Step 1 - Check for collinearity

brood.col <- lm(brood_cells~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## brood_cells ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC  Pr(>Chi)    
## <none>                  2214.2 209.32              
## treatment   4     222.5 2436.7 205.63    0.3657    
## whole.mean  1    4144.5 6358.6 254.79 5.579e-12 ***
## alive       1       4.9 2219.0 207.42    0.7532    
## duration    1       3.7 2217.9 207.39    0.7836    
## replicate   5      69.9 2284.1 200.72    0.9244    
## mean.dose   1      22.5 2236.7 207.77    0.4995    
## qro         0       0.0 2214.2 209.32              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: brood_cells ~ treatment + whole.mean + alive + duration + replicate
## Model 2: brood_cells ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 2236.7                           
## 2     37 2530.7 -8   -293.98 0.4765 0.8627
AIC(b2, b3)
##    df      AIC
## b2 17 337.4788
## b3  9 327.0358
brood.col <- lm(honey_pot~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## honey_pot ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC Pr(>Chi)   
## <none>                  278.31 115.99            
## treatment   4    54.878 333.19 116.09 0.088029 . 
## whole.mean  1    72.743 351.06 124.44 0.001227 **
## alive       1     3.503 281.82 114.56 0.453092   
## duration    1     0.295 278.61 114.04 0.827199   
## replicate   5    53.449 331.76 113.90 0.161535   
## mean.dose   1     7.429 285.74 115.18 0.276262   
## qro         0     0.000 278.31 115.99            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: honey_pot ~ treatment + whole.mean + alive + duration + replicate
## Model 2: honey_pot ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 285.74                           
## 2     37 345.58 -8   -59.844 0.7592 0.6404
AIC(b2, b3)
##    df      AIC
## b2 17 244.8835
## b3  9 237.4403
brood.col <- lm(eggs~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## eggs ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC Pr(>Chi)  
## <none>                  5029.6 246.24           
## treatment   4    605.19 5634.8 243.35  0.27591  
## whole.mean  1    352.03 5381.6 247.28  0.08102 .
## alive       1      0.52 5030.1 244.24  0.94563  
## duration    1    117.12 5146.7 245.28  0.30879  
## replicate   5    248.55 5278.1 238.41  0.82507  
## mean.dose   1    149.62 5179.2 245.56  0.25074  
## qro         0      0.00 5029.6 246.24           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: eggs ~ treatment + whole.mean + alive + duration + replicate
## Model 2: eggs ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 5179.2                           
## 2     37 6388.3 -8   -1209.1 0.8462 0.5708
AIC(b2, b3)
##    df      AIC
## b2 17 375.2628
## b3  9 368.7044
brood.col <- lm(dead_larvae~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## dead_larvae ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC Pr(>Chi)   
## <none>                  1284.6 184.82            
## treatment   4    101.94 1386.5 180.25 0.487620   
## whole.mean  1    280.55 1565.1 191.71 0.002869 **
## alive       1     23.38 1308.0 183.63 0.367610   
## duration    1      1.85 1286.4 182.88 0.799325   
## replicate   5    392.72 1677.3 186.82 0.034734 * 
## mean.dose   1     39.79 1324.4 184.19 0.241352   
## qro         0      0.00 1284.6 184.82            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: dead_larvae ~ treatment + whole.mean + alive + duration + replicate
## Model 2: dead_larvae ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 1324.4                           
## 2     37 1845.8 -8   -521.41 1.4272 0.2273
AIC(b2, b3)
##    df      AIC
## b2 17 313.8957
## b3  9 312.8342
brood.col <- lm(live_larvae~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## live_larvae ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC  Pr(>Chi)    
## <none>                  4066.3 236.67              
## treatment   4   2114.58 6180.9 247.51 0.0008438 ***
## whole.mean  1   2890.43 6956.7 258.84 8.847e-07 ***
## alive       1     39.07 4105.4 235.10 0.5118234    
## duration    1      2.10 4068.4 234.69 0.8787392    
## replicate   5    490.08 4556.4 231.79 0.4013195    
## mean.dose   1    316.30 4382.6 238.04 0.0663589 .  
## qro         0      0.00 4066.3 236.67              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: live_larvae ~ treatment + whole.mean + alive + duration + replicate
## Model 2: live_larvae ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 4382.6                           
## 2     37 5541.8 -8   -1159.2 0.9588 0.4861
AIC(b2, b3)
##    df      AIC
## b2 17 367.7473
## b3  9 362.3079
brood.col <- lm(dead_pupae~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## dead_pupae ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC Pr(>Chi)  
## <none>                  1067.2 176.47           
## treatment   4    212.32 1279.5 176.64  0.08571 .
## whole.mean  1     21.94 1089.1 175.39  0.33860  
## alive       1      2.54 1069.7 174.58  0.74366  
## duration    1     53.77 1120.9 176.69  0.13693  
## replicate   5    320.42 1387.6 178.29  0.03741 *
## mean.dose   1     13.40 1080.6 175.04  0.45372  
## qro         0      0.00 1067.2 176.47           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: dead_pupae ~ treatment + whole.mean + alive + duration + replicate
## Model 2: dead_pupae ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 1080.6                           
## 2     37 1488.4 -8   -407.84 1.3682 0.2515
AIC(b2, b3)
##    df      AIC
## b2 17 304.7401
## b3  9 303.1500
brood.col <- lm(live_pupae~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = brood)
drop1(brood.col, test = "Chisq")
## Single term deletions
## 
## Model:
## live_pupae ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC Pr(>Chi)   
## <none>                  442.66 136.88            
## treatment   4    39.161 481.82 132.69 0.431664   
## whole.mean  1    70.826 513.49 141.56 0.009756 **
## alive       1    10.785 453.45 135.96 0.297978   
## duration    1     1.704 444.36 135.05 0.677528   
## replicate   5    41.770 484.43 130.93 0.541147   
## mean.dose   1    18.130 460.79 136.68 0.178946   
## qro         0     0.000 442.66 136.88            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1 <- update(brood.col, .~. -qro)
vif(b1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
b2 <- update(b1, .~. -mean.dose)
vif(b2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
b3 <- update(b2, .~. -replicate)
vif(b3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(b2, b3)
## Analysis of Variance Table
## 
## Model 1: live_pupae ~ treatment + whole.mean + alive + duration + replicate
## Model 2: live_pupae ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1     29 460.79                           
## 2     37 526.97 -8   -66.179 0.5206 0.8311
AIC(b2, b3)
##    df      AIC
## b2 17 266.3872
## b3  9 256.4261
# Variables to keep for brood production models = treatment + whole.mean + alive + duration

drone.ce.col <- lm(emerge~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = drone.ce)
d1 <- update(drone.ce.col, .~. -qro)
vif(d1)
## Warning in summary.lm(object, ...): essentially perfect fit: summary may be
## unreliable
##                 GVIF Df GVIF^(1/(2*Df))
## treatment  13.877487  4        1.389277
## whole.mean  3.007475  1        1.734207
## alive       2.054764  1        1.433445
## duration    2.757985  1        1.660718
## replicate   8.793850  8        1.145542
## mean.dose   9.312274  1        3.051602
d2 <- update(d1, .~. -mean.dose)
vif(d2)
## Warning in summary.lm(object, ...): essentially perfect fit: summary may be
## unreliable
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.837900  4        1.079047
## whole.mean 2.996504  1        1.731041
## alive      2.015683  1        1.419747
## duration   2.564950  1        1.601546
## replicate  7.780615  8        1.136811
d3 <- update(d2, .~. -replicate)
vif(d3)
## Warning in summary.lm(object, ...): essentially perfect fit: summary may be
## unreliable
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.257949  4        1.029101
## whole.mean 1.578568  1        1.256411
## alive      1.107157  1        1.052215
## duration   1.678405  1        1.295533
anova(d2, d3)
## Analysis of Variance Table
## 
## Model 1: emerge ~ treatment + whole.mean + alive + duration + replicate
## Model 2: emerge ~ treatment + whole.mean + alive + duration
##   Res.Df        RSS Df   Sum of Sq      F Pr(>F)
## 1     24 1.4389e-27                             
## 2     32 1.6659e-27 -8 -2.2706e-28 0.4734 0.8627
drone.ce.col <- lm(count~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = drone.ce)
d1 <- update(drone.ce.col, .~. -qro)
vif(d1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  9.467065  4        1.324424
## whole.mean 2.965415  1        1.722038
## alive      3.437075  1        1.853935
## duration   2.986680  1        1.728201
## replicate  5.721855  8        1.115183
## mean.dose  6.797842  1        2.607267
d2 <- update(d1, .~. -mean.dose)
vif(d2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.645456  4        1.064231
## whole.mean 2.868172  1        1.693568
## alive      3.367939  1        1.835194
## duration   2.985180  1        1.727767
## replicate  5.066066  8        1.106731
d3 <- update(d2, .~. -replicate)
vif(d3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.347318  4        1.037968
## whole.mean 1.526755  1        1.235619
## alive      1.824988  1        1.350921
## duration   1.702754  1        1.304896
anova(d2, d3)
## Analysis of Variance Table
## 
## Model 1: count ~ treatment + whole.mean + alive + duration + replicate
## Model 2: count ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1     29 505.70                              
## 2     37 807.08 -8   -301.38 2.1603 0.06176 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(d2, d3)  #keep d2
##    df      AIC
## d2 17 270.5724
## d3  9 275.6087
# Variables to keep for drone emergence models = treatment + whole.mean + alive + duration
#but drone count model = treatment + whole.mean + alive + duration + replicate

drone.h.col <-  lm(relative_fat~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = drone.h)
drop1(drone.h.col, test = "Chisq")
## Single term deletions
## 
## Model:
## relative_fat ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df  Sum of Sq        RSS     AIC Pr(>Chi)   
## <none>                   0.00024331 -5415.8            
## treatment   4 1.0639e-05 0.00025395 -5407.5 0.002585 **
## whole.mean  1 1.0550e-06 0.00024437 -5416.2 0.198582   
## alive       1 1.3411e-06 0.00024465 -5415.7 0.147315   
## duration    1 2.5591e-06 0.00024587 -5413.8 0.045587 * 
## replicate   5 3.0993e-06 0.00024641 -5421.0 0.436325   
## mean.dose   1 4.7612e-06 0.00024807 -5410.4 0.006512 **
## qro         0 0.0000e+00 0.00024331 -5415.8            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
d1 <- update(drone.h.col, .~. -qro)
vif(d1)
##                 GVIF Df GVIF^(1/(2*Df))
## treatment  27.849721  4        1.515663
## whole.mean  3.600649  1        1.897538
## alive       1.098859  1        1.048265
## duration    1.882540  1        1.372057
## replicate   6.455871  8        1.123627
## mean.dose  14.370191  1        3.790804
d2 <- update(d1, .~. -mean.dose)
vif(d2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  2.216516  4        1.104610
## whole.mean 3.449427  1        1.857263
## alive      1.094689  1        1.046274
## duration   1.877555  1        1.370239
## replicate  5.632877  8        1.114091
d3 <- update(d2, .~. -replicate)
vif(d3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.284692  4        1.031810
## whole.mean 1.191791  1        1.091692
## alive      1.025505  1        1.012672
## duration   1.214062  1        1.101845
anova(d2, d3, test = "Chisq")
## Analysis of Variance Table
## 
## Model 1: relative_fat ~ treatment + whole.mean + alive + duration + replicate
## Model 2: relative_fat ~ treatment + whole.mean + alive + duration
##   Res.Df        RSS Df   Sum of Sq Pr(>Chi)  
## 1    366 0.00024807                          
## 2    374 0.00025780 -8 -9.7265e-06  0.07308 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(d2, d3)
##    df       AIC
## d2 17 -4324.366
## d3  9 -4325.675
drone.h.col <-  lm(dry_weight~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = drone.h)
drop1(drone.h.col, test = "Chisq")
## Single term deletions
## 
## Model:
## dry_weight ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df  Sum of Sq      RSS     AIC  Pr(>Chi)    
## <none>                   0.026784 -3980.7              
## treatment   4 0.00223730 0.029022 -3955.3 1.002e-06 ***
## whole.mean  1 0.00019567 0.026980 -3979.6   0.08184 .  
## alive       1 0.00034304 0.027128 -3977.4   0.02140 *  
## duration    1 0.00002224 0.026807 -3982.3   0.55676    
## replicate   5 0.00061654 0.027401 -3981.2   0.09182 .  
## mean.dose   1 0.00005569 0.026840 -3981.8   0.35259    
## qro         0 0.00000000 0.026784 -3980.7              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
d1 <- update(drone.h.col, .~. -qro)
vif(d1)
##                 GVIF Df GVIF^(1/(2*Df))
## treatment  28.361446  4        1.519116
## whole.mean  3.635553  1        1.906713
## alive       1.087236  1        1.042706
## duration    1.937229  1        1.391844
## replicate   6.566066  8        1.124816
## mean.dose  14.430725  1        3.798779
d2 <- update(d1, .~. -mean.dose)
vif(d2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  2.250439  4        1.106709
## whole.mean 3.496936  1        1.870010
## alive      1.083447  1        1.040888
## duration   1.934177  1        1.390747
## replicate  5.736855  8        1.115365
d3 <- update(d2, .~. -replicate)
vif(d3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.281142  4        1.031454
## whole.mean 1.209902  1        1.099956
## alive      1.023663  1        1.011762
## duration   1.209712  1        1.099869
anova(d2, d3, test = "Chisq")
## Analysis of Variance Table
## 
## Model 1: dry_weight ~ treatment + whole.mean + alive + duration + replicate
## Model 2: dry_weight ~ treatment + whole.mean + alive + duration
##   Res.Df      RSS Df Sum of Sq Pr(>Chi)  
## 1    400 0.026840                        
## 2    408 0.028045 -8 -0.001205  0.02154 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(d2, d3)
##    df       AIC
## d2 17 -2799.235
## d3  9 -2796.965
drone.h.col <-  lm(radial~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = drone.h)
drop1(drone.h.col, test = "Chisq")
## Single term deletions
## 
## Model:
## radial ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS     AIC Pr(>Chi)   
## <none>                  15.088 -1307.0            
## treatment   4   0.63081 15.718 -1298.4  0.00224 **
## whole.mean  1   0.00326 15.091 -1309.0  0.76672   
## alive       1   0.21488 15.302 -1303.3  0.01644 * 
## duration    1   0.03616 15.124 -1308.1  0.32362   
## replicate   5   0.28737 15.375 -1309.4  0.17482   
## mean.dose   1   0.01108 15.099 -1308.7  0.58469   
## qro         0   0.00000 15.088 -1307.0            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
d1 <- update(drone.h.col, .~. -qro)
vif(d1)
##                 GVIF Df GVIF^(1/(2*Df))
## treatment  28.709844  4        1.521437
## whole.mean  3.619228  1        1.902427
## alive       1.087820  1        1.042986
## duration    1.927802  1        1.388453
## replicate   6.392157  8        1.122931
## mean.dose  14.496093  1        3.807373
d2 <- update(d1, .~. -mean.dose)
vif(d2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  2.274335  4        1.108171
## whole.mean 3.471038  1        1.863072
## alive      1.083927  1        1.041118
## duration   1.923363  1        1.386854
## replicate  5.562241  8        1.113213
d3 <- update(d2, .~. -replicate)
vif(d3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.295445  4        1.032886
## whole.mean 1.218756  1        1.103973
## alive      1.024674  1        1.012262
## duration   1.224079  1        1.106381
anova(d2, d3, test = "Chisq")
## Analysis of Variance Table
## 
## Model 1: radial ~ treatment + whole.mean + alive + duration + replicate
## Model 2: radial ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq Pr(>Chi)  
## 1    391 15.099                        
## 2    399 15.712 -8   -0.6133   0.0441 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(d2, d3)
##    df       AIC
## d2 17 -151.7277
## d3  9 -151.5224
# Variables to include in drone dry weight and radial cell model = treatment + whole.mean + alive + duration + replicate, but in relative fat it is = treatment + whole.mean + alive + duration

weights.col <-  lm(difference~ treatment + whole.mean + alive + duration  + replicate + mean.dose + qro, data = weights)
drop1(weights.col, test = "Chisq")
## Single term deletions
## 
## Model:
## difference ~ treatment + whole.mean + alive + duration + replicate + 
##     mean.dose + qro
##            Df Sum of Sq    RSS    AIC  Pr(>Chi)    
## <none>                  216.78 104.75              
## treatment   4    77.782 294.56 110.55  0.007972 ** 
## whole.mean  1   172.613 389.40 129.11 2.839e-07 ***
## alive       1    11.928 228.71 105.16  0.120533    
## duration    1     0.001 216.78 102.75  0.991206    
## replicate   5    31.503 248.29 100.86  0.296057    
## mean.dose   1    33.315 250.10 109.18  0.011201 *  
## qro         0     0.000 216.78 104.75              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
wtcol1 <- update(weights.col, .~. -qro)
vif(wtcol1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  8.553798  4        1.307735
## whole.mean 3.449268  1        1.857220
## alive      2.500432  1        1.581275
## duration   1.688360  1        1.299369
## replicate  4.411960  8        1.097209
## mean.dose  6.951638  1        2.636596
wtcol2 <- update(wtcol1, .~. -mean.dose)
vif(wtcol2)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.416097  4        1.044448
## whole.mean 3.269164  1        1.808083
## alive      2.457681  1        1.567699
## duration   1.650178  1        1.284593
## replicate  4.033123  8        1.091070
wtcol3 <- update(wtcol2, .~. -replicate)
vif(wtcol3)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.240985  4        1.027356
## whole.mean 1.283871  1        1.133080
## alive      1.356444  1        1.164665
## duration   1.182338  1        1.087354
anova(wtcol2, wtcol3, test = "Chisq")
## Analysis of Variance Table
## 
## Model 1: difference ~ treatment + whole.mean + alive + duration + replicate
## Model 2: difference ~ treatment + whole.mean + alive + duration
##   Res.Df    RSS Df Sum of Sq Pr(>Chi)
## 1     29 250.10                      
## 2     37 313.55 -8    -63.45   0.4986
#variables to include in weight change model = treatment + whole.mean + alive + duration


workers.col <-  lm(dry_weight~ treatment + whole.mean + alive + survived + colony_duration + replicate + days_alive + mean.dose + qro, data = workers)
drop1(workers.col, test = "Chisq")
## Single term deletions
## 
## Model:
## dry_weight ~ treatment + whole.mean + alive + survived + colony_duration + 
##     replicate + days_alive + mean.dose + qro
##                 Df Sum of Sq      RSS     AIC  Pr(>Chi)    
## <none>                       0.052735 -1833.3              
## treatment        4 0.0008213 0.053556 -1837.9    0.4837    
## whole.mean       1 0.0078499 0.060584 -1804.2 2.471e-08 ***
## alive            1 0.0003462 0.053081 -1833.9    0.2260    
## survived         1 0.0005413 0.053276 -1833.0    0.1304    
## colony_duration  1 0.0000222 0.052757 -1835.2    0.7589    
## replicate        5 0.0009386 0.053673 -1839.4    0.5564    
## days_alive       1 0.0000058 0.052740 -1835.3    0.8750    
## mean.dose        1 0.0001936 0.052928 -1834.5    0.3650    
## qro              0 0.0000000 0.052735 -1833.3              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
wcol1 <- update(workers.col, .~. -qro)
vif(wcol1)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       9.982606  4        1.333231
## whole.mean      2.971430  1        1.723784
## alive           5.194817  1        2.279214
## survived        3.519625  1        1.876066
## colony_duration 4.802699  1        2.191506
## replicate       6.129251  8        1.119987
## days_alive      4.145068  1        2.035944
## mean.dose       6.918257  1        2.630258
drop1(wcol1, test = "Chisq")
## Single term deletions
## 
## Model:
## dry_weight ~ treatment + whole.mean + alive + survived + colony_duration + 
##     replicate + days_alive + mean.dose
##                 Df Sum of Sq      RSS     AIC  Pr(>Chi)    
## <none>                       0.052735 -1833.3              
## treatment        4 0.0008213 0.053556 -1837.9    0.4837    
## whole.mean       1 0.0078499 0.060584 -1804.2 2.471e-08 ***
## alive            1 0.0003462 0.053081 -1833.9    0.2260    
## survived         1 0.0005413 0.053276 -1833.0    0.1304    
## colony_duration  1 0.0000222 0.052757 -1835.2    0.7589    
## replicate        8 0.0082267 0.060961 -1816.8 7.662e-05 ***
## days_alive       1 0.0000058 0.052740 -1835.3    0.8750    
## mean.dose        1 0.0001936 0.052928 -1834.5    0.3650    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
wcol2 <- update(wcol1, .~. -mean.dose)
vif(wcol2)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       1.693901  4        1.068098
## whole.mean      2.852279  1        1.688869
## alive           5.150490  1        2.269469
## survived        3.508476  1        1.873093
## colony_duration 4.731913  1        2.175296
## replicate       5.443363  8        1.111710
## days_alive      4.083868  1        2.020858
drop1(wcol2, test = "Chisq")
## Single term deletions
## 
## Model:
## dry_weight ~ treatment + whole.mean + alive + survived + colony_duration + 
##     replicate + days_alive
##                 Df Sum of Sq      RSS     AIC  Pr(>Chi)    
## <none>                       0.052928 -1834.5              
## treatment        4 0.0008136 0.053742 -1839.1    0.4906    
## whole.mean       1 0.0076716 0.060600 -1806.2 3.664e-08 ***
## alive            1 0.0003991 0.053327 -1834.8    0.1946    
## survived         1 0.0005071 0.053435 -1834.4    0.1439    
## colony_duration  1 0.0000093 0.052937 -1836.5    0.8430    
## replicate        8 0.0082224 0.061151 -1818.2 8.073e-05 ***
## days_alive       1 0.0000005 0.052929 -1836.5    0.9622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
wcol3 <- update(wcol1, .~. -treatment)
vif(wcol3)
##                     GVIF Df GVIF^(1/(2*Df))
## whole.mean      2.665711  1        1.632700
## alive           4.754698  1        2.180527
## survived        3.442411  1        1.855374
## colony_duration 4.137701  1        2.034134
## replicate       4.919528  8        1.104702
## days_alive      3.937984  1        1.984435
## mean.dose       1.173926  1        1.083479
drop1(wcol3, test = "Chisq")
## Single term deletions
## 
## Model:
## dry_weight ~ whole.mean + alive + survived + colony_duration + 
##     replicate + days_alive + mean.dose
##                 Df Sum of Sq      RSS     AIC  Pr(>Chi)    
## <none>                       0.053556 -1837.9              
## whole.mean       1 0.0077487 0.061305 -1809.6 3.761e-08 ***
## alive            1 0.0005122 0.054068 -1837.7    0.1443    
## survived         1 0.0005022 0.054058 -1837.8    0.1482    
## colony_duration  1 0.0000302 0.053586 -1839.7    0.7225    
## replicate        8 0.0083069 0.061863 -1821.6 8.231e-05 ***
## days_alive       1 0.0000000 0.053556 -1839.9    0.9985    
## mean.dose        1 0.0001859 0.053742 -1839.1    0.3783    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
wcol4 <- update(wcol1, .~. -replicate)
vif(wcol4)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       8.012351  4        1.297090
## whole.mean      1.830373  1        1.352913
## alive           3.601591  1        1.897786
## survived        3.450263  1        1.857488
## colony_duration 3.377098  1        1.837688
## days_alive      3.907215  1        1.976668
## mean.dose       6.144076  1        2.478725
wcol5 <- update(wcol4, .~. -mean.dose)
vif(wcol5)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       1.391880  4        1.042198
## whole.mean      1.530083  1        1.236965
## alive           3.600378  1        1.897466
## survived        3.432116  1        1.852597
## colony_duration 3.287856  1        1.813245
## days_alive      3.835977  1        1.958565
wcol6 <- update(wcol4, .~. -treatment)
vif(wcol6)
##      whole.mean           alive        survived colony_duration      days_alive 
##        1.419487        3.442770        3.371879        3.082824        3.709960 
##       mean.dose 
##        1.067329
#variables to begin for workers dry weight model --> treatment + whole.mean + alive + survived + colony_duration + days_alive 

workers.col <-  lm(days_alive~ treatment + whole.mean + alive + survived + colony_duration + replicate + dry_weight + mean.dose + qro, data = workers)
drop1(workers.col, test = "Chisq")
## Single term deletions
## 
## Model:
## days_alive ~ treatment + whole.mean + alive + survived + colony_duration + 
##     replicate + dry_weight + mean.dose + qro
##                 Df Sum of Sq    RSS    AIC  Pr(>Chi)    
## <none>                       4356.0 702.75              
## treatment        4    229.57 4585.5 706.26   0.02144 *  
## whole.mean       1     42.20 4398.2 702.91   0.14166    
## alive            1     15.46 4371.4 701.55   0.37294    
## survived         1   1158.94 5514.9 753.60 3.612e-13 ***
## colony_duration  1   2847.11 7203.1 813.42 < 2.2e-16 ***
## replicate        5    124.98 4480.9 699.09   0.27483    
## dry_weight       1      0.48 4356.4 700.78   0.87497    
## mean.dose        1     65.72 4421.7 704.11   0.06702 .  
## qro              0      0.00 4356.0 702.75              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
wcol1 <- update(workers.col, .~. -qro)
vif(wcol1)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       9.630516  4        1.327261
## whole.mean      3.380991  1        1.838747
## alive           5.210423  1        2.282635
## survived        2.808520  1        1.675864
## colony_duration 2.905589  1        1.704579
## replicate       6.678162  8        1.126007
## dry_weight      1.598323  1        1.264248
## mean.dose       6.840443  1        2.615424
wcol2 <- update(wcol1, .~. -mean.dose)
vif(wcol2)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       1.657735  4        1.065220
## whole.mean      3.247452  1        1.802069
## alive           5.163252  1        2.272279
## survived        2.808386  1        1.675824
## colony_duration 2.895382  1        1.701582
## replicate       5.907328  8        1.117408
## dry_weight      1.592638  1        1.261998
wcol3 <- update(wcol1, .~. -treatment)
vif(wcol3)
##                     GVIF Df GVIF^(1/(2*Df))
## whole.mean      3.043375  1        1.744527
## alive           4.781338  1        2.186627
## survived        2.799086  1        1.673047
## colony_duration 2.228600  1        1.492850
## replicate       5.354024  8        1.110561
## dry_weight      1.573988  1        1.254587
## mean.dose       1.177470  1        1.085113
wcol4 <- update(wcol1, .~. -replicate)
vif(wcol4)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       7.720988  4        1.291098
## whole.mean      2.312330  1        1.520635
## alive           3.714956  1        1.927422
## survived        2.783481  1        1.668377
## colony_duration 1.664957  1        1.290332
## dry_weight      1.382773  1        1.175913
## mean.dose       6.050878  1        2.459853
wcol5 <- update(wcol4, .~. -mean.dose)
vif(wcol5)
##                     GVIF Df GVIF^(1/(2*Df))
## treatment       1.368219  4        1.039967
## whole.mean      1.977686  1        1.406302
## alive           3.714483  1        1.927300
## survived        2.782506  1        1.668084
## colony_duration 1.649497  1        1.284327
## dry_weight      1.378471  1        1.174083
wcol6 <- update(wcol4, .~. -treatment)
vif(wcol6)
##      whole.mean           alive        survived colony_duration      dry_weight 
##        1.835627        3.554008        2.772289        1.416195        1.362510 
##       mean.dose 
##        1.072262
#variables to keep for worker days alive model --> treatment + whole.mean + alive + survived + colony_duration + dry_weight 


pollen.col <- lm(difference~ treatment + bees_alive + replicate + qro + count, data = pollen)
pcol1 <- update(pollen.col, .~. -qro)
vif(pcol1)
##                GVIF Df GVIF^(1/(2*Df))
## treatment  1.098006  4        1.011756
## bees_alive 1.393435  1        1.180439
## replicate  1.280304  8        1.015563
## count      1.089723  1        1.043898
drop1(pcol1, test = "Chisq")
## Single term deletions
## 
## Model:
## difference ~ treatment + bees_alive + replicate + count
##            Df Sum of Sq    RSS     AIC  Pr(>Chi)    
## <none>                  76.499 -2258.1              
## treatment   4    1.3050 77.804 -2250.6  0.003666 ** 
## bees_alive  1    7.0938 83.593 -2178.5 < 2.2e-16 ***
## replicate   8   16.0220 92.521 -2099.2 < 2.2e-16 ***
## count       1   13.1705 89.669 -2114.0 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#variables to keep for pollen model = treatment + bees_alive + replicate + count
LS0tDQp0aXRsZTogIldpZGVseS11c2VkIGZ1bmdpY2lkZSBQcmlzdGluZcKuIGNhdXNlcyBzdWItbGV0aGFsIGVmZmVjdHMgaW4gY29tbW9uIGVhc3Rlcm4gYnVtYmxlIGJlZSAoKkJvbWJ1cyBpbXBhdGllbnMqKSBtaWNyb2NvbG9uaWVzICINCmF1dGhvcjogIkVtaWx5IFJ1bm5pb24iDQpkYXRlOiAiRGF0YSBDb2xsZWN0ZWQgMjAyMiwgRGF0YSBBbmFseXplZCAyMDIzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19kZXB0aDogNA0KICAgIG51bWJlcl9zZWN0aW9uczogZmFsc2UNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICB0aGVtZTogam91cm5hbA0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChtZXNzYWdlID0gRkFMU0UpDQpgYGANCg0KYGBge3IgbG9hZCBsaWJyYXJpZXMsIGluY2x1ZGU9RkFMU0V9DQpsaWJyYXJ5KHJlYWRyKQ0KbGlicmFyeShrYWJsZUV4dHJhKQ0KbGlicmFyeShzdGF0cykNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoY2FyKQ0KbGlicmFyeShlbW1lYW5zKQ0KbGlicmFyeShNQVNTKQ0KbGlicmFyeShsbWU0KQ0KbGlicmFyeShibG1lY28pDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGNvd3Bsb3QpDQpsaWJyYXJ5KGJlc3ROb3JtYWxpemUpDQpsaWJyYXJ5KHBsb3RseSkNCmxpYnJhcnkoYWdyaWNvbGFlKSANCmxpYnJhcnkoZ2dwdWJyKQ0KbGlicmFyeShnbHVlKQ0KbGlicmFyeShtdWx0Y29tcCkNCmxpYnJhcnkobXVsdGNvbXBWaWV3KQ0KbGlicmFyeShnbG1tVE1CKQ0KbGlicmFyeShyc3RhdGl4KQ0KbGlicmFyeShmaXRkaXN0cnBsdXMpDQpsaWJyYXJ5KGxvZ3NwbGluZSkNCmxpYnJhcnkob2xzcnIpDQpsaWJyYXJ5KEdHYWxseSkNCmxpYnJhcnkoZGF0YS50YWJsZSkNCmBgYA0KDQpgYGB7ciBpbnB1dCByZWxldmFudCBkYXRhIGZpbGVzLCBpbmNsdWRlPUZBTFNFfQ0KDQpicm9vZCA8LSByZWFkX2NzdigiYnJvb2QuY3N2IikNCmJyb29kJGNvbG9ueSA8LSBhcy5mYWN0b3IoYnJvb2QkY29sb255KQ0KYnJvb2QkdHJlYXRtZW50IDwtIGFzLmZhY3Rvcihicm9vZCR0cmVhdG1lbnQpDQpicm9vZCRyZXBsaWNhdGU8LSBhcy5mYWN0b3IoYnJvb2QkcmVwbGljYXRlKQ0KYnJvb2QkcXJvIDwtIGFzLmZhY3Rvcihicm9vZCRxcm8pDQoNCmRyb25lLmNlIDwtIHJlYWRfY3N2KCJkcm9uZS5jb3VudC5lbWVyZ2UuY3N2IikNCmRyb25lLmNlJGNvbG9ueSA8LSBhcy5mYWN0b3IoZHJvbmUuY2UkY29sb255KQ0KZHJvbmUuY2UkdHJlYXRtZW50IDwtIGFzLmZhY3Rvcihkcm9uZS5jZSR0cmVhdG1lbnQpDQpkcm9uZS5jZSRyZXBsaWNhdGU8LSBhcy5mYWN0b3IoZHJvbmUuY2UkcmVwbGljYXRlKQ0KZHJvbmUuY2UkcXJvIDwtIGFzLmZhY3Rvcihkcm9uZS5jZSRxcm8pDQoNCmRyb25lLmggPC0gcmVhZF9jc3YoImRyb25lLmhlYWx0aC5jc3YiKQ0KZHJvbmUuaCRjb2xvbnkgPC0gYXMuZmFjdG9yKGRyb25lLmgkY29sb255KQ0KZHJvbmUuaCR0cmVhdG1lbnQgPC0gYXMuZmFjdG9yKGRyb25lLmgkdHJlYXRtZW50KQ0KZHJvbmUuaCRyZXBsaWNhdGU8LSBhcy5mYWN0b3IoZHJvbmUuaCRyZXBsaWNhdGUpDQpkcm9uZS5oJHFybyA8LSBhcy5mYWN0b3IoZHJvbmUuaCRxcm8pDQoNCnBvbGxlbiA8LSByZWFkX2NzdigicG9sbGVuLmNzdiIpDQpwb2xsZW4kY29sb255IDwtIGFzLmZhY3Rvcihwb2xsZW4kY29sb255KQ0KcG9sbGVuJHRyZWF0bWVudCA8LSBhcy5mYWN0b3IocG9sbGVuJHRyZWF0bWVudCkNCnBvbGxlbiRyZXBsaWNhdGU8LSBhcy5mYWN0b3IocG9sbGVuJHJlcGxpY2F0ZSkNCnBvbGxlbiRxcm8gPC0gYXMuZmFjdG9yKHBvbGxlbiRxcm8pDQoNCndlaWdodHMgPC0gcmVhZF9jc3YoIndlaWdodHMuY3N2IikNCndlaWdodHMkY29sb255IDwtIGFzLmZhY3Rvcih3ZWlnaHRzJGNvbG9ueSkNCndlaWdodHMkdHJlYXRtZW50IDwtIGFzLmZhY3Rvcih3ZWlnaHRzJHRyZWF0bWVudCkNCndlaWdodHMkcmVwbGljYXRlPC0gYXMuZmFjdG9yKHdlaWdodHMkcmVwbGljYXRlKQ0Kd2VpZ2h0cyRxcm8gPC0gYXMuZmFjdG9yKHdlaWdodHMkcXJvKQ0KDQp3b3JrZXJzIDwtIHJlYWRfY3N2KCJ3b3JrZXJzLmNzdiIpDQp3b3JrZXJzJGNvbG9ueSA8LSBhcy5mYWN0b3Iod29ya2VycyRjb2xvbnkpDQp3b3JrZXJzJHRyZWF0bWVudCA8LSBhcy5mYWN0b3Iod29ya2VycyR0cmVhdG1lbnQpDQp3b3JrZXJzJHJlcGxpY2F0ZTwtIGFzLmZhY3Rvcih3b3JrZXJzJHJlcGxpY2F0ZSkNCndvcmtlcnMkcXJvIDwtIGFzLmZhY3Rvcih3b3JrZXJzJHFybykNCg0KYGBgDQoNCiMjIyMgU3RlcCAxIC0gQ2hlY2sgZm9yIGNvbGxpbmVhcml0eSANCg0KYGBge3J9DQpicm9vZC5jb2wgPC0gbG0oYnJvb2RfY2VsbHN+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uICArIHJlcGxpY2F0ZSArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IGJyb29kKQ0KZHJvcDEoYnJvb2QuY29sLCB0ZXN0ID0gIkNoaXNxIikNCmIxIDwtIHVwZGF0ZShicm9vZC5jb2wsIC5+LiAtcXJvKQ0KdmlmKGIxKQ0KYjIgPC0gdXBkYXRlKGIxLCAufi4gLW1lYW4uZG9zZSkNCnZpZihiMikNCmIzIDwtIHVwZGF0ZShiMiwgLn4uIC1yZXBsaWNhdGUpDQp2aWYoYjMpDQphbm92YShiMiwgYjMpDQpBSUMoYjIsIGIzKQ0KDQpicm9vZC5jb2wgPC0gbG0oaG9uZXlfcG90fiB0cmVhdG1lbnQgKyB3aG9sZS5tZWFuICsgYWxpdmUgKyBkdXJhdGlvbiAgKyByZXBsaWNhdGUgKyBtZWFuLmRvc2UgKyBxcm8sIGRhdGEgPSBicm9vZCkNCmRyb3AxKGJyb29kLmNvbCwgdGVzdCA9ICJDaGlzcSIpDQpiMSA8LSB1cGRhdGUoYnJvb2QuY29sLCAufi4gLXFybykNCnZpZihiMSkNCmIyIDwtIHVwZGF0ZShiMSwgLn4uIC1tZWFuLmRvc2UpDQp2aWYoYjIpDQpiMyA8LSB1cGRhdGUoYjIsIC5+LiAtcmVwbGljYXRlKQ0KdmlmKGIzKQ0KYW5vdmEoYjIsIGIzKQ0KQUlDKGIyLCBiMykNCg0KYnJvb2QuY29sIDwtIGxtKGVnZ3N+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uICArIHJlcGxpY2F0ZSArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IGJyb29kKQ0KZHJvcDEoYnJvb2QuY29sLCB0ZXN0ID0gIkNoaXNxIikNCmIxIDwtIHVwZGF0ZShicm9vZC5jb2wsIC5+LiAtcXJvKQ0KdmlmKGIxKQ0KYjIgPC0gdXBkYXRlKGIxLCAufi4gLW1lYW4uZG9zZSkNCnZpZihiMikNCmIzIDwtIHVwZGF0ZShiMiwgLn4uIC1yZXBsaWNhdGUpDQp2aWYoYjMpDQphbm92YShiMiwgYjMpDQpBSUMoYjIsIGIzKQ0KDQpicm9vZC5jb2wgPC0gbG0oZGVhZF9sYXJ2YWV+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uICArIHJlcGxpY2F0ZSArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IGJyb29kKQ0KZHJvcDEoYnJvb2QuY29sLCB0ZXN0ID0gIkNoaXNxIikNCmIxIDwtIHVwZGF0ZShicm9vZC5jb2wsIC5+LiAtcXJvKQ0KdmlmKGIxKQ0KYjIgPC0gdXBkYXRlKGIxLCAufi4gLW1lYW4uZG9zZSkNCnZpZihiMikNCmIzIDwtIHVwZGF0ZShiMiwgLn4uIC1yZXBsaWNhdGUpDQp2aWYoYjMpDQphbm92YShiMiwgYjMpDQpBSUMoYjIsIGIzKQ0KDQpicm9vZC5jb2wgPC0gbG0obGl2ZV9sYXJ2YWV+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uICArIHJlcGxpY2F0ZSArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IGJyb29kKQ0KZHJvcDEoYnJvb2QuY29sLCB0ZXN0ID0gIkNoaXNxIikNCmIxIDwtIHVwZGF0ZShicm9vZC5jb2wsIC5+LiAtcXJvKQ0KdmlmKGIxKQ0KYjIgPC0gdXBkYXRlKGIxLCAufi4gLW1lYW4uZG9zZSkNCnZpZihiMikNCmIzIDwtIHVwZGF0ZShiMiwgLn4uIC1yZXBsaWNhdGUpDQp2aWYoYjMpDQphbm92YShiMiwgYjMpDQpBSUMoYjIsIGIzKQ0KDQpicm9vZC5jb2wgPC0gbG0oZGVhZF9wdXBhZX4gdHJlYXRtZW50ICsgd2hvbGUubWVhbiArIGFsaXZlICsgZHVyYXRpb24gICsgcmVwbGljYXRlICsgbWVhbi5kb3NlICsgcXJvLCBkYXRhID0gYnJvb2QpDQpkcm9wMShicm9vZC5jb2wsIHRlc3QgPSAiQ2hpc3EiKQ0KYjEgPC0gdXBkYXRlKGJyb29kLmNvbCwgLn4uIC1xcm8pDQp2aWYoYjEpDQpiMiA8LSB1cGRhdGUoYjEsIC5+LiAtbWVhbi5kb3NlKQ0KdmlmKGIyKQ0KYjMgPC0gdXBkYXRlKGIyLCAufi4gLXJlcGxpY2F0ZSkNCnZpZihiMykNCmFub3ZhKGIyLCBiMykNCkFJQyhiMiwgYjMpDQoNCmJyb29kLmNvbCA8LSBsbShsaXZlX3B1cGFlfiB0cmVhdG1lbnQgKyB3aG9sZS5tZWFuICsgYWxpdmUgKyBkdXJhdGlvbiAgKyByZXBsaWNhdGUgKyBtZWFuLmRvc2UgKyBxcm8sIGRhdGEgPSBicm9vZCkNCmRyb3AxKGJyb29kLmNvbCwgdGVzdCA9ICJDaGlzcSIpDQpiMSA8LSB1cGRhdGUoYnJvb2QuY29sLCAufi4gLXFybykNCnZpZihiMSkNCmIyIDwtIHVwZGF0ZShiMSwgLn4uIC1tZWFuLmRvc2UpDQp2aWYoYjIpDQpiMyA8LSB1cGRhdGUoYjIsIC5+LiAtcmVwbGljYXRlKQ0KdmlmKGIzKQ0KYW5vdmEoYjIsIGIzKQ0KQUlDKGIyLCBiMykNCiMgVmFyaWFibGVzIHRvIGtlZXAgZm9yIGJyb29kIHByb2R1Y3Rpb24gbW9kZWxzID0gdHJlYXRtZW50ICsgd2hvbGUubWVhbiArIGFsaXZlICsgZHVyYXRpb24NCg0KZHJvbmUuY2UuY29sIDwtIGxtKGVtZXJnZX4gdHJlYXRtZW50ICsgd2hvbGUubWVhbiArIGFsaXZlICsgZHVyYXRpb24gICsgcmVwbGljYXRlICsgbWVhbi5kb3NlICsgcXJvLCBkYXRhID0gZHJvbmUuY2UpDQpkMSA8LSB1cGRhdGUoZHJvbmUuY2UuY29sLCAufi4gLXFybykNCnZpZihkMSkNCmQyIDwtIHVwZGF0ZShkMSwgLn4uIC1tZWFuLmRvc2UpDQp2aWYoZDIpDQpkMyA8LSB1cGRhdGUoZDIsIC5+LiAtcmVwbGljYXRlKQ0KdmlmKGQzKQ0KYW5vdmEoZDIsIGQzKQ0KDQpkcm9uZS5jZS5jb2wgPC0gbG0oY291bnR+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uICArIHJlcGxpY2F0ZSArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IGRyb25lLmNlKQ0KZDEgPC0gdXBkYXRlKGRyb25lLmNlLmNvbCwgLn4uIC1xcm8pDQp2aWYoZDEpDQpkMiA8LSB1cGRhdGUoZDEsIC5+LiAtbWVhbi5kb3NlKQ0KdmlmKGQyKQ0KZDMgPC0gdXBkYXRlKGQyLCAufi4gLXJlcGxpY2F0ZSkNCnZpZihkMykNCmFub3ZhKGQyLCBkMykNCkFJQyhkMiwgZDMpICAja2VlcCBkMg0KIyBWYXJpYWJsZXMgdG8ga2VlcCBmb3IgZHJvbmUgZW1lcmdlbmNlIG1vZGVscyA9IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uDQojYnV0IGRyb25lIGNvdW50IG1vZGVsID0gdHJlYXRtZW50ICsgd2hvbGUubWVhbiArIGFsaXZlICsgZHVyYXRpb24gKyByZXBsaWNhdGUNCg0KZHJvbmUuaC5jb2wgPC0gIGxtKHJlbGF0aXZlX2ZhdH4gdHJlYXRtZW50ICsgd2hvbGUubWVhbiArIGFsaXZlICsgZHVyYXRpb24gICsgcmVwbGljYXRlICsgbWVhbi5kb3NlICsgcXJvLCBkYXRhID0gZHJvbmUuaCkNCmRyb3AxKGRyb25lLmguY29sLCB0ZXN0ID0gIkNoaXNxIikNCmQxIDwtIHVwZGF0ZShkcm9uZS5oLmNvbCwgLn4uIC1xcm8pDQp2aWYoZDEpDQpkMiA8LSB1cGRhdGUoZDEsIC5+LiAtbWVhbi5kb3NlKQ0KdmlmKGQyKQ0KZDMgPC0gdXBkYXRlKGQyLCAufi4gLXJlcGxpY2F0ZSkNCnZpZihkMykNCmFub3ZhKGQyLCBkMywgdGVzdCA9ICJDaGlzcSIpDQpBSUMoZDIsIGQzKQ0KDQpkcm9uZS5oLmNvbCA8LSAgbG0oZHJ5X3dlaWdodH4gdHJlYXRtZW50ICsgd2hvbGUubWVhbiArIGFsaXZlICsgZHVyYXRpb24gICsgcmVwbGljYXRlICsgbWVhbi5kb3NlICsgcXJvLCBkYXRhID0gZHJvbmUuaCkNCmRyb3AxKGRyb25lLmguY29sLCB0ZXN0ID0gIkNoaXNxIikNCmQxIDwtIHVwZGF0ZShkcm9uZS5oLmNvbCwgLn4uIC1xcm8pDQp2aWYoZDEpDQpkMiA8LSB1cGRhdGUoZDEsIC5+LiAtbWVhbi5kb3NlKQ0KdmlmKGQyKQ0KZDMgPC0gdXBkYXRlKGQyLCAufi4gLXJlcGxpY2F0ZSkNCnZpZihkMykNCmFub3ZhKGQyLCBkMywgdGVzdCA9ICJDaGlzcSIpDQpBSUMoZDIsIGQzKQ0KDQpkcm9uZS5oLmNvbCA8LSAgbG0ocmFkaWFsfiB0cmVhdG1lbnQgKyB3aG9sZS5tZWFuICsgYWxpdmUgKyBkdXJhdGlvbiAgKyByZXBsaWNhdGUgKyBtZWFuLmRvc2UgKyBxcm8sIGRhdGEgPSBkcm9uZS5oKQ0KZHJvcDEoZHJvbmUuaC5jb2wsIHRlc3QgPSAiQ2hpc3EiKQ0KZDEgPC0gdXBkYXRlKGRyb25lLmguY29sLCAufi4gLXFybykNCnZpZihkMSkNCmQyIDwtIHVwZGF0ZShkMSwgLn4uIC1tZWFuLmRvc2UpDQp2aWYoZDIpDQpkMyA8LSB1cGRhdGUoZDIsIC5+LiAtcmVwbGljYXRlKQ0KdmlmKGQzKQ0KYW5vdmEoZDIsIGQzLCB0ZXN0ID0gIkNoaXNxIikNCkFJQyhkMiwgZDMpDQoNCiMgVmFyaWFibGVzIHRvIGluY2x1ZGUgaW4gZHJvbmUgZHJ5IHdlaWdodCBhbmQgcmFkaWFsIGNlbGwgbW9kZWwgPSB0cmVhdG1lbnQgKyB3aG9sZS5tZWFuICsgYWxpdmUgKyBkdXJhdGlvbiArIHJlcGxpY2F0ZSwgYnV0IGluIHJlbGF0aXZlIGZhdCBpdCBpcyA9IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uDQoNCndlaWdodHMuY29sIDwtICBsbShkaWZmZXJlbmNlfiB0cmVhdG1lbnQgKyB3aG9sZS5tZWFuICsgYWxpdmUgKyBkdXJhdGlvbiAgKyByZXBsaWNhdGUgKyBtZWFuLmRvc2UgKyBxcm8sIGRhdGEgPSB3ZWlnaHRzKQ0KZHJvcDEod2VpZ2h0cy5jb2wsIHRlc3QgPSAiQ2hpc3EiKQ0Kd3Rjb2wxIDwtIHVwZGF0ZSh3ZWlnaHRzLmNvbCwgLn4uIC1xcm8pDQp2aWYod3Rjb2wxKQ0Kd3Rjb2wyIDwtIHVwZGF0ZSh3dGNvbDEsIC5+LiAtbWVhbi5kb3NlKQ0KdmlmKHd0Y29sMikNCnd0Y29sMyA8LSB1cGRhdGUod3Rjb2wyLCAufi4gLXJlcGxpY2F0ZSkNCnZpZih3dGNvbDMpDQphbm92YSh3dGNvbDIsIHd0Y29sMywgdGVzdCA9ICJDaGlzcSIpDQojdmFyaWFibGVzIHRvIGluY2x1ZGUgaW4gd2VpZ2h0IGNoYW5nZSBtb2RlbCA9IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIGR1cmF0aW9uDQoNCg0Kd29ya2Vycy5jb2wgPC0gIGxtKGRyeV93ZWlnaHR+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIHN1cnZpdmVkICsgY29sb255X2R1cmF0aW9uICsgcmVwbGljYXRlICsgZGF5c19hbGl2ZSArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IHdvcmtlcnMpDQpkcm9wMSh3b3JrZXJzLmNvbCwgdGVzdCA9ICJDaGlzcSIpDQp3Y29sMSA8LSB1cGRhdGUod29ya2Vycy5jb2wsIC5+LiAtcXJvKQ0KdmlmKHdjb2wxKQ0KZHJvcDEod2NvbDEsIHRlc3QgPSAiQ2hpc3EiKQ0Kd2NvbDIgPC0gdXBkYXRlKHdjb2wxLCAufi4gLW1lYW4uZG9zZSkNCnZpZih3Y29sMikNCmRyb3AxKHdjb2wyLCB0ZXN0ID0gIkNoaXNxIikNCndjb2wzIDwtIHVwZGF0ZSh3Y29sMSwgLn4uIC10cmVhdG1lbnQpDQp2aWYod2NvbDMpDQpkcm9wMSh3Y29sMywgdGVzdCA9ICJDaGlzcSIpDQp3Y29sNCA8LSB1cGRhdGUod2NvbDEsIC5+LiAtcmVwbGljYXRlKQ0KdmlmKHdjb2w0KQ0Kd2NvbDUgPC0gdXBkYXRlKHdjb2w0LCAufi4gLW1lYW4uZG9zZSkNCnZpZih3Y29sNSkNCndjb2w2IDwtIHVwZGF0ZSh3Y29sNCwgLn4uIC10cmVhdG1lbnQpDQp2aWYod2NvbDYpDQojdmFyaWFibGVzIHRvIGJlZ2luIGZvciB3b3JrZXJzIGRyeSB3ZWlnaHQgbW9kZWwgLS0+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIHN1cnZpdmVkICsgY29sb255X2R1cmF0aW9uICsgZGF5c19hbGl2ZSANCg0Kd29ya2Vycy5jb2wgPC0gIGxtKGRheXNfYWxpdmV+IHRyZWF0bWVudCArIHdob2xlLm1lYW4gKyBhbGl2ZSArIHN1cnZpdmVkICsgY29sb255X2R1cmF0aW9uICsgcmVwbGljYXRlICsgZHJ5X3dlaWdodCArIG1lYW4uZG9zZSArIHFybywgZGF0YSA9IHdvcmtlcnMpDQpkcm9wMSh3b3JrZXJzLmNvbCwgdGVzdCA9ICJDaGlzcSIpDQp3Y29sMSA8LSB1cGRhdGUod29ya2Vycy5jb2wsIC5+LiAtcXJvKQ0KdmlmKHdjb2wxKQ0Kd2NvbDIgPC0gdXBkYXRlKHdjb2wxLCAufi4gLW1lYW4uZG9zZSkNCnZpZih3Y29sMikNCndjb2wzIDwtIHVwZGF0ZSh3Y29sMSwgLn4uIC10cmVhdG1lbnQpDQp2aWYod2NvbDMpDQp3Y29sNCA8LSB1cGRhdGUod2NvbDEsIC5+LiAtcmVwbGljYXRlKQ0KdmlmKHdjb2w0KQ0Kd2NvbDUgPC0gdXBkYXRlKHdjb2w0LCAufi4gLW1lYW4uZG9zZSkNCnZpZih3Y29sNSkNCndjb2w2IDwtIHVwZGF0ZSh3Y29sNCwgLn4uIC10cmVhdG1lbnQpDQp2aWYod2NvbDYpDQojdmFyaWFibGVzIHRvIGtlZXAgZm9yIHdvcmtlciBkYXlzIGFsaXZlIG1vZGVsIC0tPiB0cmVhdG1lbnQgKyB3aG9sZS5tZWFuICsgYWxpdmUgKyBzdXJ2aXZlZCArIGNvbG9ueV9kdXJhdGlvbiArIGRyeV93ZWlnaHQgDQoNCg0KcG9sbGVuLmNvbCA8LSBsbShkaWZmZXJlbmNlfiB0cmVhdG1lbnQgKyBiZWVzX2FsaXZlICsgcmVwbGljYXRlICsgcXJvICsgY291bnQsIGRhdGEgPSBwb2xsZW4pDQpwY29sMSA8LSB1cGRhdGUocG9sbGVuLmNvbCwgLn4uIC1xcm8pDQp2aWYocGNvbDEpDQpkcm9wMShwY29sMSwgdGVzdCA9ICJDaGlzcSIpDQojdmFyaWFibGVzIHRvIGtlZXAgZm9yIHBvbGxlbiBtb2RlbCA9IHRyZWF0bWVudCArIGJlZXNfYWxpdmUgKyByZXBsaWNhdGUgKyBjb3VudA0KDQpgYGANCg0K