load packages
library(MASS)
library(ggplot2)
library(ggeffects)
library(dplyr)
library(scales)
Read database into R. If current database changes, just change the path
Database <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Final_Aurelia_Database_Jan11_2023.csv")
First, read in the file that designates different samples to tanks
with jellies other, tanks with zero jellies sampled at the
beginning of the experiment remove, and tanks with zero
jellies sampled at the end of the experiment zero
Control_tanks <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Control_Tanks.csv")
Add control tank data to the database file
Database$Control_info <- Control_tanks$c1[match(Database$Sample.Code, Control_tanks$Sample.Code)]
Subset to trials with large jellies where the number of jellies in the tanks was manipulated
Exp_numb_trials<- subset(Database, Trial.Type=='Number')
Exp_numb_large<-subset(Exp_numb_trials,Jelly.Size=="Large")
remove aug 22 2019 - the jellies we used for this experiment were younger/smaller than the other experiments, so I decided to omit it from analysis
Exp_sub<-subset(Exp_numb_large,Sample.Date!="08/22/2019")
remove tanks sampled at the beginning of experiment - we decided not to use these tanks because they were different than the tanks with zero jellies sampled at the end of the experiment and didn’t add anything beneficial
Exp_sub<-subset(Exp_sub,Control_info!="remove")
#convert sample year to a factor
Exp_sub$Sample.Year<- as.factor(Exp_sub$Sample.Year)
#Rename Vars (get the dots out)
Exp_sub$Jelly.Mass<-Exp_sub$Jelly.Mass..g.
Exp_sub$Density<-Exp_sub$Density....m3.
#calculate jelly density
Exp_sub$Jelly.Density<-Exp_sub$Jelly.Mass/Exp_sub$Vol.Filtered..m3.
#add 1 to jelly density for analyses that prohibit zeroes
Exp_sub$Jelly.Density <-Exp_sub$Jelly.Density
colnames(Exp_sub)
## [1] "BugSampleID" "Project" "Sample.Code"
## [4] "Sampling.Group" "Station" "Site"
## [7] "Site.Name" "Basin" "Sub.Basin"
## [10] "Latitude" "Longitude" "Sample.Date"
## [13] "Sample.Year" "Sample.Month" "Sample.Time"
## [16] "Tow.Type" "Mesh.Size" "Station.Depth..m."
## [19] "Flow.meter..revs." "Broad.Group" "Mid.Level.Group"
## [22] "X1st.Word.Taxa" "Genus.species" "Life.History.Stage"
## [25] "Total.Ct" "Density....m3." "Vol.Filtered..m3."
## [28] "Jelly.Mass..g." "Number.of.Jellies" "Trial.Time"
## [31] "Trial.Type" "Jelly.Size" "Jelly.Density....m3."
## [34] "Jelly.Density..g.m3." "Location" "Control_info"
## [37] "Jelly.Mass" "Density" "Jelly.Density"
Subset data to Oithona and add multiple entries per tank:The mean of jelly density is taken because this should be the same number for all taxa in each tank.
Oithona<-subset(Exp_sub, Genus.species == "OITHONA")
Oithona <- Oithona %>%
group_by(Sample.Code, Station,Sample.Date,Sample.Year,Control_info) %>%
summarise(
CopDensity = sum(Density),
Jelly.Density = mean(Jelly.Density))
Calculate the geometric mean of the zero-jelly tanks to use as a control.
Oithona$Control_info_combined <- paste(Oithona$Sample.Date, Oithona$Control_info)
Oithona2<- Oithona %>%
group_by(Control_info,Control_info_combined,Sample.Date) %>%
summarise(
ave = exp(mean(log(CopDensity))))
Oithona3<-subset(Oithona2,Control_info=="zero")
# match the geometric mean of zero jelly tanks to each experiment
Oithona$Control<- Oithona3$ave[match(Oithona$Sample.Date, Oithona3$Sample.Date)]
Histograms of Jellyfish Density and Copepod Density
hist(Oithona$CopDensity)
hist(Oithona$Jelly.Density)
lograrithmic distribution for both
See if years are different
boxplot(CopDensity~Sample.Year, data=Oithona)
variability for 2019 was higher than 2020
Plot Jellyfish Density against zooplankton density
ggplot(Oithona, aes(x=Jelly.Density, y=CopDensity)) + geom_point(aes(colour=Sample.Date))
#round to integers
Oithona$CopDensity_round<-round(as.numeric(Oithona$CopDensity), 0)
Oithona$Control_round<-round(as.numeric(Oithona$Control), 0)
#run model
Oithona_model1 <- glm.nb(CopDensity_round~Jelly.Density, data = Oithona)
summary(Oithona_model1)
##
## Call:
## glm.nb(formula = CopDensity_round ~ Jelly.Density, data = Oithona,
## init.theta = 0.8237634633, link = log)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.976e+00 1.860e-01 48.262 < 2e-16 ***
## Jelly.Density -2.452e-04 7.403e-05 -3.313 0.000924 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.8238) family taken to be 1)
##
## Null deviance: 89.236 on 64 degrees of freedom
## Residual deviance: 76.834 on 63 degrees of freedom
## AIC: 1246.8
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.824
## Std. Err.: 0.125
##
## 2 x log-likelihood: -1240.810
plot(Oithona_model1)
## Gaussian distribution
Oithona_model2<-glm(CopDensity~Jelly.Density, data= Oithona, family="gaussian")
summary(Oithona_model2)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = "gaussian",
## data = Oithona)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8307.0329 1115.8388 7.445 3.34e-10 ***
## Jelly.Density -1.4440 0.4441 -3.251 0.00185 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 43706614)
##
## Null deviance: 3215481567 on 64 degrees of freedom
## Residual deviance: 2753516682 on 63 degrees of freedom
## AIC: 1332
##
## Number of Fisher Scoring iterations: 2
plot(Oithona_model2)
Oithona_model3<-glm(CopDensity~Jelly.Density, data= Oithona, family="Gamma")
summary(Oithona_model3)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = "Gamma", data = Oithona)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.032e-04 2.029e-05 5.088 3.51e-06 ***
## Jelly.Density 7.869e-08 2.079e-08 3.784 0.000346 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.9687105)
##
## Null deviance: 108.407 on 64 degrees of freedom
## Residual deviance: 88.172 on 63 degrees of freedom
## AIC: 1243.5
##
## Number of Fisher Scoring iterations: 6
plot(Oithona_model3)
Gamma is the best so far - move forward with it
Oithona_model4<-glm(CopDensity~Jelly.Density, data= Oithona, family="Gamma"(link="log"))
summary(Oithona_model4)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = Gamma(link = "log"),
## data = Oithona)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.976e+00 1.734e-01 51.757 < 2e-16 ***
## Jelly.Density -2.452e-04 6.903e-05 -3.552 0.000729 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 1.055677)
##
## Null deviance: 108.41 on 64 degrees of freedom
## Residual deviance: 93.35 on 63 degrees of freedom
## AIC: 1248
##
## Number of Fisher Scoring iterations: 9
plot(Oithona_model4)
about the same as the identity link. However, I have not been able to
add a control factor with the identity link, so I will proceed with log
link.
Oithona_model3<-glm(CopDensity~Jelly.Density+offset(log(Control)), data= Oithona, family="Gamma"(link="log"))
summary(Oithona_model3)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density + offset(log(Control)),
## family = Gamma(link = "log"), data = Oithona)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.231e-01 9.413e-02 -2.37 0.0209 *
## Jelly.Density -1.896e-04 3.747e-05 -5.06 3.89e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.311044)
##
## Null deviance: 35.398 on 64 degrees of freedom
## Residual deviance: 26.119 on 63 degrees of freedom
## AIC: 1154.7
##
## Number of Fisher Scoring iterations: 11
plot(Oithona_model3)
Best fit so far! Proceed with this model.
OithonaMod<-glm(CopDensity~Jelly.Density+offset(log(Control)), data= Oithona, family="Gamma"(link="log"))
summary(OithonaMod)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density + offset(log(Control)),
## family = Gamma(link = "log"), data = Oithona)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.231e-01 9.413e-02 -2.37 0.0209 *
## Jelly.Density -1.896e-04 3.747e-05 -5.06 3.89e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.311044)
##
## Null deviance: 35.398 on 64 degrees of freedom
## Residual deviance: 26.119 on 63 degrees of freedom
## AIC: 1154.7
##
## Number of Fisher Scoring iterations: 11
plot(OithonaMod)
Use predict function to predict model values
predictOithona<-ggpredict(
OithonaMod,
terms=c("Jelly.Density"),
ci.lvl = 0.95,
type = "fe",
typical = "mean",
condition = NULL,
back.transform = TRUE,
ppd = FALSE,
vcov.fun = NULL,
vcov.type = NULL,
vcov.args = NULL,
interval = "confidence")
Plot with original values
OithonaPlot<-plot(predictOithona,add.data = TRUE,dot.size=1.5,dot.alpha=0.65)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))+theme_classic() +
scale_x_continuous(breaks=seq(0,7500,1500),expand = c(0, 20), limits = c(-10, 7500)) +
scale_y_continuous(breaks=seq(0,30000,6000),expand = c(0, 20), limits = c(-10, 30000))+
geom_line(size=1.5) +
geom_ribbon( aes(ymin = conf.low, ymax = conf.high), alpha = .15) +
xlab(bquote('Jellyfish Biomass ( g /' ~m^3~ ')'))+ylab(bquote('Copepod Density ( individuals /'~m^3~')'))+
theme(axis.text=element_text(size=15,colour="black"),
legend.position=c(0.87, 0.8),
legend.text=element_text(size=15,colour="black"),
legend.title=element_text(size=15,colour="black"),
axis.title=element_text(size=15,colour="black"),
axis.line = element_line(colour = "black"))+theme(plot.title = element_blank())
OithonaPlot
save plot
setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Exp_GLM_Oithona.png", plot = OithonaPlot, width = 6, height = 5, device='png', dpi=700)
Plot without original values
OithonaPlot_nodata<-plot(predictOithona)+xlab('Jellyfish Biomass ( g /' ~m^3~ ')')+
ylab(bquote('Copepod Density ( individuals /'~m^3~')'))+
theme(axis.line = element_line(colour = "black"))+theme_classic() +
geom_line(size=1) +
geom_ribbon( aes(ymin = conf.low, ymax = conf.high, color = NULL),
alpha = .15,show.legend=FALSE) +
scale_x_continuous(breaks=seq(0,7500,1500),expand = c(0, 20), limits = c(-10, 7500)) +
scale_y_continuous(breaks=seq(0,12000,3000),expand = c(0, 20), limits = c(-10, 12000))+
theme(axis.text=element_text(size=8,colour="black"),
axis.title=element_text(size=10),
plot.title=element_blank())+
theme(legend.position='none')+
theme(plot.margin=margin(0.5, 0.5, 0.5, 0.5, unit = "cm"))
OithonaPlot_nodata
save plot
setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Exp_GLM_Oithona_nodata.png", plot = OithonaPlot_nodata, width = 6, height = 5, device='png', dpi=700)