQobW9kZWwpIA0KICByZSA8LSByZXNpZChtb2RlbCkNCiAgIyBHaeG6oyB0aGnhur90IDE6IFNhaSBz4buRIG5n4bqrdSBuaGnDqm4gY8OzIHBow6JuIHBo4buRaSBjaHXhuqluDQogIHNoYXBpcm8udGVzdChyZSkNCiAgIyBHaeG6oyB0aGnhur90IDI6IEvhu7MgduG7jW5nIGPhu6dhIHNhaSBz4buRIG5n4bqrdSBuaGnDqm4gdOG6oWkgbeG7l2kgZ2nDoSB0cuG7iyBi4bqxbmcgMA0KICB0LnRlc3QocmUsIG11ID0gMCkNCiAgIyBHaeG6oyB0aGnhur90IDM6IFBoxrDGoW5nIHNhaSBj4bunYSBzYWkgc+G7kSBuZ+G6q3Ugbmhpw6puIGtow7RuZyDEkeG7lWkNCiAgbmN2VGVzdChtb2RlbCkNCiAgDQp9DQpgYGANCg0KYGBge3J9DQp4IDwtIGMoNTcsIDYwLCA1NS41LCAxMTcsIDk4LCA2OSwgMTAwLCAxNTAsIDIwMCwgMTI1LCAxNzAsIDE5NSwgMjcwLCAxOTgpDQp5IDwtIGMoMTAsIDE1LjcsIDUwLCA3NiwgMjQuOCwgMjAwLCAxOTgsIDE1MCwgOTkuOCwgNzYuNSwgNDUuNCwgMTg3LCA3OC4zLCAyMDApDQpuZXcgPC0gZGF0YS5mcmFtZSh4LHkpDQoNCg0KaG9pcXV5KG5ldywgIngiLCAgInkiKQ0KYGBgDQoNCg0KDQo=